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However, extending the frequency of NGS applica-
tions is not the sole challenge. A predominant issue lies 
in the complexity of interpreting the primary outcome of 
NGS experiments (Lázaro et al. 2021): the extensive list of 
genetic variants identified in a patient. Specifically, the pro-
cess of determining the pathogenic or benign nature of each 
variant represents a formidable challenge, resulting, apart 
from classification errors, in a growing number of vari-
ants for which we cannot establish their impact (Tabet et 
al. 2022). These Variants of Uncertain Significance (VUS) 
limit the clinical yield of NGS and pose a significant barrier 
to its adoption as a standard diagnostic tool.

This situation has favored the advent of computational 
methods, generally based on machine learning algorithms, 
for pathogenicity prediction (Özkan et al. 2021). Initially 
met with caution, these models have since been integrated 
into clinical variant interpretation guidelines (Richards et al. 
2015). They treat pathogenicity prediction as a classifica-
tion problem in which a variant can be either pathogenic 
or benign. Specifically for missense variants—the focus 
of this paper—these tools may integrate a diverse range 
of properties into a single model (Jain et al. 2024a). This 
includes amino acid indexes such as hydrophobicity and 

Introduction

The transformative potential of Next-generation sequencing 
(NGS) for patients with genetic diseases is broadly recog-
nized, yet its full impact is contingent upon two pivotal fac-
tors: the extent of its application and the accuracy of variant 
interpretation. Broadening the application of NGS could sig-
nificantly enhance its lifesaving potential (Owen et al. 2023; 
Kingsmore et al. 2024), as illustrated in a study by Owen et 
al. (2023) that revealed that in a cohort of 112 infant deaths, 
a number of fatalities could have been prevented if rapid, 
diagnostic genome sequencing had been applied at the onset 
of symptoms or immediately upon ICU admission.
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Abstract
Next-generation sequencing (NGS) has revolutionized genetic diagnostics, yet its application in precision medicine 
remains incomplete, despite significant advances in computational tools for variant annotation. Many variants remain 
unannotated, and existing tools often fail to accurately predict the range of impacts that variants have on protein function. 
This limitation restricts their utility in relevant applications such as predicting disease severity and onset age. In response 
to these challenges, a new generation of computational models is emerging, aimed at producing quantitative predictions 
of genetic variant impacts. However, the field is still in its early stages, and several issues need to be addressed, includ-
ing improved performance and better interpretability. This study introduces QAFI, a novel methodology that integrates 
protein-specific regression models within an ensemble learning framework, utilizing conservation-based and structure-
related features derived from AlphaFold models. Our findings indicate that QAFI significantly enhances the accuracy of 
quantitative predictions across various proteins. The approach has been rigorously validated through its application in the 
CAGI6 contest, focusing on ARSA protein variants, and further tested on a comprehensive set of clinically labeled vari-
ants, demonstrating its generalizability and robust predictive power. The straightforward nature of our models may also 
contribute to better interpretability of the results.
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volume changes, conservation-based metrics, like Shan-
non’s Entropy, as well as structure or biophysically related 
attributes, like accessibility and free energy estimates. 
The resulting predictive models are then trained, and their 
performance gauged, using sets of known pathogenic and 
benign variants. In recent years, the performances of these 
pathogenicity predictors have gradually increased (Jain et 
al. 2024a), leading to an important upgrade in the relevance 
given to their results in medical applications (Pejaver et al. 
2022).

In recent years, the field has been gradually moving 
beyond the initial binary classifications of variants to more 
precise estimates of their functional impact (Masica and 
Karchin 2016; Livesey and Marsh 2022; Diaz et al. 2023). 
This new approach opens the door to a better understand-
ing of variant effects, including crucial aspects like dis-
ease severity and patient responses to treatments—factors 
that are essential for Precision Medicine but are not eas-
ily addressed through binary classifications. This paradigm 
change has been fueled by a mixture of conceptual consider-
ations and recent experimental results. On the experimental 

side, Deep Mutational Scanning (DMS) experiments 
(Fowler and Fields 2014) have clearly shown (Fig.  1A) 
the continuous nature of the functional impact of muta-
tions. In parallel, reflecting on the conceptual foundations 
of pathogenicity prediction, Massica and Karchin (Masica 
and Karchin 2016) advocated for a significant methodologi-
cal shift: employing quantitative measurements related to 
phenotypes (catalytic activity, cell growth rates, etc.) as the 
new objective functions in model building processes, mov-
ing away from traditional binary labels.

Following this paradigm, various authors have worked 
on quantitative prediction approaches for specific proteins, 
e.g., CFTR (Masica et al. 2014), BRCA1/2 (Padilla et al. 
2019), CALM1 (Katsonis and Lichtarge 2019), an effort 
captured in the recent review of the first ten years of the 
CAGI experiment (Jain et al. 2024a). Recently, Gray et al.‘s 
work (Gray et al. 2018) has taken a significant step forward 
by offering a general solution to the quantitative predic-
tion challenge, utilizing a regression model trained on a set 
of DMS experiments. Their tool, Envision, has achieved 
Pearson correlation coefficients ranging from 0.38 to 0.69 

Fig. 1  The Quantitative Impact 
of Missense Variants and its 
Prediction with QAFI. (A) Deep 
mutational scanning assays have 
revealed the continuous nature of 
variant effects on protein func-
tion. The figure displays thirty 
assays utilized in this study to 
train our prediction method. (B) 
Overview of the QAFI method-
ology, highlighting the scoring 
of variants using ten selected 
protein-specific predictors 
(PSP) developed for different 
proteins. It also illustrates how 
these scores are integrated using 
the median to produce the final 
prediction
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depending on the gene. Other studies have also tackled the 
quantitative prediction problem in the last years (Laine et 
al. 2019; Kim and Kim 2020; Gelman et al. 2021; Luo et 
al. 2021; Song et al. 2021; Wittmann et al. 2021; Zhang 
et al. 2022; Diaz et al. 2023; Fu et al. 2023; Livesey and 
Marsh 2023). While some use supervised methods, oth-
ers have successfully explored how unsupervised methods 
align with DMS experiments. Among the latter, the work by 
Frazer et al. (Frazer et al. 2021) is remarkable because these 
authors build a deep generative model using evolutionary 
information that reflects the quantitative impact of variants, 
showing that it can be used for pathogenicity prediction 
with promising results. More recently, Cheng et al. (Cheng 
et al. 2023), again using an unsupervised approach and 
state-of-the-art AlphaFold (Jumper et al. 2021) structural 
models have reached competitive results in reproducing 
DMS experiments. However, despite the advances reported 
in the field (Livesey and Marsh 2023), a consistent trend 
has emerged: prediction performance significantly varies 
across different proteins, and no existing method universally 
excels for all proteins. Such variability underscores a crucial 
insight: although progress has been notable, a comprehen-
sive solution that encompasses the entire clinical genome 
remains elusive. This challenge highlights the inherent com-
plexity of predicting missense variants’ functional impacts 
and underscores the essential need for novel approaches. 
These strategies should aim to bring us closer to a solution, 
whether by offering improvements across the entire clinical 
genome or only for a subset of genes.

In this study, we present a novel methodology for the 
QuAntitative estimation of the Functional Impact of mis-
sense variants, referred to as QAFI (Fig. 1B), that combines 
protein-specific regression models within the ensemble 
learning framework (Bishop 2006). More specifically, mul-
tiple linear regression models are used to separately address 
the quantitative prediction problem for a set of proteins for 
which DMS experiments are available in the literature. To 
build these protein-specific models, variants are charac-
terized using conservation- and structure-related features 
(derived from AlphaFold structure models). In a second 
step, we use a subset of the resulting protein-specific pre-
dictors to build a general prediction algorithm for all vari-
ants in any protein. For this part, we apply a basic ensemble 
Learning principle, conceptually based on the fact that cer-
tain effects of variants are universal across proteins and our 
models inherently account for them. To validate the devel-
oped procedure, we employed two independent strategies. 
Initially, an early QAFI prototype was tested in the CAGI6 
contest, focusing on ARSA protein variants. This provided 
preliminary external validation. Subsequently, QAFI’s final 
version was applied to a broader set of clinically labeled 
(pathogenic/benign) variants from proteins outside our 

training dataset, demonstrating our approach’s generaliz-
ability and robust predictive power.

Methods

DMS variant datasets

We compiled DMS experiments from five publications 
(Gray et al. 2018; Riesselman et al. 2018; Reeb et al. 2020; 
Dunham and Beltrao 2021; Frazer et al. 2021), each of which 
had curated DMS experiments for predictive purposes. Our 
selection criteria were: (i) use of only missense variants; (ii) 
availability of a minimum of 1000 variants per experiment; 
(iii) presence of an AlphaFold model (Jumper et al. 2021; 
Varadi et al. 2024). If there were several DMSs available for 
the same protein, we selected either the most recent dataset 
or the one with the most comprehensive coverage.

After applying these filters, we established a final data-
set comprising thirty DMS experiments for thirty distinct 
proteins (Supplementary Table S1). To standardize the data 
across different experiments, we adopted the normalization 
scheme utilized by Gray et al. (2018) in the development 
of their quantitative predictor. In this scheme, a score of 
1 represents variants with no detectable impact on protein 
function, according to the experimental assay. Scores below 
1 indicate decreased activity, and scores above 1 suggest 
enhanced activity compared to the wild-type.

The resulting mutation dataset is provided in Supplemen-
tary Table S2, where we present the normalized scores for 
all variants studied in the thirty DMS experiments.

Clinically labeled variants datasets

To validate QAFI using clinically labeled variants, we 
utilized two distinct datasets of pathogenic and benign 
variants. The first dataset was employed to establish the 
decision threshold for classifying QAFI predictions into 
these two categories. This dataset was compiled from vari-
ants retrieved from the HumSavar (UniProt) (Bateman et 
al. 2017) and ClinVar (Landrum et al. 2016) databases. 
For ClinVar, we selected variants labeled as pathogenic, 
likely pathogenic, pathogenic/likely pathogenic, benign, 
likely benign, or benign/likely benign. These labels were 
unified into two classes: variants labeled as benign, likely 
benign, and benign/likely benign were grouped into the 
benign category; similarly, labels indicating pathogenicity 
were grouped into the pathogenic category. Variants with 
a review status of “no assertion criteria provided” were 
excluded. From HumSavar, variants labeled as LP/P and 
LB/B were included in the pathogenic and benign catego-
ries, respectively. In cases of discrepancies between ClinVar 
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+ 3 around the mutated residue, derived from the MSA of 
the protein family, excluding the native location itself.

The fifth sequence-based property is termed neighbor 
compatibility (neco). We devised this parameter to estimate 
the influence of neighboring residues on the likelihood of 
a specific substitution of the native residue. It is defined as 
follows:

neco = ln

(
p (Hom = M | Hs = N, neighHs = neighHom)

p (Hom = M | Hs = N)

)

where p (Hom = M | Hs = N, neighHs = neighHom) 
is the probability of observing the residue M in a homol-
ogous sequence at position i (Hom=M) in a MSA, given 
that the corresponding human residue at that position is N 
(Hs = N), and the residues at positions i-1 and i+1 are the 
same between the human and homolog sequences for each 
respective position (neighHs = neighHom). The probabil-
ity p(mut=M | nat=N) is used as a normalization factor, to 
adjust for the baseline frequency of the homolog residue M 
in the presence of the human residue N.

The calculated values of this parameter are organized in 
a 20 × 20 substitution matrix, which is utilized for scoring 
variants. The native and mutant residues in the variant scor-
ing context correspond to the human and homolog residues, 
respectively, as defined in the formalism.

The substitution matrix is derived by applying the proba-
bilistic definition to multiple sequence alignments of pro-
teins from a well-curated dataset comprising 593 PDB 
structures (Wang and Dunbrack 2003).

Structure-based features

These nine features are derived from structure models gener-
ated by (Jumper et al. 2021; Varadi et al. 2024); and several 
incorporate MSA information. They are intended to capture 
complementary aspects of the impact of missense variants 
on protein structure and function. We describe them below.

AlphaFold’s per residue confidence score (pLDDT). The 
values of this parameter are related to the disordered state 
of the protein region around the residue (Ruff and Pappu 
2021).

Binary confidence score (pLDDTbin). This index, 
derived from pLDDT, only has two values: 1 (pLDDT ≥  
70) and 0 (pLDDT 

<
 70). The remaining structural features 

are all dependent on pLDDTbin: if pLDDTbin = 0, these 
features are set to 0. It must be noted that while some Alpha-
Fold predictions have very high confidence (pLDDT > 90), 
using this higher threshold would significantly reduce the 
number of variants with available structural information 
(e.g., for MSH2, from 14,704 to 6,589 variants). Therefore, 

and HumSavar annotations, ClinVar labels were prioritized. 
Only variants from proteins with an available AlphaFold 
model were included. Additionally, proteins contribut-
ing fewer than 50 pathogenic and 50 benign variants were 
excluded.

The second dataset, used for constructing Receiver Oper-
ating Characteristic (ROC) curves in the Results section, 
was derived from the aggregated ClinVar 2019 and 2020 
sets used by Pejaver et al. (2022) to calibrate computational 
tools for clinical applications. Similarly, proteins without 
AlphaFold models were excluded.

To avoid second circularity issues (Grimm et al. 2015), 
we ensured that none of the thirty proteins used to train our 
protein-specific models were included in either dataset. Fur-
thermore, we verified that no protein contributed variants 
to both the first and second datasets of clinically labeled 
variants.

After processing, the first dataset comprised a total of 
6894 variants (4582 pathogenic and 2312 benign) from 25 
proteins, while the Pejaver-based dataset contained 8512 
variants (3537 pathogenic and 4975 benign) from 1879 
proteins.

Multiple sequence alignments (MSA)

Some of the features used in our methodology rely on the 
utilization of MSAs. These MSAs were obtained using a 
procedure detailed by Riera et al. (2016), which we briefly 
summarize here for clarity. For each target protein, using the 
sequence available from UniProt, the following steps were 
executed. First, homolog Identification: Homologs were 
identified by searching the UniRef100 database (Suzek et 
al. 2015) using PsiBlast (Altschul et al. 1997). The search 
was conducted with an E-value threshold of 0.001 over 
two iterations. Second, sequence Selection: From the Psi-
Blast output, homolog sequences exhibiting less than 40% 
identity (computed from the global sequence alignment) to 
the target protein were discarded. And third: The remain-
ing sequences, including the query sequence, were aligned 
using Muscle (Edgar 2004) to produce the final MSA.

Sequence-based features

To construct our quantitative predictors, we utilized four-
teen features, including five sequence-based ones. Three 
of these—elements of the Blosum62 matrix, Shannon’s 
entropy, and position-specific scoring matrix (PSSM) at the 
mutation locus—have been previously utilized in other pre-
diction efforts and are described in detail elsewhere (Riera 
et al. 2016; Padilla et al. 2019).

The fourth sequence-based feature is the average Shan-
non’s entropy of sequence neighbors, ranging from − 3 to 
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sums of native-neighbour and mutant-neighbour interac-
tions, using the upper triangle of the 20 × 20 table provided 
by Miyazawa and Jernigan (Miyazawa and Jernigan 1996), 
as follows:

∆ emut,nat =
∑

j
(emut,j − enat,j)

where j  goes through the list of neighbors; mut  and nat 
refer to the mutant and native residues, and emut, j and enat, j 
are the values of the corresponding Miyazawa and Jernigan 
table element associated to the pairs of contacting residues 
(e.g., emut, j is the interaction energy between the mut resi-
due and the neighboring residue j-th). Note that we assume 
that the neighbors list does not change between human and 
mutant. This assumption is justified by the step-wise nature 
of the potential.

Accessibility dependent volume term. This term is 
designed to reflect packing disruptions arising from size dif-
ferences between amino acids, weighting them by colasi, to 
consider environment differences. The formula is equal to:

Acc. dependent volume = Δsize.colasi
where Δsize=(maxncmut − maxncnat) and max ncmut

 
is the maximum number of contacts the mutant can have 
(in our curated PDB dataset, see the description of colasi 
above) and maxncnat  is the same for the native. These two 
terms are related to the amino acid volumes of each residue.

Likelihood of the accessibility state for a given amino 
acid replacement (laar). This parameter is based on a proba-
bilistic formalism similar to that of neco. This parameter is 
designed to estimate the influence of the accessibility state 
at the native locus on the likelihood of a specific substitution 
of the native residue. It is equal to:

laar = ln

(
p (Hom = M | Hs = N, Acc = X)

p (Hom = M | Hs = N)

)

where p (Hom = M | Hs = N, Acc = X) is the probabil-
ity of observing the residue M in a homologous sequence at 
position i (Hom=M) in a MSA, given that the corresponding 
human residue at that position is N (Hs = N), and its acces-
sibility state is X (Acc = X). Only two accessibility states 
are considered in this computation: buried (colasi > 0.5) and 
exposed (colasi ≤ 0.5). The probability p(mut=M | nat=N) 
is used as a normalization factor, to adjust for the baseline 
frequency of the homolog residue M in the presence of the 
human residue N.

The calculated values of this parameter are organized 
into two distinct 20 × 20 substitution matrices: one for bur-
ied residues and one for exposed residues. These matrices 
are used for scoring variants and are analogous to environ-
ment-specific substitution tables in threading methods (Shi 

we chose the lower threshold of 70, which still indicates 
high confidence predictions.

Contact layer size (colasi). This parameter, which varies 
between 0 and 1 (except in a few cases of residues buried in 
highly dense locations), is a coarse-grained measure of the 
network of atomic interactions around the native residue. 
Colasi is obtained from the AlphaFold model of the native 
protein following a two-step procedure. First, compute the 
number of atomic contacts between the atoms of the native 
residue and those of other protein residues, with distances ≤ 
5 Å. This was done using the software Arpeggio (Jubb et al. 
2017). Secondly, divide this number by the maximum num-
ber of interatomic contacts observed for the native residue’s 
type in a well-curated dataset of 593 PDB structures (Wang 
and Dunbrack 2003).

The next three features provide a complementary view 
of the conservation degree of the residues around the native 
residue, using Shannon’s entropy in different ways.

Fraction of conserved 3D neighbors. To calculate this 
parameter, our starting point was the set of atomic contacts 
of the native residue obtained for colasi (see above). The 
fraction of conserved 3D neighbors is equal to the number of 
contacts involving atoms from highly conserved neighbor-
ing residues (Shannon’s entropy < 1.37) divided by the total 
number of contacts. The Shannon’s entropy threshold cho-
sen, 1.37 (one third of 4.12, Shannon’s entropy maximum 
value), is defined to ensure that most residues engaged in 
packing networks of functional significance, including pro-
tein-protein interactions and the protein core, are included.

The next two features (Fanc and Fbnc: fraction of acces-
sible and buried neighbors conserved, respectively) take 
into account the accessibility of the native’s neighbors; they 
are computed as follows. First, we obtain, for the protein of 
interest, the medians macc and mbur of the Shannon’s Entropy 
for the accessible (colasi ≤ 0.5) and buried (colasi > 0.5) res-
idues, respectively. Second, we divide the list of the native’s 
residue contacts into two categories: accessible and buried. 
Third, for Fanc, we identify the accessible neighbors of the 
native residue, count how many of them have Shannon’s 
Entropy below macc, and divide the number of atomic con-
tacts with the native contributed by these residues by the 
total number of native contacts. Fbnc is computed similarly, 
using mbur instead of macc.

Miyazawa-Jernigan potential. This potential (Miyazawa 
and Jernigan 1996) is based on a probabilistic model that 
captures the predisposition of the 20 natural amino acids to 
contact each other. It is embodied in a 20 × 20 table and we 
use it as follows. First, we identify the neighboring residues 
whose average side chain atom lies within a distance of < 6.5 
Å from that of the native residue. For glycines we employ the 
C-alpha atom for the distance computations. Subsequently, 
we calculate the difference in contact energies between the 
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Fig. S1). In this approach, for each round of validation, one 
protein was removed from the dataset, and the performance 
of the predictors was evaluated on the remaining proteins. 
We recorded the performance of each predictor in terms 
of their ability to accurately predict variant impacts on 
the other proteins. The ten predictors that most frequently 
showed the highest performance across these rounds were 
selected for the final version of QAFI.

Obtaining a threshold for the binary (pathogenic/
benign) classification of variants from QAFI 
predictions

To establish a threshold for classifying variants as patho-
genic or benign based on QAFI quantitative predictions, 
we utilized a dataset of 6894 clinically annotated variants 
across 25 proteins with more than 50 pathogenic and 50 
benign variants (see above). For each protein, we calculated 
the QAFI predictions for its variants. We then systemati-
cally explored a range of potential threshold values from 0 
to 1.5. For each threshold value in this range, we computed 
the Matthews Correlation Coefficient (MCC) for the clas-
sification performance. After pooling the MCC values from 
all proteins, we selected the median MCC at each thresh-
old. The optimal threshold value, which corresponded to the 
highest median MCC, was determined to be 0.82.

Binary classifiers for comparative analysis

To benchmark our binary predictions, we selected 13 in 
silico tools whose clinical applicability was recently evalu-
ated by Pejaver et al. (2022). These tools include REVEL 
(Ioannidis et al. 2016), BayesDel (Feng 2017), VEST4 
(Carter et al. 2013), MutPred2 (Pejaver et al. 2020), CADD 
(Rentzsch et al. 2019), EA (Katsonis and Lichtarge 2017), 
SIFT (Kumar et al. 2009), PolyPhen2 (Adzhubei et al. 
2010), MPC (Samocha et al. 2017), PrimateAI (Sundaram et 
al. 2018), GERP++ (Dong et al. 2015), FATHMM (Shihab 
et al. 2013), and PhyloP (Pollard et al. 2010). Predictions 
from these tools for the clinically labeled variant dataset 
were obtained from the study by Pejaver et al. (2022). Addi-
tionally, we incorporated predictions from the methods EVE 
(Frazer et al. 2021) and AlphaMissense (Cheng et al. 2023), 
and Envision (Gray et al. 2018), which were accessed 
directly from their respective websites.

Writing support

The text of this article was reviewed for grammar and clar-
ity using ChatGPT, an AI language model. All corrections 
suggested by ChatGPT were carefully reviewed to ensure 
they accurately reflect our intended results.

et al. 2001). In this scoring system, the native and mutant 
residues correspond to the human and homolog residues, 
respectively.

The substitution matrices are derived by applying the 
probabilistic definition to multiple sequence alignments of 
proteins from a well-curated dataset comprising 593 PDB 
structures (Wang and Dunbrack 2003).

Both sequence and structure-based features were normal-
ized during training of the model, to transform their range 
to [0,1] using their minimum and maximum values in the 
training dataset. The feature values for all the variants in 
the DMS experiments are provided in the Supplementary 
Table 2.

Multiple linear regression (MLR) models

For our protein-specific predictors, we employ standard 
MLR models, which assume a linear relationship between 
the dependent variable and multiple independent variables. 
We constructed separate MLR models for each protein, 
using DMS experiment values as the dependent variable 
and the 14 derived features as independent variables.

Due to the generally bimodal and often imbalanced dis-
tribution of values in DMS datasets (Fig. 1A), which can 
bias the feature weights in regression models (Torgo et al. 
2015), we implemented a two-step undersampling proce-
dure to balance the training data. First, we fitted a Gaussian 
Mixture Model to identify an optimal threshold separating 
the two peaks in each dataset. Second, we equalized the 
number of data points from each distribution peak by ran-
domly reducing the size of the larger group to match that 
of the smaller one. This balancing was applied only to the 
training set during the cross-validation process.

For cross-validation, we used a stringent variant of 
Leave-One-Out Cross-Validation (Porras et al. 2024), where 
all variants at a single position are held out as a test set, 
while those at other positions form the training set. This pro-
cess is repeated until each position has been excluded once, 
ensuring that all data points serve both as training and test-
ing data at different stages.

The MLR models were developed using the scikit-learn 
package in Python (Pedregosa et al. 2011).

Selection of the ten protein-specific predictors for 
the final version of QAFI

In QAFI, ten protein-specific predictors are central to the 
prediction procedure. We selected these ten from the original 
set of thirty protein-specific predictors, which were devel-
oped for each protein in our DMS dataset. To determine the 
ten most effective predictors, we employed a specialized 
leave-one-out cross-validation procedure (Supplementary 
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In Fig. 2A, we display the observed vs. predicted com-
parison for the resulting protein-specific models. The figure 
shows that the predictive accuracy for the different proteins, 
as measured by Pearson correlation coefficients, varies 
within a range of 0.3 to 0.7 (see also Supplementary Table 
S3). Above the figure, we present four examples that illus-
trate the correspondence between the values of the Pearson 
correlation coefficients and the explicit Observed vs. Pre-
dicted comparison. As expected, we see increasingly clear 
linear behavior for the latter as correlations increase.

Beyond the protein-level performance, we also explored 
the per-residue performances. This analysis is of interest 
because it helps us determine whether the features used are 
equally effective for all residues, both native and mutant. 
This insight is crucial for guiding future improvements of 
our method and is relevant from the perspective of users 
of our methodology. We separately analyzed the native and 
mutant cases. In Fig. 2B, and Supplementary Fig. S2, we 
present the median deviation in our predictions for each of 
the twenty natural amino acids when they serve as the native 
residue of a variant. In Fig. 2C, and Supplementary Fig. S3, 
we provide a similar plot focusing on the mutant residues. 
The findings are consistent across both contexts: some resi-
dues yield less accurate predictions when they are native, 
and a similar pattern is observed for mutant residues. For 
example, predictions for variants where the native residue 
is a tryptophan are easier to predict, in general, than when 
it is a glutamine (Fig. 2B); or predictions when the mutant 
residue is a cysteine are harder to predict than when it is a 
proline (Fig. 2C).

QAFI: generalizing variant impact predictions to the 
Proteome using ensemble learning

First, we evaluated the capacity of protein-specific predic-
tors to generate quantitative impact estimates for variants 
in proteins different from those used in their training. We 
will refer to these estimates as cross-predictions, in contrast 
with the auto-predictions, which are the estimates obtained 
with the protein-specific predictor trained on data for the 
same protein (Fig.  2A). The radar plot in Fig.  3A reveals 
that although cross-predictions generally offer less pre-
cise impact estimates compared to auto-predictions, there 
are consistently models for almost all proteins that per-
form comparably (e.g., for TEM1, PTEN, etc.) or, in some 
instances, exceed (e.g., for PSD95 or Protein G) the perfor-
mance of the auto-predictor. This finding is further detailed 
in the heatmap of Fig.  3B, which highlights the variance 
among predictors. For instance, the PTEN row displays pre-
dominantly reddish cells, indicating higher Pearson corre-
lations in the cross-predictions of this model, whereas the 

Results

This section is divided into two main parts. Initially, we 
detail the development of QAFI, including the creation of 
protein-specific predictors and the application of ensemble 
learning principles to establish a method applicable across 
the entire clinical genome (Fig. 1B). Subsequently, we pres-
ent the validation of our methodology through two distinct 
approaches: participation in the CAGI6 ARSA challenge 
and evaluation using a comprehensive dataset of pathogenic 
and benign variants from various genes.

QAFI development

Our method was formulated in two stages. Initially, we tack-
led the quantitative prediction of the functional impact of 
variants for a set of thirty proteins, for which DMS experi-
ment data were available. This led to the development of 
thirty protein-specific predictors. Following this, we utilized 
an ensemble learning-based strategy to extrapolate our pre-
dictions to any variant within any protein, leveraging the 
results of the protein-specific predictors.

Constructing and training thirty protein-specific models 
using DMS Data

After reviewing the literature, we compiled a dataset com-
prising thirty human proteins (see Supplementary Table S1), 
selected based on the availability of DMS experiments with 
over 1000 variants each. This threshold was established to 
ensure a sufficient amount of variants for the construction 
of independent, protein-specific, MLR models. We chose 
MLR for its simplicity and interpretability.

Each MLR model incorporated fourteen features (Meth-
ods Section) designed to quantify the impact of variants. 
These descriptors integrate sequence and structure informa-
tion (derived from AlphaFold models). They include met-
rics that capture the influence of residues close to the native 
residue —either in sequence or spatially—on changes 
occurring at the mutation site.

Finally, we determined the model’s parameters for each 
protein by fitting them to the DMS experimental data spe-
cific to that protein. Since the effect of variants happening 
at the same position is not independent (Cheng et al. 2023), 
to evaluate the accuracy of the resulting models we adopted 
a rigorous version of the Leave-One-Out Cross-Validation 
strategy (Porras et al. 2024). In this approach, all variants at 
a given position are exclusively assigned to either the train-
ing set or the validation set in any cross-validation round. 
A list of the full variant dataset, including normalized func-
tional values and predictions from both protein-specific 
models and QAFI, is provided in Supplementary Table S2.
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Fig. 2  Performance of Thirty Protein-Specific Predictors Developed 
Using MLR. (A) Display of position-cross-validated Pearson correla-
tion coefficients for auto-prediction, where each model is applied to 
variants from its corresponding protein. Circles indicate four selected 
proteins, chosen to represent a range of prediction accuracies. Above, 
heatmaps show the observed vs. predicted plots for these proteins. (B) 

Median prediction error for four native amino acids; radar plots illus-
trate the challenge of predicting their nineteen possible mutations. (C) 
Median prediction error for four mutant amino acids; radar plots show 
the difficulty in predicting variant impacts for each of these amino 
acids as the mutant residue. For B and C, an expanded plot covering 
all twenty natural amino acids is provided in Supplementary Fig. S2
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TP53, TPMT, ADRB2, bla, SUMO1, and amiE. Note that in 
each round, the performance of the QAFI version applied to 
the left-out protein was used to produce the cross-validated 
results shown in Fig. 4.

It must be emphasized that after the selection of the ten 
methods, the development of QAFI is finished; that is, no 
additional parameter training step was applied. For a given 
variant from any protein, the QAFI score is obtained taking 

SNCA row, with predominating yellowish cells, indicates a 
lack of cross-prediction accuracy.

Analogous to what occurs in the classification version of 
the problem (Riera et al. 2016; Livesey and Marsh 2023), 
the results in Fig. 3 indicate that, for our problem, protein-
specific models can identify components of the quantitative 
impact of variants across proteins, as if they were general 
predictors. In this situation, it is natural to consider the use 
of ensemble learning approaches, combining the outcomes 
of various tools (Bishop 2006), to enhance predictive per-
formance and extend our methodology to proteins other 
than the 30 proteins in our original dataset. Here, we apply 
this idea and suggest that the median of cross-predictions 
for a given variant effectively represents its impact on pro-
tein function. This approach constitutes the core of our 
method, QAFI.

Technically, since some predictors clearly outperformed 
others in the cross-prediction experiment, and some showed 
notably poor performance (Fig.  3B), the current version 
of QAFI specifically incorporates the top ten performing 
models from these experiments. These ten predictors were 
obtained following a specialized leave-one-out cross-vali-
dation procedure (Supplementary Fig. S1). In each valida-
tion round, one protein was omitted from the dataset, and 
the performance (Pearson correlation coefficient) of the 
protein-specific predictors on the remaining twenty-nine 
proteins was assessed, excluding their respective training 
protein. These predictors were then ranked based on the 
median of their Pearson correlations. The rank of each pre-
dictor was recorded over the twenty-nine rounds in which it 
was part of the training set. The ten predictors most consis-
tently demonstrating the highest performance were selected 
for the final version of QAFI: PTEN, haeIIIM, MSH2, neo, 

Fig. 4  Performance Comparison Between Protein-Specific Predictors 
and QAFI. This figure compares the auto-prediction results of protein-
specific predictors (Fig. 2A) with those from QAFI, for the dataset of 
thirty proteins. For the ten proteins that contribute a predictor to QAFI, 
a modified version of this tool was used, excluding the predictor cor-
responding to the protein being tested from the median computation 
(Fig. 1B). Both axes represent Pearson correlation coefficients

 

Fig. 3  Cross-prediction experiment. (A) Radar plot displaying the 
results of the cross-prediction experiment for each of the thirty pro-
teins, where predictions for each protein’s variants are generated by 
applying the protein-specific models of the other twenty-nine proteins. 
The scale of the radii corresponds to the Pearson correlation coeffi-
cients. The continuous line indicates the result from the auto-prediction 

experiments shown in Fig. 2A. (B) Heatmap detailing the effectiveness 
of each protein-specific predictor (vertical axis) in estimating impacts 
across different proteins (horizontal axis), with color coding reflect-
ing correlation values. Diagonal cells representing auto-predictions are 
left white to prevent confusion
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between the ten chosen proteins and the remaining twenty, 
indicating similar behavior. This is coherent with the fact 
that, for the ten proteins, the structure of the regression 
problem is representative of that in the remaining proteins.

In summary, the previous analyses support the idea that 
the higher performance of the ten chosen predictors results 
from several factors, including parameter robustness and the 
fact that the prediction problem for the ten proteins is repre-
sentative of the same problem in other proteins.

 To understand the relative contribution or weight of 
each feature to the models’ predictive capacities, we per-
formed a Lasso regression analysis. More concretely, for 
each protein, we trained Lasso models using a grid search 
over a range of alpha values from 10− 5 to 102. A 10-fold 
cross-validation scheme was employed to select the optimal 
alpha value based on the lowest mean absolute error. For 
the regression models associated with this optimal alpha, 
we collected the absolute values of each feature’s weights 
across the thirty proteins. The resulting distribution was 
plotted using boxplots (Supplementary Fig. S5A), and two 
specific aspects deserve mention. First, if we focus on the 
median of the different boxplots, we see that the contribu-
tion of the features clearly varies. Interestingly, in the top-
ranking positions, we find both 3D and sequence-based 
features, such as Miyazawa-Jernigan potential (3D), Shan-
non’s entropy (seq.), colasi (3D), and Blosum62 matrix 
(seq.). These features tend to be the best predictors across 
proteins, although their ranking may vary (see below). The 
presence of the Miyazawa-Jernigan potential is interesting 
because it goes beyond the geometric description of a resi-
due’s environment and is related to the impact of variants 
on protein stability (Miyazawa and Jernigan 1996). In a less 
prominent but also important position, we find neco, which 
captures the strength of the relationship between the native 
site and its immediate sequence neighbors. Overall, this 
analysis highlights the complementary value of sequence 
and structural information.

A second aspect worth noting is the range overlap in 
the boxplots in Supplementary Fig.  5A, which indicates 
that beyond the general trend just mentioned, the relevance 
of predictive features may change between proteins. This 
change may, for example, affect Shannon’s entropy and 
colasi, Miyazawa-Jernigan potential and Blosum62 matrix, 
among others.

Finally, we focused the Lasso analysis on the ten proteins 
selected for QAFI (Supplementary Fig. S5B). We see that, 
apart from the trends mentioned above, there are two aspects 
of interest. First, the median values of the weights tend to be 
higher than for the thirty proteins, and second, the boxplot 
range is tighter. Regarding the latter, although we cannot 
discard a sampling effect, we see that the ten chosen models 
appear to be closer in the model space, which may be due to 

the median of the ten predictors’ scores for that variant 
(Fig. 1B), which is an entirely non-parametric procedure.

Performance and feature analysis of the protein-specific 
predictors

In this section, we address two aspects of our models’ per-
formance: the factors contributing to this performance and 
the role of predictive features in the model.

To understand the components of the predictive perfor-
mance of the selected protein-specific models, we have 
focused on three key aspects related to the predictive power 
of regression models: data-to-parameter ratios, composi-
tional diversity of the training samples, and the behavior of 
both response and explanatory variables. For each of these 
factors, we compared the behavior of the ten chosen pro-
teins with that of the twenty remaining proteins.

Data-to-Parameter Ratios. Considering that all our regres-
sion models have the same number of parameters (14), we 
simplified our analysis by focusing on the amount of data, 
i.e., the number of variants, contributed by each protein. In 
general (Supplementary Fig. S4A), the ten chosen proteins 
contribute more variants than the twenty remaining proteins. 
Specifically, eight of the ten proteins had a large number of 
variants (well over 3500), whereas only six of the remaining 
twenty proteins surpassed this limit. Only two out of the ten 
proteins (haeIIIM and SUMO1, with 1350 and 1700 vari-
ants, respectively) had variant numbers closer to the lower 
threshold we set to ensure model quality. Given that good 
data-to-parameter ratios contribute to better parameter esti-
mates, we believe that higher model robustness might be a 
factor in determining the final list of ten proteins.

Compositional Diversity. We analyzed the amino acid 
composition of the wild-type sequences (Supplementary 
Fig. S4B), finding it comparable between the ten and the 
twenty proteins’ datasets. We also studied the number of 
mutations per position (Supplementary Fig. S4C). The 
median number of mutations per position is 19 for three of 
the ten proteins, above 15 for six, and only low (< 5) for 
haeIIIM. This ensures good sampling of the mutation space 
for most of the ten selected proteins, which is important for 
applying their specific predictors to other proteins.

Response (normalized scores) and explanatory variables 
(sequence and structure-based features) of the regression 
models. First, we compared the normalized functional scores 
(Supplementary Fig. S4D), noting that, except for two pro-
teins, the scores for the ten proteins cover a range similar 
to those of the other twenty proteins. Next, we turned our 
attention to the explanatory variables, focusing on the value 
distributions of the five most discriminant properties (Sup-
plementary Fig. S4E; these properties are the five top rank-
ing ones in Supplementary Fig. 5A), finding a clear overlap 
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AlphaMissense, which, leveraging technology derived from 
the groundbreaking AlphaFold structure prediction method 
(Jumper et al. 2021), outperforms both EVE and ESM1b. 
This selection allows us to evaluate our progress relative to 
Envision and establish our position among the top perform-
ers in the field. For this comparison, we employed two stan-
dard measures: Pearson correlation coefficient and Mean 
Absolute Error (MAE). These metrics provide complemen-
tary views of how close we are to achieving our prediction 
goal. The Pearson correlation coefficient assesses the overall 
relationship between predicted and observed values, indi-
cating how well the predictions align with the actual data 
trend. Meanwhile, the MAE quantifies the average devia-
tion from observed values and aligns with our objective of 
providing precise estimates of functional impact, useful for 
the intended applications. The performance of methods like 
AlphaMissense, which produce scores between 0 and 1, 
serves as a baseline benchmark for our method. Ideally, our 
approach should outperform these bounded-score methods, 
as their upper-bound value does not accurately reflect the 
reality of experimental assays (Fig. 1A).

The results obtained (Fig. 5 and Supplementary Table S4) 
demonstrate consistent behavior across essentially all meth-
ods. For the Pearson correlation coefficient (Fig. 5A), some 
proteins (e.g., TPK1 and CALM1) show universally lower 
values across all methods, indicating a consistent challenge 
in predicting their impacts. Generally, our protein-specific 
predictor performs in the higher range, validating the pre-
dictive value of the selected features and regression model. 
Although QAFI’s performance is slightly lower, it follows 
the general trend and outperforms Envision. In several 
cases, it also surpasses ESM1b, EVE, and AlphaMissense.

In terms of MAE (Fig. 5B), the scenario reflects a shift 
from the Pearson correlation analysis; while overall per-
formance still varies by protein, QAFI and the protein-spe-
cific predictors consistently exhibit superior performance, 
recording the lowest MAEs across almost all proteins. As 
expected, QAFI’s performance is lower than that of the 
protein-specific tools, particularly for MSH2 and ADRB2, 
which are among the most challenging proteins to predict. 
This underscores its robust ability to reproduce experimen-
tal values, maintaining its top-tier status in most cases. Envi-
sion deserves a special mention as it outperforms QAFI for 
several proteins, though the differences are generally minor 
(e.g., for RAS and MAPK1).

QAFI emerges from these analyses as a tool that can 
competitively predict the functional impact of variants, 
demonstrating its efficacy across a diverse array of proteins, 
although results may vary based on the specific characteris-
tics and challenges associated with each protein.

the factors mentioned above (more samples to estimate the 
parameters, and a larger coherence in the prediction prob-
lem). The fact that the boxplots for the general proteins are 
closer to zero may indicate that our model is less adequate 
for them, or has not been derived using enough data.

Leave-one-protein-out cross-validation of QAFI

To provide an initial assessment of QAFI’s performance, 
we compared it against the auto-predictions for the same 
set of thirty proteins (Fig. 4). It should be noted that for the 
ten proteins whose protein-specific predictors are included 
in QAFI, the performance measurements were obtained 
after excluding the corresponding protein from the median 
computation. This step was taken to prevent potential data 
leakage that could artificially inflate QAFI’s performance. 
The figure presents a comparison between QAFI predic-
tions and auto-predictions for thirty proteins, showing a 
generally good correspondence across the correlation range. 
Most data points are clustered near or along the diagonal, 
indicating that QAFI essentially retains the predictive abil-
ity of the protein-specific models. However, a small cluster 
of proteins, such as CXCR4 and TPK1, shows deviations at 
the lower end of the correlation spectrum. This discrepancy 
may arise because the features used in our model may not 
adequately capture the functional effects of variants on these 
proteins, or the model used by the top ten predictors may 
not align with the underlying patterns of proteins with lower 
correlations. Additionally, we identified a clear outlier, the 
SNCA protein, whose behavior is likely influenced by the 
presence of hexameric repetitive patterns in its sequence 
(Sarchione et al. 2021). These patterns could lead to model 
overfitting, despite rigorous cross-validation.

We compared QAFI’s performance to that of Envision 
(Gray et al. 2018), EVE (Frazer et al. 2021), AlphaMissense 
(Cheng et al. 2023), and ESM1b (Brandes et al. 2023). To 
this end, we selected a subset of fourteen proteins for which 
at least three of the methods (excluding QAFI) provided 
predictions. The variant predictions for these tools were 
downloaded from their respective websites. We chose Envi-
sion because it is a reference in the field and represents a 
careful implementation of the idea of using DMS assays 
as prediction targets rather than datasets of binary labelled 
variants. The remaining methods, while not specifically 
trained to reproduce DMS values show good correlations 
with them. EVE was identified as a top performer in a recent 
and extensive benchmark study (Livesey and Marsh 2023) 
using recently published DMS experiments and a vast array 
of methods, both binary classifiers and quantitative predic-
tors. ESM1b was also selected for its performance: it out-
performs ESM-1v—a top-ranking method assessed in the 
Livesey and Marsh 2023 benchmark. Finally, we included 
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features only. For the six different versions, we decided to 
explore a problem of interest, which is generating meta-
predictors from our method. To do this, we used six com-
binations of QAFI with methods whose performance had 
seemed good in the analyses we had performed so far. Two 
of them (Models 2 and 3, see below) involved the use of a 
simple Random Forest classifier obtained without a hyper-
parameter tuning step. Based on our group’s experience 
with similar problems, we utilized the following parame-
ters: a maximum depth of 75, 50 estimators, a minimum of 
3 samples per leaf, and 4 samples per split. Additionally, we 
tested an extended version of QAFI (Models 4 and 6, see 
below), where the median computation was done using the 
results from all thirty protein-specific predictors instead of 
just the chosen ten. The six models were:

Model 1: (QAFIMeta): QAFI + REVEL + Envision + EVE
Model 2: QAFI + RandomForest + REVEL + Envision + EVE
Model 3: RandomForest
Model 4: Model 6 + REVEL + Envision + EVE
Model 5: QAFI (median 10 chosen protein-specific predictors)
Model 6: Median 30 protein-specific predictors

Models 3, 5, and 6, where used as references for the 
metapredictors in Models 2, 1, and 4, respectively.

QAFI independent validation

To further characterize the performance of our method, we 
validated QAFI through our participation in the CAGI6 
ARSA challenge, and by testing it on a large dataset of clini-
cally labeled variants.

Participation in the CAGI6 ARSA challenge

The international CAGI competition allows participants to 
explore the performance of their technology in a blind appli-
cation on a set of variants proposed by different independent 
groups (Jain et al. 2024a). Once the submission process is 
closed, the experimental results for these variants are made 
public, and concurrently, a team of assessors evaluates the 
results for the different groups. A particularly interesting 
feature of CAGI is that it permits groups to submit up to six 
prediction proposals, enabling authors to explore multiple 
versions of their methodologies. However, for assessment 
purposes, authors must designate which version they con-
sider the most effective.

In our case, when the CAGI 6 ARSA challenge (blind 
scoring of missense variants in the ARSA protein) was 
announced, our method was not in its final version as we 
present in this article. We had a prototype trained with ten 

Fig. 5  Benchmark of QAFI 
and Protein-Specific Predictors 
Against Four Selected Methods. 
(A) Displays Pearson correlation 
coefficients for each method. 
(B) Shows Mean Absolute Error 
(MAE) for each method, except 
for ESM1b, which is excluded 
due to its prediction scale dif-
fering significantly from the 
observed values, causing a highly 
compressed figure. In both A 
and B, proteins are sorted from 
poorest (top) to best (bottom) 
predicted according to each 
parameter
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main component of the clinical effect of variants in heredi-
tary disease. In fact, molecular impacts above a certain 
threshold are typically associated with pathogenic variants; 
conversely, effects below this threshold generally indicate 
benign variants. As part of our validation approach, we 
explored to what extent this correspondence holds for QAFI 
by discretizing its scores through a threshold and compar-
ing the resulting classes with known clinical annotations. 
The simplest way to do this is to use ROC curves, as these 
curves allow testing the effect of different thresholds in the 
classification of variants. For this study, we used a set of 
variants created by Pejaver et al. (Pejaver et al. 2022) after a 
thorough curation process. Additionally, as a reference, we 
included the ROC curves corresponding to thirteen methods 
studied by these authors, plus those of Envision, EVE, and 
AlphaMissense.

In Fig. 7A, we see the ROC curves corresponding to these 
methods. The first aspect we would like to highlight is that 
QAFI is significantly distanced from the diagonal line, dem-
onstrating good consistency between its impact predictions 
and the known clinical effects of the variants, as evidenced 
by an Area Under the Curve (AUC) of 0.86 (Fig. 7B). The 
comparison of QAFI with other methods shows that its 
AUC (Fig. 7B) ranks it on the third position. This is note-
worthy because a majority of these classifiers are supervised 
tools specifically trained on solving the binary classification 
problem.

To complete the previous analysis, we separately exam-
ined whether QAFI successfully predicts variants that are 
not identified by the top five binary classifiers, thereby 
underscoring the added value of quantitative approaches. 
In Fig.  7C and D we present the results of the compari-
son between QAFI and REVEL (additional results for 
AlphaMissense, CADD, MutPred2, Vest4, and BayesDel 
are provided in Supplementary Fig. S6). As illustrated in 

To select our leading proposal, we used the available data 
on variants in this protein, data that corresponded to vari-
ants whose clinical impact (pathogenic or benign) had been 
previously described in the literature, and we excluded the 
few cases that coincided with variants in the CAGI data-
set. We then graphically represented the distribution of 
these variants in relation to the score of our methodology 
(Fig. 6A) and analyzed them visually, focusing on identi-
fying the method that showed the greatest discrimination 
power for this set of variants. The chosen method, a combi-
nation of QAFI, REVEL, EVE, and Envision, is referred to 
as QAFIMeta.

For this article, we created an Observed vs. Predicted 
plot (Fig. 6B) for this version of our method, which showed 
a Pearson correlation coefficient of 0.61 (see Supplementary 
Table S5 for the results of the six candidates). This value is in 
the high range of the previously observed correlation scale 
(Fig. 2A). The independent evaluation results by the CAGI 
expert panel (Jain et al. 2024b) showed that QAFIMeta was 
the second-best performing method (based on a summary 
of several performance parameters) compared to the other 
CAGI participants in the ARSA challenge. Notably, when 
considering R2, the most rigorous evaluation measure used 
by the assessors (and excluded from the final challenge 
assessment), QAFIMeta ranked first with an R2 of 0.252 
(see Table S2 from Jain et al. (2024b).

QAFI validation using clinically labelled variants

To further validate our methodology, we decided to use data 
from a problem closely related to ours: the binary classi-
fication of missense variants into pathogenic and benign. 
While the two problems differ in the predictive goal, which 
in one case is quantitative and in the other categorical, we 
can take advantage of the fact that molecular impact is a 

Fig. 6  Participation in the CAGI6 ARSA Challenge. (A) Boxplots used 
in the prioritization process for the six models (see Supplementary 
Table S5) submitted to CAGI6. All models, except for Models 3, 5, 
and 6, integrate QAFI with predictions from other tools after rescaling 
their scores to match QAFI’s scale. For two of these models, the QAFI 
component included all thirty protein-specific predictors for median 

computation central to QAFI (see Fig. 1B) instead of the standard ten. 
QAFIMeta was selected as our top candidate, on the basis of its dis-
criminant power and score continuity. (B) Comparison of experimental 
values of mean percentage wild-type activity for ARSA challenge vari-
ants (Trinidad et al. 2023) with predictions from QAFIMeta
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corresponding CAGI6 challenge. They can also contribute 
to build more realistic fitness models in evolutionary stud-
ies, a field where in many cases only free energy estimates 
are employed (Echave and Wilke 2017).

At the core of our approach is the development and use of 
protein-specific predictors for the effects of variants. More 
precisely, we initially developed a set of thirty protein-
specific predictors using multiple linear regression mod-
els that incorporate sequence and structure-based features. 
Some of these features were chosen based on our previous 
experience. For example, the Blosum62 substitution matrix, 
Shannon entropy, and PSSM, which we used to build the 
quantitative predictor for the BRCA1/2 proteins (Padilla et 
al. 2019) presented successfully at the CAGI5 ENIGMA 
challenge (Jain et al. 2024a). Shannon’s entropy and PSSM 
are two straightforward and intuitive ways to extract infor-
mation from MSAs. However, it is important to note that 
other options are also viable for prediction purposes, such 
as the parameter used in the EA method, which is based 

the Venn diagrams (Fig. 7C), QAFI accurately predicts 697 
variants that REVEL does not correctly identify. This pat-
tern is consistent in the other comparisons (Supplementary 
Fig. S6), demonstrating that QAFI predictions, in addition 
to offering a numerical view of variant impacts, reach an 
accuracy level that allows it to contribute valuable insights 
to the variant classification problem.

Discussion

This study introduces QAFI, a novel methodology (Fig. 1B) 
designed to improve the quantitative prediction of the func-
tional impact of missense variants, an important goal in the 
evolution of in silico pathogenicity predictors (Masica and 
Karchin 2016; Diaz et al. 2023) that clears the way for novel 
applications. For example, continuous scores can serve to 
predict disease severity in some diseases, like in the case 
of ARSA (Trinidad et al. 2023) where it has fueled the 

Fig. 7  Validation of QAFI Using 
Clinically Labeled Variants. 
(A) ROC curve displaying 
QAFI’s performance (black 
line) compared to sixteen refer-
ence predictors (grey lines, see 
text). (B) Area Under the Curve 
(AUC) values for QAFI and 
the sixteen other predictors. (C) 
Venn diagram illustrating the 
complementarity between QAFI 
and REVEL predictions. Yel-
low indicates variants correctly 
predicted by both methods; green 
and orange highlight variants 
correctly predicted only by QAFI 
and REVEL, respectively. (D) 
Distribution of correct predic-
tions by QAFI (green vertical 
lines) relative to REVEL’s score 
distribution (orange curve). The 
boxes above the axis delineate 
evidence regions for REVEL 
scores used in clinical annotation 
of variants, as defined by Pejaver 
et al. (2022)
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problem. This shift paves the way to apply ensemble learn-
ing principles to combine the different predictors (Bishop 
2006), selecting the best ten for our ensemble model.

The results obtained (Figs. 2, 4 and 5) support the valid-
ity of our approach, by demonstrating QAFI’s competitive 
predictive capabilities for the tested proteins, even after an 
understandable, modest drop relative to the protein-specific 
tools and other binary classifiers. Specifically, this is the 
overall view in terms of the Pearson correlation. The behav-
ior measured by the MAE values shows that although the 
accuracy of QAFI’s impact estimates has also decreased, 
QAFI results are essentially higher, or on par, with those of 
the remaining methods. Only Envision, specifically trained 
for quantitative predictions has a behavior similar to that 
of QAFI. The results for MAE are important because the 
specific reproduction of observed values is our goal when 
building quantitative predictors and plays an important role 
in their applications. An additional aspect that is worth not-
ing, is that we compare the performance of QAFI with that 
of other tools (Fig. 5), a similar pattern emerges: (i) there 
is consistency among methods regarding the performance 
across different proteins, meaning that variants in some 
proteins are easier to predict than others; and (ii) although 
our models often outperforms other methods, this is not uni-
formly the case for all proteins. In fact, the prevailing pat-
tern is that these tools outperform each other depending on 
the specific protein.

Building on the foundation of our generalization strategy, 
we tested QAFI during the CAGI6th edition. For the ARSA 
challenge, we used a set of pathogenic and benign variants 
for that protein that were previously available, allowing us 
to compare the potential performance of different QAFI ver-
sions (Fig. 6A). The tested versions included combinations 
of QAFI with some pre-existing tools (EVE, Envision, and 
REVEL), as well as QAFI models using a varying number 
of protein-specific predictors (10 and 30). This rigorous 
comparative analysis led to a ranking where the combina-
tion of QAFI + EVE + Envision + REVEL was manually 
selected as the top choice. As we await the final evaluation 
results by the CAGI6 assessors, it is noteworthy that the 
QAFI versions show Pearson correlations with the experi-
mental results. (Trinidad et al. 2023) that are within the high 
range observed for our method (Supplementary Table S5).

To further validate our methodology, QAFI was applied 
to a large dataset of clinically annotated variants (Pejaver 
et al. 2022). By discretizing its scores and comparing them 
against known clinical annotations, we confirmed QAFI’s 
predictive accuracy and gained insights into its poten-
tial clinical applications. In particular, we observed that 
although QAFI’s overall performance ranked third when 
compared to a set of representative methods, it demon-
strated improvements in correctly classifying variants that 

on a sophisticated theoretical framework and has achieved 
notable results (Katsonis and Lichtarge 2017). To extend 
our initial set, we developed some additional features that 
capture the well-established principles (Kucukkal et al. 
2015; Gerasimavicius et al. 2020; Cheng et al. 2021; Özkan 
et al. 2021), according to which the impact of variants is 
mainly due to destabilization effects or disruption of binding 
interactions. To this end, we chose properties that take into 
account the interactions of the native locus with its environ-
ment, an important component of protein stability (Serrano 
et al. 1992). This decision is illustrated by the use of the 
mean-force potential of Miyazawa and Jernigan (Miyazawa 
and Jernigan 1996). This coarse-grained statistical potential, 
based on a physicochemical formalism, gives us an approxi-
mate measure of the interactions of the native amino acid 
with its environment and is particularly easy to calculate. 
The step-wise behavior of this potential reduces the need to 
model the mutant structure, since its structural deviations 
from the native are unlikely to significantly change the pat-
tern of interactions at the amino acid locus. Overall, the MJ 
potential has allowed us a more fruitful use of AlphaFold 
structures, going beyond the solvent accessibility calcula-
tions typically used as descriptors of variant impact, e.g., in 
Envision (Gray et al. 2018).

To train the protein-specific models we used available 
DMS data (Fig.  1A), and carefully cross-validated their 
performances, eliminating position-depending effects. The 
resulting models have better Pearson correlation coefficients 
than other methods, in 6 out of 14 proteins (Fig.  5A). In 
fact, in this benchmark, and together with AlphaMissense, 
protein-specific predictors are the technique with more per 
gene top-ranking performances; between both tools they 
essentially cover the full set of genes. However, it must be 
noted that in some cases the differences between these two, 
and between them and the remaining techniques, are minor 
(e.g., for TPMT, ADRB2, and SUMO1, Fig. 5A). In gen-
eral, these results confirm the value of our set of features to 
model the impact of variants on protein function. However, 
the need for experimental datasets to create new protein-
specific predictors restricts the extension of this approach 
to other proteins, a problem inherent to supervised methods 
(Diaz et al. 2023).

To address this generalization challenge we have 
changed our view on the protein-specific predictors, putting 
the focus on their ability to capture the common biophys-
ics and biochemical principles underlying the impact of 
missense variants, rather than in their ability to reflect the 
concrete characteristics of a training protein. This perspec-
tive, inspired by the cross-prediction analyses (Fig. 3), has 
allowed us to make a conceptual leap from treating protein-
specific models as solutions for distinct systems to view-
ing them as approximate solutions to the general prediction 
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