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Abstract
Machine learning (ML) algorithms are increasingly being used to help implement clinical decision support systems. In this 
new field, we define as “translational machine learning”, joint efforts and strong communication between data scientists and 
clinicians help to span the gap between ML and its adoption in the clinic. These collaborations also improve interpretability 
and trust in translational ML methods and ultimately aim to result in generalizable and reproducible models. To help clini-
cians and bioinformaticians refine their translational ML pipelines, we review the steps from model building to the use of ML 
in the clinic. We discuss experimental setup, computational analysis, interpretability and reproducibility, and emphasize the 
challenges involved. We highly advise collaboration and data sharing between consortia and institutes to build multi-centric 
cohorts that facilitate ML methodologies that generalize across centers. In the end, we hope that this review provides a way 
to streamline translational ML and helps to tackle the challenges that come with it.

Introduction

Advances in biomedicine go hand in hand with the rise of 
frontier technologies that often generate complex and high-
dimensional data. To unlock the full potential of these data, 
novel advances in machine learning (ML) are finding their 
way to the clinic. ML, a sub-field of the broader domain 
of artificial intelligence (AI), is an umbrella term for algo-
rithms that learn a model directly from data. It is a highly 
interdisciplinary and still-evolving field with contributions 
from computer science, mathematics and statistics, that is 
currently at the forefront of life sciences. We will refer to 
the use of ML in a clinical environment as “translational 
machine learning”. It focuses on any use of ML as a decision 
support system in the clinic, where the algorithm provides 
additional information that can help the clinician to better 
treat the patient (Moreau et al. 1997; Rubio et al. 2010).

Many clinical applications of ML include image-based 
technologies (e.g., MRI scans, skin pictures for dermatol-
ogy, etc.) where deep learning (DL) methods have often 
outperformed clinicians (Esteva et al. 2017; Watson et al. 
2019; Aggarwal et al. 2021). ML is also established in other 
fields such as epigenomics (Corces et al. 2020) and genom-
ics (Shipp et al. 2002; Ye et al. 2003; Tabl et al. 2019). 
Recently, similar techniques have also been explored in 
the area of high-throughput, single-cell technologies, such 
as single-cell RNA-sequencing (Tang et al. 2009), (spec-
tral) flow cytometry (Fulwyler 1965; Nolan and Condello 
2013) and mass cytometry (Bandura et al. 2009). Due to 
the high-dimensional nature of these data, with up to mil-
lions of cells (data points) and tens to thousands of genes, 
proteins or other biological features measured (dimensions), 
it becomes infeasible to extract relevant information without 
computational techniques. In this review, we will focus on 
translational applications of ML in the single-cell field and 
add examples from other relevant fields.

Machine learning overview

ML algorithms can be organized by (a) the underlying tech-
niques and (b) the type of learning they use to model the data 
(Fig. 1). Four different ways of how the model learns from 
the data can be distinguished: unsupervised learning, super-
vised learning, semi-supervised learning and reinforcement 
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learning. Below, we give a short overview of how various 
ML algorithms can be applied to several steps in transla-
tional research.

Unsupervised learning

In data exploration, when no prior information or outcome 
such as patient treatment or survival is used, one can apply 
unsupervised ML to find previously unknown data pat-
terns, e.g., to perform patient stratification. Unsupervised 
ML can be further subdivided into dimensionality reduc-
tion and clustering analysis. Dimensionality reduction is 
used to decrease data complexity and allows, for example, 
to visualize information from many parameters in a two-
dimensional plot. Clustering is used to find groups of similar 
data points, both on a patient level and on a cell level. Dur-
ing data exploration, outliers and technical variation, such 
as batch effects or other technical artifacts, are typically also 
identified. This can be done with unsupervised ML or with 
data cleaning tools.

Principal component analysis (PCA) is the best-known 
linear dimensionality reduction method, where as much as 
possible of the data’s variation is preserved. It was, among 
others, applied to improve the Catovsky–Matutes Score that 
distinguishes Chronic Lymphocytic Leukemia (CLL) from 
non-CLL (Moreau et al. 1997; Jalal 2021) and to discrimi-
nate mild versus moderate Alzheimer’s disease (Pagani et al. 
2009). Widespread examples of non-linear dimensionality 
reduction algorithms are t-distributed Stochastic Neighbor 
Embedding (t-SNE) (van der Maaten and Hinton 2008) and 
Uniform Manifold Approximation and Projection (UMAP) 
(McInnes et al. 2018), which project high-dimensional data 

on a latent space while preserving local and/or global struc-
ture. Both are mainly used for graphical representation. 
Although sample labels are not used by the technique itself, 
they can still be used to visually discover, e.g., treatment 
or disease-specific populations. In a study by Esteva et al. 
(2017), t-SNE was used to visualize a hidden layer of a deep 
neural network that was used to classify skin cancer, and 
in Zou et al. (2020), UMAP was used to visualize ACE2 
expression in SARS-CoV-2 infection.

Examples of clustering algorithms often used for single-
cell data are, among others, community-detection-based 
algorithms such as Louvain (Blondel et al. 2008) and Lei-
den clustering (Traag et al. 2019) and methods based on 
self-organizing maps, such as FlowSOM (Van Gassen et al. 
2015), a standard method in the cytometry field. Leiden 
clustering, mentioned in Zhang et al. (2019), was used to 
explore the immune landscape of single-cell RNA-seq data 
of hepatocellular carcinoma, and in Gaebler et al. (2021), 
FlowSOM clustering was performed to track the evolution 
of immunity in COVID-19.

Supervised learning

Once data exploration is done, the following step is typi-
cally a more supervised approach. Supervised ML is a form 
of ML where prior external information, such as the health 
status of a patient, is available. This external information can 
be used to build a model (often referred to as “training” the 
model) which, in turn, is able to predict the status of new, 
unseen samples. In supervised ML, we mainly distinguish 
between classification, which predicts a discrete class label, 
and regression, which predicts a continuously valued quan-
tity. In Chiofolo et al. (2019), a random forest classification 
model was used to classify high-risk patients with regard to 
acute kidney injury, and Akyea et al. (2020) compared five 
supervised classification ML techniques to predict hypercho-
lesterolemia, both using clinical patient data. In Smith et al. 
(2013), the researchers compared random forest regression 
and multiple linear regression to predict concentrations of 
a neurochemical based on the concentrations of other neu-
rochemicals, and in Seiler et al. (2021), the authors applied 
multiple regression to assess differences in response to 
IFN-α stimulation in early and late pregnancy using mass 
cytometry data.

Semi‑supervised learning

The combination of supervised and unsupervised learning, 
where a part of the data is labeled and the remainder is unla-
beled, is called semi-supervised learning. This is especially 
useful in those cases where labeling samples is expensive or 
difficult. It has the potential to improve accuracy compared 
to only using the labeled data in supervised learning thanks 

Fig. 1   Overview of machine learning techniques and the forms of 
learning ML is capable of doing. ML machine learning, PCA prin-
cipal component analysis, t-SNE t-distributed neighbor embedding, 
UMAP uniform manifold approximation and projection
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to the additional data, which might clarify underlying data 
structures that are not as strongly pronounced in the limited 
labeled dataset. In contrast, labeled data can also improve 
unsupervised learning thanks to the inclusion of prior infor-
mation (Zhu and Goldberg 2009). Semi-supervised learning 
works by combining both labeled and unlabeled data points 
to improve the model, compared to using only either labeled 
or unlabeled data. Zhai et al. (2020) proposed semi-super-
vised learning in combination with a convolutional neural 
network (CNN) to detect supraventricular ectopic beats in 
electrocardiograms, and Shi and Zhang (2011) tested low-
density separation, a semi-supervised learning technique, on 
a colorectal cancer dataset to detect recurrence.

Reinforcement learning

Another form of ML, next to supervised, unsupervised and 
semi-supervised learning, is reinforcement learning. This 
method learns to take an optimal sequence of actions to 
maximize the cumulative reward which is a measure of how 
good a certain goal was achieved. For example, an effective 
treatment strategy for sepsis with certain treatment doses 
or frequencies was learned based on patient mortality as a 
reward (Komorowski et al. 2018). It was also used to extract 
patient-specific treatment strategies against cancer from only 
clinical data (Zhao et al. 2009). Liu et al. (2020a) surveyed 
the literature on the use of reinforcement learning in clinical 
decision support and its challenges.

Deep learning

Deep learning (DL), a subcategory of ML that can be 
applied in (semi)-supervised, unsupervised and reinforce-
ment learning, is currently considered state-of-the-art in 
many classification problems (Esteva et al. 2019; Topol 
2019). It is based on artificial neural networks which are 
inspired by the human brain. One particular aspect of DL is 
that it can learn feature representations (representation learn-
ing) which sets it apart from classical ML techniques that 
learn from a given set of features. Initially, this was mostly 
used for image-related tasks, where relevant features can 
automatically be extracted from the pixel values, avoiding 
the need for an upfront definition of features of interest and 
manual annotation of the images. This was for example used 
to extract more prognostic information from tissue slides 
of colorectal cancer (Bychkov et al. 2018). More recently, 
DL-based methods have also been used in many other bio-
informatics tasks, e.g., involving different types of omics 
data. For example, Eraslan et al. (2019) described the use 
of DL in genomic applications. scGNN, as mentioned in 
Wang et al. (2021), is a graph neural network developed for 
single-cell RNA-seq and model cell–cell interactions, and in 
Arvaniti and Claassen (2017), a CNN was used to detect rare 

disease-specific cells from cytometry data. A disadvantage 
is that deep learning is prone to overfitting when applied 
to small sample sizes. Methods such as data augmentation, 
transfer learning, and self-supervised learning can circum-
vent this problem (Lu et al. 2006; Mieth et al. 2019; Marouf 
et al. 2020).

Most of the time, these DL algorithms are known to be 
“black boxes” and are not intuitive or interpretable. A lot 
of research currently goes into making these models more 
interpretable without making them less accurate (Ahmad 
et al. 2018). A new branch in AI that currently tries to tackle 
these “black box” issues is explainable AI (XAI) (Gunning 
et al. 2019).

Translational machine learning

In translational machine learning, an ML model is used 
in the clinic as a decision support system. Before actually 
adopting these systems in the clinic, several steps need to be 
completed. First of all, the model needs to be externally vali-
dated. Next, the intellectual property needs to be secured, 
and approval is needed from the respective authorities, e.g., 
from the U.S. Food and Drug Administration (FDA) or the 
European Medicines Agency (EMA) (Fig. 2). Applications 
of translational ML are widespread across many clinical dis-
ciplines, such as oncology, endocrinology and radiology. A 
review by Benjamens et al. (2020) surveyed the literature 
for AI- or ML-assisted devices and algorithms that were 
approved by the FDA as “software as a medical device” and 
came up with 29 examples. Two recent examples the authors 
mention are the Eko analysis software as a deep learning 
algorithm for cardiac murmur using a digital stethoscope 
platform (Chorba et al. 2021) and QuantX, which improves 
diagnosis of breast cancer based on MRI scans (Benjamens 
et al. 2020; Jiang et al. 2021).

Fig. 2   The process of translational machine learning. EMA European 
Medicines Agency, FDA Food and Drug Administration, IP intellec-
tual property, ML machine learning
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To our knowledge, up to now, no translational ML mod-
els for single-cell data have been approved by the FDA. 
Nevertheless, ML algorithms are already being used in the 
clinic to analyze single-cell data. One example is Infinicyt, a 
widely used software to analyze flow cytometry data which 
uses automatic clustering based on an in-house database to 
make analysis faster and easier for the clinicians (Pedreira 
et al. 2019).

In this review paper, we will discuss the challenges that 
emerge in translational ML (Fig. 3). We will go through 
the whole process of a clinical application, including 
experimental setup, computational analysis, interpretation 
of results, evaluation of ML methods and application in 
the clinic. We will highlight the challenges involved and 
propose solutions to overcome these.

Fig. 3   Overview of challenges 
in translational ML. AI artificial 
intelligence, EMA European 
Medicines Agency, FDA Food 
and Drug Administration, ML 
machine learning, XAI explain-
able AI
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Challenges in experimental setup

The first step in translational ML is the experimental setup. 
The experimental design and choice of an appropriate sam-
ple size are important aspects to consider, together with 
selecting controls and creating standard operating proce-
dures (SOPs). Furthermore, potential sources of technical 
variation such as the date of acquisition, need to be identi-
fied. SPIRIT-AI (Cruz Rivera et al. 2020), CONSORT-AI 
(Liu et al. 2020b) and MI-CLAIM (Norgeot et al. 2020) are 
guidelines concerning the use of AI in clinical trials and 
state which aspects need to be considered to improve trans-
parency, interpretability and reportability before starting. 
They recommend, for example, to specify the intended use 
of the AI model or to state the exclusion or inclusion criteria 
at the level of the input data or at the level of participants.

Experimental design

Consulting with a (bio-)statistician and bioinformatician 
prior to the experimental setup is strongly advised. Just as 
in regular studies, ML experiments in general require an 
optimized experimental design to ensure that the biologi-
cal signal of interest can be disentangled from confound-
ing technical and biological sources of variation. Defining 
the research questions and variables to measure is the first 
step in experimental design. After an in-depth literature 
study, gaps in the current knowledge can be identified, 
and research questions of interest can be defined. From 
these research questions, hypotheses are distilled, and the 
experimental design is decided. This takes into account, 
among others, which samples for model building and vali-
dation are available at the time of clinical decision-mak-
ing. Experimental design also determines patient inclusion 
and exclusion criteria, endpoints, dose of the treatments, 
relevant control groups and distribution of the patients 
over the treatment groups. This last step can be done in a 
completely (stratified) randomized design or a (stratified) 
randomized block design (Lundstedt et al. 1998; Kreutz 
and Timmer 2009). Randomized control trials are often 
recommended, because they are less sensitive to selection 
bias, avoiding a specific subset of patients getting a spe-
cific treatment, which would confound the treatment effect 
with the underlying patient condition. On the other hand, 
observational studies can yield complementary informa-
tion, as they can be used to assess how well the model can 
be used to predict unseen data in a more representative and 
heterogeneous sample of the clinical population, using less 
strict inclusion criteria (Hannan 2008).

During predictive modeling, validation of the model 
is a crucial aspect of supervised ML studies that should 

already be included in the design of the study. A part of 
the cohort will be used as training data to develop the 
model, and some samples will be withheld to test the 
performance of the model. This type of validation is also 
known as internal validation. External validation, in con-
trast, refers to testing model performance on a completely 
independent and external cohort. Both types are important 
when validating an ML model.

Besides splitting data from a cohort into two parts—a 
training and a test dataset—the data can be split in a set of 
k-fold for cross-validation. The model is trained on k – 1-fold 
and tested on the remaining fold. The procedure is repeated, 
iterating over all the folds, and the outcome is a summary 
measure for the performance across all folds (Browne 2000). 
Optimization of hyperparameters and optimal feature subset 
selection require more complex designs with nested cross-
validation, to avoid overestimating the performance of the 
model (Vabalas et al. 2019).

Sample size

A sufficient number of samples are required to ensure gen-
eralizable ML results which do not overfit the training data 
used to develop the ML model. This was demonstrated in a 
review on neuroimaging data by Varoquaux (2018), where 
the authors show that a small sample size results in a larger 
error variance which leads to overfitting and confirmation 
bias. An overfitted ML model is typically too complex and 
does not generalize well to previously unseen data.

The appropriate minimum number of patients or samples 
in a training set can be estimated by fitting a learning curve 
to the relationship between training set size and a measure of 
classifier performance such as, e.g., accuracy or sensitivity 
(Figueroa et al. 2012). First, a minimum required perfor-
mance level is determined. This measure depends on the spe-
cific study, e.g., if there is class imbalance, or if sensitivity 
is more important than specificity. Next, the performance is 
evaluated with an initial minimal subset of training samples. 
The process is repeated, each time with a larger subset, until 
all available training samples are used. Finally, a weighted 
learning curve is fit to infer the minimum training set size 
associated with the required performance. The challenge 
remains to start a pilot study with a sample size that is large 
enough to fit a learning curve.

The recent MultiML algorithm expands this approach for 
multi-omic datasets, evaluating the relative contribution of 
different omics types (Tarazona et al. 2020). This allows 
researchers to assess how many patients and omics types to 
include to achieve the required classifier performance.

Statistically relevant numbers often turn out infeasible for 
rare diseases with, e.g., a prevalence of fewer than 5 patients 
per 10,000 (European Commission 2021). A study by 
Schaefer et al. (2020) reviewed 211 studies on 74 different 
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rare diseases and showed that diseases with a higher preva-
lence were investigated more frequently than diseases with 
a lower prevalence. Only a small proportion of these studies 
confirmed their ML models on an external dataset (Schaefer 
et al. 2020). The same study mentioned that ML was mostly 
used for diagnosis or prognosis, while studies to improve 
treatment were uncommon (Schaefer et al. 2020).

Another challenge that correlates with increasing sample 
sizes is the harmonization of clinical metadata; for example, 
patient labels might differ between institutions in spelling 
or in the way they are defined. A possible solution for both 
increasing sample sizes and aligning metadata could be 
stronger collaborations between research institutes and the 
establishment of worldwide consortia. This would not only 
increase sample sizes but also lead to better standardiza-
tion of equipment between the institutes, resulting in larger, 
more harmonized datasets and more widely applicable ML 
models. Larger sample sizes would also benefit research into 
heterogeneous diseases, such as acute myeloid leukemia 
(Li et al. 2016; van Galen et al. 2019). On one hand, large 
variability between patients suffering from the same disease 
decreases the statistical power, e.g., for differential diagno-
sis, and a larger sample size will be required to counteract 
this. On the other hand, including a wider variety of patients 
will ensure the broader applicability of the ML algorithm.

Controls

To guarantee data quality, it is important to take along con-
trols during the experiments. This can include positive and 
negative controls. A positive control validates how strong a 
true-positive signal can be, and a negative control how much 
background noise is to be expected from a negative signal.

Biologically, it is important to take the relevant control 
populations into account, depending on the clinical research 
question. For instance, when investigating a disease, it might 
be relevant to also measure the status of (age and/or gender-
matched) healthy donors or patients with a different disease 
with similar symptoms (diseased controls). When investigat-
ing a treatment, a patient group treated with a placebo, or 
the standard-of-care treatment should also be taken along as 
negative control. In some cases, it might be unethical to use 
samples that require an invasive procedure, such as surgery 
of a healthy person. In those cases, it is sometimes possible 
to recruit patients with another well-defined medical issue 
that would require a similar operation as a control group.

Single-cell technologies might require additional techni-
cal controls. In a cytometry setting, single stains of beads or 
cells are used as positive controls, while fluorescence-minus-
one stainings (FMOs) are used to estimate the negative back-
ground distribution. Equivalent controls in transcriptomics 
are technically much more challenging and expensive. One 

possibility is the addition of cross-species spike-in cells 
(Marquina-Sanchez et al. 2020).

Next to controls for signal strength, controls for signal 
stability can be taken along. This is crucial if the experiment 
takes place over a longer period, on multiple machines and/
or between multiple laboratories. In those cases, it is recom-
mended to aliquot a sample that can be taken along in each 
batch as a technical replicate. Researchers should ensure 
that this technical control expresses all relevant features of 
the real samples under investigation. Therefore, it might be 
necessary to use a combination of multiple samples. Hav-
ing sufficient biological and technical controls will allow a 
baseline to be established and will result in a more accurate 
interpretation of the experimental outcomes.

Standard operating procedures

SOPs are vital for reproducibility and reducing technical 
variation. This is not only important for the experiment 
itself, but also for comparisons with future experiments or 
across different institutes. SOPs capture everything from the 
reagents, scoring and reporting methods, sample collection, 
handling and storage, to guidelines for data generation, con-
sistent data analysis, file formats and so on (McShane et al. 
2013; Rybakowska et al. 2020). All this helps to reduce the 
technical variation or batch effects to a minimum when the 
experiment is repeated in the future or by different research 
groups. In flow cytometry, batch effects can be limited by 
calibrating the machine with beads with a known fluores-
cence and size (Wang and Hoffman 2017), while in single-
cell sequencing, cell hashing (a technique where multiple 
samples are loaded in the same well, Stoeckius et al. 2018) 
can be used to reduce batch effects.

Privacy, ethics, regulations, and legislation

A final important element of the experimental setup is com-
pliance with ethics, regulations and laws. Informed consent 
is required of each patient for using their data in research, 
and the ethics committee has to approve the experiment. 
Moreover, it is advised to keep patient organizations in the 
loop throughout the whole process, so that they are up-to-
date, get a broad overview of the methodology and under-
stand the potential benefits from a patient viewpoint. This 
will also help to build trust and stimulate the adoption of ML 
techniques in the clinic.

Before the data are shared with bioinformaticians or data 
scientists, the clinician also needs to anonymize or pseu-
donymize the data, to ensure the patient's privacy and to 
conform to regulations such as the General Data Protection 
Regulation (GDPR). Nevertheless, research by Rocher et al. 
(2019) re-identified up to 99.98% of Americans using their 
Gaussian copula-based method based on 15 demographic 
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attributes, which proves that pseudonymization of datasets 
is not as trivial as it might seem. Similarly, Schwarz et al. 
(2019) showed that face-recognition software could identify 
individuals from reconstructed cranial MRI scans. Another 
approach is using privacy-preserving ML methods. These 
provide a way to include ML in the pipeline without violat-
ing the privacy of the patients and to build collaborative 
models across institutes, even without the need to exchange 
sensitive patient data (Beaulieu-Jones et al. 2019; Kaissis 
et al. 2020).

Once the experimental design is set up, the sample 
size and demographic space are established, the SOPs are 
defined, and everything is approved by the ethics committee, 
the data can be acquired, and the downstream computational 
analysis can be initialized. Before doing the real experi-
ment on the anticipated cohort, it makes sense to already 
test and optimize all techniques and analyses during a pilot 
experiment.

Challenges in computational analysis

Quality control

One of the first things to do when starting the computa-
tional analysis is to assess the quality of the data and to clean 
the data if technical artifacts are detected. As the saying 
“garbage in, garbage out” illustrates, low-quality data will 
lead to low-quality results. Therefore, ensuring high-quality 
data is a key step in computational analysis. Luckily, many 
cleaning tools and pipelines exist. Assessing the data quality 
can be done in several ways. Dimensionality reduction, an 
unsupervised ML technique, can be used as an exploration 
tool. A lower dimensional embedding is produced to give 
a first impression of the structure of a given dataset. Addi-
tionally, coloring individual points by sample ID or other 
technical variables recorded can reveal possible batch effects 
(Nowicka et al. 2019). Another aspect to acknowledge is if 
there are any colinearities between the desired outcome and 
the cohort clinical data, such as age or gender. Assessing 
and including these in the downstream analysis are impor-
tant to reduce bias and to delineate the confounder from the 
outcome.

Single-cell RNA-seq quality can be evaluated with a 
range of tools throughout the pipeline. It is common to 
first distinguish empty droplets from cells and then filter 
on gene counts and the relative amount of mitochondrial 
RNA (Luecken and Theis 2019). These filter settings are 
not standardized and often require iterative adjustments to 
optimize the quality for each specific sample (Stegle et al. 
2015; Lun et al. 2016). In a later stage of the analysis, more 
advanced algorithms can be used to identify doublets in 
single-cell RNA-seq data (Xi and Li 2021) or to correct for 

batch effects when integrating multiple samples (Chazarra-
Gil et al. 2021).

While in cytometry data, quality control is still often 
done manually, new computational tools such as PeacoQC 
(Emmaneel et al. 2021) or flowAI (Monaco et al. 2016) 
have also been developed to identify and potentially remove 
outliers.

Choosing the right ML model

Choosing the right ML model for your analysis is a crucial 
step and strongly depends on the research question. There 
is no uniform way to decide a priori which ML algorithm is 
compatible with your data, and therefore, comparing multi-
ple algorithms on the data at hand or consulting algorithm 
benchmarks is recommended (Weber and Robinson 2016; 
Saelens et al. 2019; Chazarra-Gil et al. 2021). The use of 
autoencoders, for example, is state-of-the-art in DL methods 
for processing images (Uzunova et al. 2019) and single-cell 
RNA-seq data (Grønbech et al. 2020). In cytometry, the use 
of autoencoders is also on the rise, with uses in dimensional-
ity reduction (Szubert et al. 2019) and differential analysis 
(Arvaniti and Claassen 2017), but not yet widely adopted.

The specific hierarchical structure of single-cell data, 
where features provide information at the cell level but the 
outcome of interest (e.g., diagnosis) is at the patient level, 
is a case of learning (Herrera et al. 2016). This implies an 
additional step in the ML model to infer the patient label 
from the thousands of cells (or instances) of that patient 
(or bag). There are three main approaches to resolve this 
issue. In mapping-based approaches, the information on the 
cells is summarized per patient in, for example, cell type 
percentages, and these are used as input for the ML model. 
Instance-based approaches classify the individual cells as, 
e.g., diseased and use a decision rule to infer the patient 
labels from the cell labels. Finally, bag-based approaches 
use distance functions that capture the similarity between 
patients as input for modified ML models. Weber et al. 
(2019) and Nowicka et al. (2019) proposed mapping-based 
approaches on single-cell data, whereas Cheplygina et al. 
(2014) and Xiong et al. (2021) compared both instance-
based and bag-models on imaging data and next-generation 
sequencing data, respectively.

Before starting the computational pipeline, the data 
need to be prepared for internal validation, as explained 
earlier. The data can be split into a training and a test set, 
to train and validate the model, respectively. It needs to be 
emphasized that the test set can only be used to validate 
the model and none of its information can be used while 
building the ML model as this would introduce data leakage 
and would eventually lead to an incorrect estimation of the 
performance of the ML model. For more complex settings, 
e.g., for parameter optimization or feature selection, nested 
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resampling methods can be used. The final assessment of 
the performance is achieved when validating the ML model 
on an external dataset (external validation), e.g., from other 
institutes, and this is a crucial step when aiming for broadly 
applicable models.

Feature extraction and selection

The next step after choosing the right ML model is feature 
extraction and feature selection. Features can be extracted 
from the original high-dimensional space, for example 
(ratios or sums of) cell type abundances, quantification of 
gene or protein expression and so on. Importantly, the fea-
tures need to be available and measurable at the time of 
prediction. If cell types are not available, cluster labels can 
be used instead. Features can also be extracted from a latent 
space after dimensionality reduction. Generally, features 
are abundant which is why feature selection is important. 
Feature selection and, as previously mentioned, an accept-
able number of samples (Varoquaux 2018) reduce overfit-
ting and training time and increase accuracy (Saeys et al. 
2007). Reducing overfitting is important, since we do not 
want the model to fit on noise instead of real biological pat-
terns. Some modeling approaches, such as Lasso regres-
sion (Tibshirani 1996) or elastic net regression (Zou and 
Hastie 2005), implicitly perform feature selection and do not 
require any a priori feature selection and might therefore be 
easier to implement. Similarly, representation learning-based 
approaches take care of feature engineering themselves. 
Since there is not one optimal feature selection technique, it 
is recommended to try multiple.

We want to highlight the use of feature selection in com-
bination with resampling procedures where feature selection 
is only performed on the training dataset. In combination 
with nested resampling, the feature selection is performed 
on each iteration of the inner resampling. Nevertheless, it 
needs to be noted that features can change from fold to fold. 
For interpretability, typically, a final model is trained using 
all data (i.e., without any resampling), in which the same 
procedure for feature selection (and/or parameter optimiza-
tion) is applied. Another challenge arises when using fea-
ture selection in combination with multiple sources of high-
dimensional data with largely varying numbers of features, 
as it needs to be avoided that one source dominates the other 
(Baldwin et al. 2020).

We also want to emphasize the relative importance of 
demographic and clinical features such as age, comorbidi-
ties, etc., compared to features from high-throughput data. 
Volkmann et al. (2019) found that adding features from 
omics data only caused a small increase in the predictive 
value of a model if the model already contained a substantial 
amount of clinical features. This means that clinical data can 
already hold valuable information when used in ML models, 

and it should always be verified that the omics data gives 
relevant additional insights.

Hyperparameter optimization

ML tools do not come as “one-size-fits-all” models, as they 
rely on hyperparameters that need optimizing for every 
dataset to maximize performance. Hyperparameters used 
to tune the learning process by the end-user (e.g., certain 
thresholds to be specified) differ from parameters that are 
learned by the ML algorithm itself (e.g., a node weight in 
the case of neural networks), and these often have to be 
fine-tuned to maximize predictive performance. Many tools 
have been developed for hyperparameter optimization. Grid 
search employs an exhaustive search for the right param-
eters. Cho et al. (2020) developed a Bayesian hyperparam-
eter optimization for big data, and Tharwat and Hassanien 
(2019) used quantum-behaved particle swarm optimization, 
an evolutionary algorithm, to optimize the hyperparameters 
for deep neural networks. Random search, gradient-based, 
population-based and early stopping-based are other com-
mon examples of parameter optimizations algorithms. Simi-
lar to feature selection, we note that it is recommended to 
use nested resampling methods in combination with hyper-
parameter optimization to avoid overfitting in the ML model 
(Bischl et al. 2012).

Reproducibility in stochastic models

Many ML algorithms are stochastic with random initiali-
zation, which is why different seeds can lead to different 
results. A fixed seed can be chosen to guarantee reproducible 
results from stochastic algorithms. This allows a scientist 
to later repeat the exact same random number generation 
involved. However, when assessing the algorithm’s perfor-
mance and to avoid that a result reflects a local optimum 
instead of the true performance, it is recommended to sys-
tematically test multiple seeds to verify whether all models 
perform similarly regardless of the stochastic choice of a 
seed.

Challenges in interpretability and evaluation

After running the ML methods and ensuring reproducibility 
when using stochastic ML models, it is important to be able 
to interpret and evaluate the results. Visualizing the results, 
for example using dimensionality reduction techniques, is 
an important aspect in interpretation, whereas evaluation 
metrics and benchmarking are vital for evaluation. The inter-
pretability of an ML method is sometimes not evident. While 
some attempts have been made to improve the interpretabil-
ity of ML methods, this is often negatively correlated with 
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accuracy (Ahmad et al. 2018). Alternatively, some research-
ers argue that AI should not be interpretable as long as it 
is used under complete human supervision, and from the 
patients’ perspective, the efficacy is much more important 
(Jia et al. 2020). However, interpretable models are favored, 
and from a clinical point of view, having an idea of what a 
certain decision is based on, will improve the adoption by 
the medical community.

Evaluation metrics

Evaluation metrics are essential when performing transla-
tional ML, since they offer a way to convey how well the 
trained model performed. Again here, the best evaluation 
metrics to use will depend on the data, the problem formula-
tion and the ML models used.

Many unsupervised clustering metrics exist; however, 
these metrics are often complementary, as they do not tend 
to agree among themselves or with supervised evaluation 
criteria (Wiwie et al. 2015; Duò et al. 2020). An example 
of an evaluation metric is the Davies–Bouldin index. This 
evaluation metric takes into consideration the ratio of the 
between-cluster and within-cluster distances (Davies and 
Bouldin 1979). The silhouette index, another metric, meas-
ures how similar a sample is to its own cluster compared 
to other clusters (Rousseeuw 1987). A disadvantage of the 
silhouette index is that it is more computationally inten-
sive. Dimensionality reduction is often scored subjectively. 
However, some metrics are available, such as the co-ranking 
matrix, which visualizes all neighbors of a point in high ver-
sus low dimensions. More quantitative metrics are trustwor-
thiness and continuity (Kaski et al. 2003), the Local Conti-
nuity Meta Criterion (LCMC) (Chen and Buja 2009) and the 
mean relative rank errors (Lee and Verleysen 2009). These 
quantify how well the structure of original data is preserved 
in the lower dimensional embedding. While the LCMC is 
computed from what happens in the k-ary neighborhood 
only, the other metrics require the full co-ranking matrix.

An example of evaluation metrics in supervised learn-
ing is the area under the receiver-operating characteristic 
(AUROC) curve which measures the performance of an ML 
model by calculating the true-positive rate (TPR) or sensi-
tivity and the false-positive rate (FPR) at different decision 
thresholds. The ROC curve gives an overview of all these 
possible decision thresholds, and so, one can balance the 
TPR and FPR oneself (Davis and Goadrich 2006). Typi-
cally, the balance between type I errors, or the false posi-
tives, and type II errors, or the false negatives, is applica-
tion-dependent and should always be adapted to the specific 
clinical use case. If the ML algorithm is, for example, used 
to detect a subset of high-risk patients for further diagnos-
tic testing, avoiding false negatives will be more important. 
The F1-score is the harmonic mean of precision and recall, 

which are both calculated with the number of true positives, 
true negatives, and false negatives. Challenges arise with 
both scores when they are applied on imbalanced datasets, 
meaning that there is an unequal class distribution. In this 
situation, balanced accuracy and the area under the precision 
and recall (AUPR) curve are more informative.

As each evaluation metric has both advantages and dis-
advantages and highlights different parts of a model's per-
formance, there is no ultimate evaluation metric suited for 
every situation. In most cases, it is recommended to look 
at multiple metrics before making conclusions (Handelman 
et al. 2018).

Benchmarking

Since there are numerous ML methods available, recent 
studies have focused on benchmarks (Weber and Robinson 
2016; Saelens et al. 2019; Liu et al. 2019; Chazarra-Gil et al. 
2021). These benchmarks often rely on a combination of 
synthetic and public datasets. While synthetic data can have 
important advantages to explore specific questions, as all 
of its properties are tunable, it remains difficult to ensure 
that it completely captures the intricacies of real data, espe-
cially in disease settings. Public datasets are more favorable 
and are available on online repositories. FlowRepository, 
CytoBank and ImmPort are databases that provide cytom-
etry data, whereas the Single-Cell Expression Atlas and the 
Gene Expression Omnibus have single-cell sequencing data. 
However, it is noted in Volkmann et al. (2019) that only a 
few large clinical datasets acquired by omics technologies 
have been made publicly available, and the situation in the 
single-cell field is similar. We highly recommend data shar-
ing as a way to improve translational ML research.

Replicability, stability and confidence estimates

Some desirable properties of ML and statistical models, in 
general, are replicability and stability. We define replicabil-
ity as the ability to replicate the performance of the ML 
model in a different cohort of patients, which will be limited 
if a model is overfitted on a specific dataset. In ML, this is 
also known as the external validation of the model, and it 
can be particularly challenging in a clinical setting.

The stability of an ML model refers to how much small 
changes in the training set impact the model (Evgeniou et al. 
2004). Unstable models show much variation as a func-
tion of the specific training samples. A popular method to 
assess model stability is validation using bootstrap resam-
pling, which uses a set of randomly drawn samples with 
replacement. In the case where leaving out a few samples 
completely changes the performance of the model, probably 
outliers are driving the model, making it unstable and less 
trustworthy.
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Finally, while often only the predictions of ML algo-
rithms are evaluated, some supervised models can also 
estimate the uncertainty of their predictions themselves. 
If these confidence estimates are well calibrated, it can be 
a valuable resource to guide clinicians in how much trust 
they can put in a specific prediction, rather than the whole 
model at once, and whether any further tests would be nec-
essary in that specific instance or not. When evaluating the 
uncertainty estimates, different types of uncertainty can be 
distinguished, such as reducible uncertainty (e.g., due to 
limited sample size) and irreducible uncertainty (e.g., due 
to stochastic dependencies between instances and outcomes) 
(Hüllermeier and Waegeman 2021).

Sensitivity analysis

Another option to assess the robustness of the ML algorithm 
is to change the input or feature space, also known as a sensi-
tivity analysis. This is a simple, yet very useful technique to 
examine the impact of each feature on the ML model and is, 
for example, used to evaluate neural networks in image seg-
mentation (Ankenbrand et al. 2021). One or more features 
are transformed, e.g., uniform resampling, permutation or 
other transformations, and the outcome of the non-trans-
formed versus the transformed feature space is compared. 
If no substantial differences occur, the specific feature has 
little impact on the outcome of the ML algorithm. This can 
help to find which features contribute to the ML model and 
give more insight into the black box. Of particular interest 
are transformations that reflect a violation of the underlying 
assumptions of the algorithm or that induce specific patterns 
of missingness. Only if equivalent results are obtained, the 
algorithm can be applied in these additional scenarios.

Biomarker discovery

ML models can be hard to interpret, so besides adopting the 
ML model itself in the clinic, it is also possible to apply ML 
to identify novel biomarkers which are measurable indica-
tors of the relevant biological condition. These are easier to 
implement in the clinic as they can be less expensive, easier 
to interpret and can be less time-consuming. Nevertheless, 
biomarkers must be highly sensitive, highly specific, easily 
detectable by clinical assays and cost-effective (Gupta et al. 
2014). In biomarker discovery, feature extraction techniques 
can extract potential biomarkers from the cleaned data, and 
feature selection techniques can be applied to these biomark-
ers to rank them according to importance. Xie et al. (2021) 
extracted 61 metabolites levels from metabolomics data and 
afterward, used a fast correlation-based filter for feature 
selection. The top five features could potentially be used to 
detect early lung cancer. A study by Mamoshina et al. (2018) 
used neural networks on publicly available transcriptomic 

data profiles to identify tissue-specific biomarkers for aging 
and demonstrated that these biomarkers could be used to 
identify new molecular anti-aging therapies. Naturally, these 
biomarkers also need to be validated later on in the clinic 
on new samples before they can be adopted. To use these 
biomarkers routinely in the clinic, it might be necessary to 
develop a new assay, for example, an RT-PCR test for genes 
selected based on a single-cell RNA-sequencing experiment.

Challenges in adopting ML in the clinic

External validation and reporting

Before adopting the ML model in the clinic, it first needs 
to be externally validated. The model needs to be tested on 
independent and larger cohorts, and on the other hand, it 
needs validation on a cohort from an independent institute. 
The samples and the associated data of this latter cohort 
are collected by an entirely new set of staff. An exam-
ple that shows the importance of external validation can 
be found in Zech et al. (2018) where the authors wanted 
to diagnose pneumonia based on chest radiographs with 
the help of a CNN. The CNN predicted pneumonia with 
significantly lower performance when using data from 
another hospital, while it could accurately predict the hos-
pital where the data came from (Zech et al. 2018).

Multiple guidelines and checklists exist to report an 
ML model, not only for single-cell data but also for AI 
in omics data (Collins et al. 2021). Wynants et al. (2020) 
validated ML prediction models concerning COVID-19 
using a CHecklist for critical Appraisal and data extraction 
for systematic Reviews of prediction Modeling Studies 
(CHARMS, Moons et al. 2014) and the Prediction model 
Risk Of Bias ASsessment Tool (PROBAST, Moons et al. 
2019). This review also mentioned that the Transparent 
Reporting of a multivariable prediction model for Indi-
vidual Prognosis Or Diagnosis guidelines should be fol-
lowed when reporting and validating prediction models 
to increase interpretability, reproducibility and reportabil-
ity (TRIPOD, Moons et al. 2015; Wynants et al. 2020). 
PROBAST and TRIPOD are currently also being expanded 
to include AI studies (Collins et  al. 2021). Heil et  al. 
(2021), Walsh et al. (2021) and Matschinske et al. (2021) 
also propose recommendations and reporting methods for 
machine learning in life sciences.

It is also advised to compare the ML model performance 
with established clinical scores or existing ML models. 
Duetz et al. (2021), for example, validated their model in 
an external cohort and also noticed that their ML model 
outperformed the expert-analyzed flow cytometry score to 
classify myelodysplastic syndrome (MDS) from non-MDS.
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Unconscious bias

When training ML models, spurious associations can be 
picked up due to confounders, such as age, gender, race or 
the place where the samples were acquired, etc. that influ-
ence the association between biomedical features and the 
outcome of interest. If a causal relationship is attributed 
to these spurious associations or if these associations are 
not properly corrected for confounders in the model, they 
can induce bias when building the model and applying it 
in a clinical setting (Gianfrancesco et al. 2018).

To avoid bias, it is therefore crucial to measure and 
register all potential confounders. Spurious associations 
can even be induced by unmeasured confounders, resulting 
in unconscious bias. A study by Obermeyer et al. (2019) 
revealed racial bias, because an ML model predicted 
health care costs instead of the actual illness. In addition, 
the demographic space used to train the ML algorithm 
should be representative of the demographic space which 
will be present in the clinic to avoid a biased performance 
of the model. Buolamwini and Gebru (2018) found, for 
example, that dark-skinned women are more likely to be 
misclassified by facial analysis software due to an imbal-
ance in the training dataset.

Good practice would be to assess all patient variables 
before starting the experiment to factor them out in the 
downstream analysis. However, assessing everything, for 
example with correlation plots, is practically impossible. 
One way to evaluate bias in ML is the use of counterfactuals, 
where artificial observations are created for a set of patients. 
Given that a potential confounder is changed, for example 
race, all other features are changed accordingly based on a 
probabilistic model. If the prediction of the ML model does 
not change, the confounder does not induce bias (Pfohl et al. 
2019). While there also have been studies trying to debias 
ML models, these only had limited successes, and prevent-
ing the bias in the first place is strongly recommended (Eid 
et al. 2021).

Intellectual property

Concerning intellectual property (IP) and AI, the World 
Intellectual Property Organization (WIPO) differentiates 
between AI-assisted versus AI-generated inventions. AI-
assisted inventions are defined as tools generated by humans, 
while AI-generated inventions are created by AI. Whereas 
AI-assisted inventions follow the regular IP regulations, 
issues arise with AI-generated inventions, since it is difficult 
to state who the owner is; a human, the AI or a joint owner-
ship (WIPO secretariat 2021). Current ML approaches are 
mostly AI-assisted and therefore are covered by the regular 
IP regulations.

Trustworthy and explainable AI

Even if the ML model is proven to be valuable and can gen-
eralize to unseen samples or other cohorts, clinicians might 
still favor slightly worse, but explainable and interpretable 
models over “black box” models. Lack of trust in these com-
plicated models is at the root of this preference. A recent 
study by Cheung et al. (2021) surveyed the current trends 
in computational flow cytometry and found out that indeed 
the primary reason that automated analysis was not used is 
lack of trust but also lack of understanding and resources. 
The pursuit of trustworthiness in ML is currently a big topic, 
and this also applies in translational ML. Consequently, we 
propose steering towards more interpretable and explainable 
AI models (Quinn et al. 2021). Alternatively, trust can be 
gained by evaluating whether some of the features selected 
by the model are already known clinical parameters or can 
be easily related to such parameters. In Garzorz-Stark et al. 
(2016), for example, a logistic regression model was built 
to distinguish psoriasis and eczema using gene expression 
of two important genes which resulted in a high sensitivity 
after cross-validation.

FDA and EMA approval

Before an ML algorithm can be implemented as a medical 
decision tool in the clinic, it needs to be approved by the 
authorities such as the FDA or the EMA. Results of trans-
lational ML need to be robust and generalize well to the 
intended population. A review paper by Wu et al. (2021) 
collected all FDA-approved medical AI devices that were 
approved between January 2015 and December 2020. They 
noticed that 126 of the 130 evaluations only underwent ret-
rospective studies and that the number of evaluation sites 
is often not reported which can lead to restricted diversity 
in geography (Kaushal et al. 2020; Wu et al. 2021). An 
example of FDA-approved software as a medical device is 
IDx-DR which uses a CNN to autonomously detect diabetic 
retinopathy (Abràmoff et al. 2016; Savoy 2020). Afterward, 
post-market surveillance must be established by sharing the 
results of the clinic with the bioinformatician to anticipate 
unintended outcomes and biases that were not detected ear-
lier (Ferryman 2020).

Conclusion

Even though ML is already quite common in translational 
research, there is still room for improvement, both on the wet 
lab and the computational side. In this review, we address 
the challenges that arise in translational machine learning 
and anticipate that the way forward to more successful clini-
cal applications is the construction of large consortia that 
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are able to generate sizable patient cohorts in a standard-
ized fashion. We refer to several examples of translational 
single-cell studies throughout the work, extended with some 
more general imaging and omics applications in those cases 
where single-cell technologies are still in the process of 
being adopted in the clinic. As these technologies are ever-
evolving, we also expect new techniques, such as spatial 
transcriptomics at single-cell resolution or combinations 
of techniques (multi-omics) to be adopted in clinical set-
tings in the near future. Additionally, we also expect other 
ML techniques, such as semi-supervised learning and rein-
forcement learning, soon to be translationally applied to 
single-cell datasets. We highly recommend starting with a 
multi-disciplinary team consisting of clinicians, bioinfor-
maticians and biostatisticians before planning the experi-
ment to get acquainted with which ML techniques apply to 
a specific translational research question and to optimize 
the experimental design and sample size. Other valuable 
aspects to keep in mind before starting the experiment are 
privacy, ethics, regulations and legislation. Data can only 
be used from patients who completed an informed consent 
form which states that they agree that their data will be used 
for research and might be published in a pseudonymized 
version. As previously mentioned, the pseudonymization of 
data is not an easy-to-solve problem, and it opens up the 
debate between patient privacy versus open science, where 
sharing anonymized patient data is stimulated to allow fur-
ther research and meta-analysis.

Many ML models are available and choosing the right 
one is not a trivial question. It depends on the hypothesis, 
the amount of data, how the data are balanced, if there is 
clinical metadata available, the need for interpretability of 
the results, privacy concerns, etc. New ML techniques are 
also coming out faster than ever, so keeping up with the lit-
erature as well as checking recent benchmarks will provide 
more guidance to select the right ML technique. On top of 
that, it is recommended to test multiple ML models. Once 
the models are selected, the computational pipeline can be 
assessed with resampling methods, such as cross-validation. 
These help to verify that the model is not overfitting and help 
to assess generalizability. It is important to include feature 
selection and hyperparameter tuning inside the (nested) resa-
mpling procedure. Quality control is an important step in 
translational ML as it identifies noise and bad quality data. 
Once the ML models are set up, they need to be evaluated 
and interpreted. This requires generalizable evaluation met-
rics, sensitivity analysis and a strong analysis concerning 
replicability, stability and reliability. Future research is still 
necessary on how to balance the trade-off between complex 
models and interpretability while avoiding unconscious bias.

After building the model, it is of utmost importance that 
it not only gets validated on an internal dataset but also on 
external ones to ensure that models perform well in a wide 

variety of settings. Trustworthiness can also be increased by 
linking the outcomes of the ML model to parameters known 
by clinicians when possible, even though parameter linking 
is less evident in multivariate models. The next step is to get 
the ML model approved by the authorities, such as the FDA 
and EMA. This, at last, includes post-market surveillance, 
where feedback from the clinic can be used to improve the 
model. Overall, we would argue that single-cell data of large 
cohorts with appropriate privacy measures and explored by 
several ML models will lead to relevant clinical tools, allow-
ing more accurate diagnosis and prognosis. We expect many 
more to be approved by authorities and health care instances 
in the coming years, ultimately benefiting the patients.
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