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Abstract
Pigmentary mosaicism of the Ito type, also known as hypomelanosis of Ito, is a neurocutaneous syndrome considered to be 
predominantly caused by somatic chromosomal mosaicism. However, a few monogenic causes of pigmentary mosaicism 
have been recently reported. Eleven unrelated individuals with pigmentary mosaicism (mostly hypopigmented skin) were 
recruited for this study. Skin punch biopsies of the probands and trio-based blood samples (from probands and both biologi-
cal parents) were collected, and genomic DNA was extracted and analyzed by exome sequencing. In all patients, plausible 
monogenic causes were detected with somatic and germline variants identified in five and six patients, respectively. Among 
the somatic variants, four patients had MTOR variant (36%) and another had an RHOA variant. De novo germline variants in 
USP9X, TFE3, and KCNQ5 were detected in two, one, and one patients, respectively. A maternally inherited PHF6 variant 
was detected in one patient with hyperpigmented skin. Compound heterozygous GTF3C5 variants were highlighted as strong 
candidates in the remaining patient. Exome sequencing, using patients’ blood and skin samples is highly recommended as 
the first choice for detecting causative genetic variants of pigmentary mosaicism.
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Introduction

Pigmentary mosaicism, or hypomelanosis of Ito (HI, 
MIM# 300337), is a rare neurocutaneous syndrome char-
acterized by hypopigmented skin whorls along Blaschko’s 
lines. It is associated with nervous system abnormality and 
other ectodermal defects involving fingers, toes, and teeth 
(Kouzak et al. 2013; Sybert 1994). Hypopigmented lesions 
have a reduced number of melanocytes, which originate 
from neural crest cells (Carmignac et al. 2021; Kuster and 
Konig 1999; Lee et al. 1999). In some cases, it is difficult 
to determine whether the affected skin is hypopigmented 
or hyperpigmented (Nehal et al. 1996), and the term “pig-
mentary mosaicism” refers to patterned hypopigmentation 
or hyperpigmentation resulting from a clone of skin cells 
with altered melanin-producing ability (Kromann et al. 
2018; Shaffer and Chernoff 2020). The prevalence of HI 
is unknown, but it is estimated to be between 1/10,000 
and 1/8,500, making it one of the most predominant rare 
neurocutaneous syndromes (Barbel et al. 2015). It affects 
both sexes, with a female-to-male prevalence ratio of 
2:1. It has long been considered that somatic mosaicism 
is involved in HI, because the differently pigmented skin 
areas correspond to the varying distribution of two mosaic 
cell lines in each individual. Up to 60% of individuals 
with HI present with multiple types of mosaic cytogenetic 
abnormalities, including numerical (e.g., trisomy 18 or 20, 
triploidy) and structural chromosomal aberrations (e.g., 

deletions, duplications, or translocations) (Kromann et al. 
2018; Salas-Labadia et al. 2019; Shaffer and Chernoff 
2020; Thomas et al. 1989). However, no medical treat-
ments are currently available for such chromosomal abnor-
malities, even if they were detected. Thus, skin biopsies, 
only to confirm chromosomal abnormalities, have been 
less motivated.

Recently, a few monogenic causes of HI have been 
reported. Germline TFE3 (MIM* 314310) and somatic 
RHOA (MIM* 165390) variants were found in pigmentary 
mosaicism (Lehalle et al. 2020; Vabres et al. 2019; Yigit 
et al. 2020). Somatic or germline MTOR (MIM* 601231) 
variants have also been occasionally associated with pig-
mentary mosaicism (Gordo et al. 2018; Hadouiri et al. 2020; 
Handoko et al. 2019; Mirzaa et al. 2016) and a large cohort 
of MTOR-related HI has recently been reported (Carmignac 
et al. 2021). This study aims to further explore the mono-
genic causes of pigmentary mosaicism.

Materials and methods

Patients

Individuals who were clinically diagnosed with pigmentary 
mosaicism were recruited through the collaborative activity 
of the Japanese Society of Child Neurology between April 
2018 and March 2021. A total of 11 patients with pigmen-
tary mosaicism (clinically diagnosed as HI and predominant 

Fig. 1  Flowchart of the study. DNA was extracted from blood leuko-
cytes and skin lesion biopsies of patients with pigmentary mosaicism 
and analyzed by next-generation sequencing. Rare variants only in 
the skin (somatic variants) or in both the skin and blood (germline or 
somatic variants) were investigated. Candidate germline variants were 
confirmed by Sanger sequencing of trio-samples (from patients and 

their parents). Exome sequencing of 11 individuals with pigmentary 
mosaicism revealed four somatic MTOR variants, a somatic RHOA 
variant; de novo variants in USP9X (n = 2), TFE3 (n = 1), and KCNQ5 
(n = 1); biallelic germline variants in GTF3C5; and one inherited ger-
mline variant in PHF6 
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skin hypopigmentation) were enrolled (Fig. 1). Skin sam-
ples were obtained from the patients, whereas blood samples 
were collected from the patients and their parents. Fresh skin 
tissues were obtained by punch biopsies of hypopigmented 
skin. Genomic DNA was extracted from the skin and periph-
eral blood leukocytes. Informed consent was obtained from 
the patients’ parents. This study protocol was approved by 
the Institutional Review Board of the Yokohama City Uni-
versity Faculty of Medicine.

Exome sequencing (ES)

The flowchart of the study design is shown in Fig. 1. DNA 
was extracted from skin biopsies using proteinase K and 
sodium dodecyl sulfate with RNase and phenol/chloroform. 
DNA extraction from peripheral blood leukocytes was per-
formed using the QuickGene DNA Extraction Whole Blood 
Kit L (Kurabo Industries Ltd., Osaka, Japan). ES was per-
formed at a standard depth (approximately, 40–70×) as pre-
viously described (Sakamoto et al. 2021). In brief, genomic 
DNA was captured with a SureSelect Human All Exon V6 
Kit (Agilent Technologies, Santa Clara, CA, USA) and 
sequenced on a Illumina Novaseq 6000 Sequencing System. 
Reads were aligned to the human reference genome (hg19) 
using Novoalign v3.02.13 (http:// www. novoc raft. com/).

Single nucleotide variant (SNV) and copy number 
variation (CNV) analysis

Germline variants in exons and at canonical splice sites 
(± 2 bp) were selected based on autosomal dominant and 
X-linked models considering de novo occurrence. Simulta-
neously, rare variants, assuming autosomal recessive inherit-
ance were also considered. These variants were absent from 
our in-house exome database (n = 575) and the genome 
aggregation database (https:// gnomad. broad insti tute. org/) 
(or at extremely low frequency if recessive). Somatic vari-
ants were extracted using MuTect2 (Cibulskis et al. 2013) 
and Varscan2 (Koboldt et al. 2012). We focused on vari-
ants detected by both programs. Candidate somatic vari-
ants were selected if they were covered by at least three or 
more reads. Known gene variants which have been previ-
ously reported in neurocutaneous syndrome-related pheno-
type on the Human Gene Mutation Database (HGMD) or 
the Catalogue of Somatic Mutations in Cancer (COSMIC) 
databases were prioritized among candidates with > 4% of 
variant allele frequencies (VAF). Candidate variants were 
validated by Sanger sequencing. Primers were designed 
using Primer3Plus, a web tool for designing primers (primer 
information is available on request) and PCR was performed 
using TaKaRa Ex Taq DNA Polymerase with 30 cycles of 
PCR. CNV was detected using eXome Hidden Markov 

Model (XHMM) and Nord’s program as described previ-
ously (Miyatake et al. 2015; Tsuchida et al. 2018; Uchiyama 
et al. 2021).

Results

ES analysis

ES identified plausible monogenic variants in all patients 
(11/11) (Fig. 1). The candidate variants information is sum-
marized in Table 1 and Supplementary Table 1. The mean 
read depths of the protein coding sequences were covered 
with 40 reads or more. De novo somatic MTOR variants 
were identified in four patients [Patient 1, NM_004958.4: 
c.4448G>A, p.(Cys1483Tyr); Patient 2, c.5930C>T, 
p.(Thr1977Ile); Patient 3, c.6644C>T, p.(Ser2215Phe), 
Patient 4, c.7292T>C, p.(Leu2431Pro)]. Of these, three 
were exclusively detected in skin lesions, and one was 
identified in both skin and blood samples (Table 2). The 
somatic VAF of the MTOR mutant allele detected in 
skin in Patients 1, 2, 3, and 4 were 26.6% (20/70 reads), 
21.3% (10/43 reads), 11.4% (6/62 reads), and 22.8% (8/35 
reads), respectively. In Patient 4, the MTOR mutant read 
was also detected in the blood sample (5/28, 17.8%). All 
mosaic variants were confirmed to have signal peaks com-
pared with wild-type variants in Sanger sequencing elec-
tropherograms (Supplementary Fig. 1). A somatic RHOA 
variant [NM_001664.4:c.139G>A, p.(Glu47Lys)] was 
found in the skin of Patient 5, with a VAF of 25.6%; this 
has been previously reported (Yigit et al. 2020). As for ger-
mline variants, de novo null variants in USP9X were found 
in two patients [Patient 7, NM_001039590.3: c.355dupT, 
p.(Arg121Profs*2); Patient 8, c.5834G > A, p.(Trp1945*)]. 
De novo TFE3 and KCNQ5 variants were identified in 
Patient 6 [NM_006521.6:c.560C>T, p.(Thr187Met)] and 
Patient 10 [NM_001160133.2:c.1477C>T, p.(Arg439Trp)], 
respectively. Patient 6 has been previously reported (Lehalle 
et al. 2020). A pathogenic PHF6 variant [NM_032458.3: 
c.821G>A, p.(Arg274Gln)] was maternally inherited in 
Patient 9, who presented hyperpigmented skin, rather than 
the usual hypopigmentation pattern. In Patient 11, we 
could neither identify de novo mosaic variants in the skin, 
nor any de novo germline variants. However, trio-based 
ES of blood DNA revealed biallelic GTF3C5 variants 
[NM_001286709.2: c.1160A>G; 1517G>T, p.(Lys387Arg); 
p.(Gly513Val)] as the candidates for this neurocutaneous 
phenotype. 

Clinical data

Clinical photographs and images from brain imaging stud-
ies of patients are shown in Figs.  2 and 3, and clinical 

http://www.novocraft.com/
https://gnomad.broadinstitute.org/
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information is described in detail in Table 1 and in the 
Supplementary Information. Of the 11 patients, 9 (81.8%) 
exhibited intellectual disability. Patient 5 with a mosaic 
RHOA variant developed normally, whereas Patient 8 who 
had a germline USP9X variant had delayed developmen-
tal milestones (such as head control at 6 months, sitting at 
11 months, walking at 17 months, and speaking a word at 
2 years), but reached to the normal level of development by 
6 years of age. Of the 11 patients, 7 (63.6%) had epilepsy, 6 
(54.5%) exhibited brain abnormalities, 5 (45.5%) had den-
tal anomalies, 3 (27.2%) experienced body/limb asymmetry, 
and another 3 (27.2%) demonstrated distinctive facial fea-
tures. Macrocephaly was observed in only one case (Patient 
4 with a somatic MTOR variant in blood and skin samples).

All of the four patients with somatic MTOR variants were 
diagnosed with epilepsy and developmental delay of var-
ied severity after birth in addtion to skin hypopigmentation 
(Fig. 2 a, c, g, j, l). Patient 1 had a slightly enlarged right 
hemisphere on brain magnetic resonance imaging (MRI) 
(Fig. 2b). In a brain positron emission tomography scan, 

signals were significantly decreased in the right hemisphere 
(Fig. 2d). Patient 2 presented with unclear bilateral occipital 
cortexes (especially in the right) (Fig. 2i), but was able to 
walk and speak; therefore, his phenotype was considered 
relatively mild. Afebrile seizures occurred at 4 years, which 
were not improved with levetiracetam and lacosamide but 
were eventually well controlled with carbamazepine. Patient 
3 had seizures 10 days after birth and exhibited severe devel-
opmental delay; thus, brain surgery was required to control 
refractory seizures. Brain MRI indicated that Patient 3 had 
apparent right hemimegalencephaly and focal cortical dys-
plasia (FCD) in the right occipital lobe, which was surgi-
cally corrected (Fig. 2k). Patient 4 showed macrocephaly, 
severe developmental delay, and epilepsy but without FCD 
or hemimegalencephaly on brain MRI (Fig. 2m), which is 
indicative of Smith–Kingsmore syndrome.

Patient 5 with a mosaic RHOA variant showed skin hypo-
pigmentation (Fig. 3a) along with abnormally high MRI sig-
nals and cysts near the right ventricle (Fig. 3b and c). Almost 
all patients demonstrated skin hypopigmentation (Fig. 3a, 

Fig. 2  Skin lesion photographs and brain magnetic resonance imag-
ing (MRI) studies of patients 1–4. a–f Patient 1 with a somatic MTOR 
somatic variant (c.4448G>A, p.Cys1483Tyr). a, c Hypopigmen-
tation of the back and buttocks. b Axial view of T1-weighted MRI 
images of the brain. The brain is almost symmetrical, but the right 
hemisphere is slightly larger than the left. d Axial image of brain 
positron emission tomography (PET). The signals are significantly 
decreased in the right hemisphere (arrowhead). e, f Fontana–Masson 
stained skin biopsy of a depigmented lesion. Arrow indicates clus-
ters of melanin-laden keratinocytes (brown areas), which are sparse 
in the hypopigmented skin compared to a normally pigmented skin 
lesion, although the number of melanocytes is not reducted (f). g Skin 
lesion of Patient 2. Hypopigmentation of the skin is seen only in the 

right side of the body. h, i T2-weighted coronal and axial images of 
brain MRI of Patient 2 with a somatic MTOR variant (c.5930C>T, p.
Thr1977Ile). The right hemisphere is slightly larger than the left. 
The arrowheads show focal cortical dysplasia in bilateral occipital 
lobes, but predominantly in the right hemisphere. j Skin lesion of 
Patient 3 with a somatic MTOR variant (c.6644C>T, p.Ser2215Phe). 
k T2-weighted MRI brain finding of Patient 3 at day 21 after birth 
prior to surgery. Right hemimegalencephaly is observed in many 
slices. l, m Skin lesions and T2-weighted brain MRI of Patient 4 with 
a somatic MTOR variant (c.7292 T>C, p.Leu2431Pro) found in both 
skin lesion and blood leukocytes, respectively. Brain MRI of Patient 4 
is normal and almost symmetrical
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d–f, i, j) except Patient 9, who had a PHF6 variant and dem-
onstrated skin hyperpigmentation (Fig. 3g). The PHF6 vari-
ant was inherited from the patient’s mother who also had 
hyperpigmented skin. The familial pedigree of Patient 9 with 
genetic data is shown in Supplementary Fig. 2. Regarding a 
PHF6 variant, there was a report demonstrating grandparen-
tal genotyping was useful for interpreting ES results (Daum 
et al. 2020). We confirmed that the maternal grandmother 
did not possess a PHF6 variant. Unfortunately, a sample 
derived from the maternal grandfather was unavailable for 
confirmation. Neither grandparent exhibited hyperpigmenta-
tion or any other symptoms; therefore, the mother’s PHF6 
variant may have occurred de novo. Patient 11 was born at 
35 weeks of gestation by cesarean section because of oligo-
hydramnios. He was noted to have HI after birth (Fig. 3j), 
refractory epilepsy at 1 year, and severe growth and develop-
mental delay. The family pedigree of Patient 11 with genetic 
data is shown in Supplementary Fig. 2.

Discussion

We identified plausible monogenic causes of pigmentary 
mosaicism (mostly HI) in all 11 patients examined (Fig. 1). 
All causal genes identified in this study are highly intolerant 

to variation (high pLI, LOEUF, and z scores) except for the 
autosomal recessive GTF3C5 variants (Table 3). The high 
rate of monogenic cause of pigmentary mosaicism in this 
study was unexpected, but may be reasonable, considering 
that previous genetic investigations of pigmentary mosai-
cism were performed using only chromosomal analysis and/
or array-based comparative genomic hybridization (without 
ES) (Kromann et al. 2018; Salas-Labadia et al. 2019). We 
propose that the exome-first strategy, preferably using blood- 
and skin-derived DNA, should be adopted for HI because it 
is a neuroectodermal disorder.

De novo somatic variants were identified in almost half 
cases (45%, five of 11 patients). Epidermal tissue con-
tains both keratinocytes and melanocytes. It is well known 
that melanocytes are neuroectoderm derived. The neural 
tube (differentiating to neuronal cells in the central nerv-
ous system) and neuronal crest cells (to melanocytes) are 
derived from the neuroectoderm  (Li et al. 2020). Thus, skin 
hypopigmentation could accompany the brain phenotype, 
depending on when somatic variants arise.

Postzygotic pathogenic variants in MTOR cause FCD 
(MIM# 607341), hemimegalencephaly, and Smith–King-
smore syndrome (MIM# 616638). Among the 11 patients in 
this study, somatic MTOR variants were the most prevalent 
(n = 4, 36.3%), and among the four variants, three (Patients 

Fig. 3  Skin lesion photographs and brain magnetic resonance imag-
ing (MRI) studies of patients 5–11. a Hypopigmentation in the left 
leg of Patient 5 with a somatic RHOA variant. b, c Saggital and 
axial views of T2-weighted brain MRI, respectively. No laterality 
is observed. Hyperintensity with mild dilatation of ventricles and 
small cysts are observed. d Skin lesion of Patient 6 with a germline 
TFE3 variant. e, f Skin lesions of Patients 7 and 8, respectively, both 
with a germline USP9X variant. g, h Skin lesion and sagittal view 

of T2-weighted brain MRI of Patient 9 with a germline PHF6 vari-
ant. The patient’s skin showed hyperpigmentation rather than hypo-
pigmentation. Atrophy of the bridge capsules and superior cerebellar 
peduncles is observed. i Skin lesion of Patient 10 with a germline 
KCNQ5 variant. j, k Skin lesions and sagittal view of T2-weighted 
brain MRI of Patient 11. Brain MRI showed polymicrogyria, loss of 
white matter volume, and mildly enlarged lateral ventricles
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1–3) were exclusively observed only in skin DNA, indicating 
that the variants may have occurred later in the postzygotic 
period (after epidermal differentiation), thus, only affect-
ing the skin cells, while Patient 4 with Smith–Kingsmore 
syndrome had a variant in both skin and blood, indicating 
earlier occurrence in the postzygotic period (before epider-
mal differentiation). According to a review of Gordo et al. 
(2018), HI was observed in 14.8% (4/27) of patients with 
Smith–Kingsmore syndrome. Recently, MTOR-related HI in 
14 (19.7%) of 71 patients with pigmentary mosaicism was 
reported (Carmignac et al. 2021), indicating that MTOR is 
the most common cause of pigmentary mosaicism. MTOR 
variants are often mosaic; therefore, skin biopsy is highly 
recommended for a conclusive diagnosis. All MTOR variants 
detected in this study have been previously known, and are 
all registered in COSMIC database as pathogenic somatic 
variants in cancers. The c.4448G>A, p.(Cys1483Tyr) 
variant in Patient 1 has been recurrently reported and is 
implicated as a cause of hemimegalencephaly and FCD or 
Smith–Kingsmore syndrome (D’Gama et al. 2015; Gordo 
et al. 2018). The c.5930C>T, p. (Thr1977Ile) variant found 
in Patient 2 has also been frequently reported as a cause 
of FCD and megalencephaly with pigmentary mosaicism 
(Carmignac et al. 2021; Handoko et al. 2019; Mirzaa et al. 
2016). Interestingly, Handoko et al. (2019) confirmed that 
all four patients with c.5930C>T, p.(Thr1977Ile) showed 
cutaneous hypopigmentation along Blaschko’s lines. These 
two variants [c.4448G>A, p.(Cys1483Tyr) and c.5930C>T, 
p.(Thr1977Ile)] have been reported as either somatic or ger-
mline variant. The c.6644C>T, p.(Ser2215Phe) variant in 
Patient 3 has also been indicated as a cause of FCD or hemi-
megalencephaly (D’Gama et al. 2017; Moller et al. 2016), 
while the c.7292 T>C, p.(Leu2431Pro) variant in Patient 4 
has never been reported as the cause of such condition (pre-
viously reported only in cancer). Somatic MTOR variants 
were first described as the cause of FCD requiring brain sur-
gery to control epilepsy (Lim et al. 2015; Nakashima et al. 
2015). Three patients in our cohort with MTOR somatic 

variants (except patient 3) did not require brain surgery, 
indicating that such variants can cause a relatively mild 
epilepsy phenotype. The VAF of MTOR variants in skin 
lesions was approximately 10–30%, which is consistent with 
that of a previous report regardless of the disease sever-
ity (Carmignac et al. 2021). The VAF of MTOR variants 
in skin lesions was considerably higher than that in FCD 
and hemimegalencephaly lesions, and it is usually less than 
10% (sometimes 1–3% or less). This is advantageous for 
performing ES analysis of skin-derived DNA because deep 
sequencing may not be essential. As for patients with MTOR 
variants, mTOR inhibitors such as sirolimus and everolimus 
are potential treatment options.

Pigmentary mosaicism caused by somatic RHOA vari-
ants is usually associated with normal neurodevelopment, 
although apparent brain lesions can be detected on MRI, 
as in Patient 5 in this cohort (Vabres et al. 2019; Yigit et al. 
2020). Previous reports have included patients with clini-
cal manifestations compatible with this unique HI, but their 
genetic status was not confirmed (Inoue et al. 2015; Mateus 
et al. 2014). In two previous studies, the genetic cause of this 
type of HI in 9 of 11 patients (9/11) was a recurrent somatic 
RHOA variant, c.139G>A, p.(Glu47Lys), and is therefore 
called “RHOA-related mosaic ectodermal dysplasia” (Vabres 
et al. 2019; Yigit et al. 2020). RHOA variants are also fre-
quently registered in the COSMIC database.

Pathogenic germline variants were found in three 
X-linked genes, TFE3 (transcription factor E3), USP9X 
(ubiquitin-specific protease 9, MIM*300072), and PHF6 
(PHD finger protein 6, MIM*300414), which are consist-
ent with the association of HI with structural abnormalities 
of the X chromosome. Germline or somatic TFE3 variants 
cause intellectual disability with pigmentary mosaicism 
and storage disorder-like features in both males and females 
(Lehalle et al. 2020). TFE3 functions in the mechanistic 
target of rapamycin (mTOR) complex 1 signaling in the 
PIK3–AKT–mTOR pathway, which can explain the asso-
ciation of these variants with pigmentary mosaicism similar 

Table 3  Genes which can cause pigmentary mosaicism

pLI tolerance of a given gene to the loss of function, LOEUF loss-of-function observed/expected upper bound fraction, ExAC Exome Aggrega-
tion Consortium, XLD X-linked dominant, XLR X-linked recessive, AR autosomal recessive

RHOA MTOR TFE3 USP9X PHF6 KCNQ5 GTF3C5

Mis-Z score 3.36 7.02 2.15 6.41 2.28 3.32 0.77
pLI score 1 1 0.98 1 1 0.98 0
LOEUF 0.66 0.18 0.29 0.05 0.17 0.31 0.89
ExAC_pRec 0.1901 0.0000000000003 0.0262 0.0000000000236 0.0276 0.000464913 0.994
Inheritance De novo De novo XLD XLD XLD/XLR De novo AR
Somatic/ger-

mline
Somatic Somatic/Germline Somatic/Ger-

mline
Germline Germline Germline Germline

Type of skin 
pigmentation

Hypopigmenta-
tion

Hypopigmentation Hypopigmenta-
tion

Hypopigmentation Hyperpigmen-
tation

Hypopigmenta-
tion

Hypopigmen-
tation
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to MTOR variants. Lehalle et al. (2020) found pigmentary 
mosaicism to be present in the majority of patients with 
TFE3 mutations (71%,  12/17), including 40% of the males 
and 83% of the females. USP9X and PHF6 variants cause 
distinct neurodevelopmental disorders with congenital 
anomalies in both sexes. X-linked recessive (MIM# 300919) 
and dominant (MIM# 300968) intellectual developmental 
disorders are caused by USP9X variants, whereas Borje-
son–Forssman–Lehmann syndrome (BFLS, MIM# 301900) 
is caused by PHF6 variants. However, pigmentary mosai-
cism was only seen in female patients with abnormalities 
in these two genes (Jolly et al. 2020; Reijnders et al. 2016; 
Zhang et al. 2019). The rates of skin pigment complica-
tion in females related to USP9X and PHF6 variants were 
65% (11/17) (Reijnders et al. 2016) and 77% (10/13) (Zhang 
et al. 2019), respectively. Skin lesions in females with aber-
rant USP9X and PHF6 manifest as hypopigmentation and 
hyperpigmentation along Blaschko’s lines, respectively. 
USP9X plays an important role associated with mTOR in 
neural development both in humans and mice (Agrawal et al. 
2012; Murtaza et al. 2015; Reijnders et al. 2016), which 
may explain how this variant causes HI. PHF6 is implicated 
in chromatin remodeling by interacting with the SWI/SNF 
complex (Zhang et al. 2019; Zweier et al. 2013), the variants 
of which are occasionally found in patients with Coffin–Siris 
syndrome (MIM# 135900) (Zweier et al. 2013). In addition, 
pathogenic variants in USP9X and PHF6 are also found in 
cancers such as pediatric leukemia (Ma et al. 2018), which 
is similar to the reports of MTOR and RHOA variants being 
frequently detected in various cancers (Kilian et al. 2021; 
Mirzaa and Poduri 2014; Zou et al. 2020).

Germline KCNQ5 variants cause intellectual disability 
or epilepsy (Lehman et al. 2017), and only a few individu-
als with de novo KCNQ5 variants have been reported. Skin 
hypopigmentation in Patient 10 with a de novo KCNQ5 vari-
ant is indeed a novel phenotypic feature, which has not previ-
ously been reported in association with KCNQ5 abnormality. 
Therefore, it remains uncertain whether the KCNQ5 variant 
is related to the skin phenotype. GTF3C5 (MIM*604890) 
which encodes general transcription factor IIIC subunit 
5 (GTF3C5), plays a crucial role in general transcription 
(Crepaldi et al. 2013); however, GTF3C5 abnormalities have 
never been reported in human diseases. Homozygous mutant 
Gtf3c5tm2a(KOMP)Wtsi mice exhibited complete preweaning 
lethality, while heterozygous mutant mice survived (Ayadi 
et al. 2012). The biallelic GTF3C5 variants may potentially 
cause skin hypopigmentation based on the high probability 
score (0.99) of gene intolerance to the biallelic loss of func-
tion (Lek et al. 2016). Further studies involving patients with 
GTF3C5 variants are required to confirm the association of 
GTF3C5 with this human ectodermal disorder. It is impor-
tant to study and analyze more patients harboring KCNQ5 

and GTF3C5 variants and collect further evidence before 
establishing any conclusion.

HI is thought to be caused by somatic chromosomal struc-
tural abnormalities, but these structural abnormalities have 
been inconsistent, and genetic testing for diagnosis has not 
been actively performed until recently. Moreover, HI has 
sometimes been considered as a benign phenotype rather 
than a disease (Ruggieri and Pavone 2000; Sybert 1994). 
However, the high discovery rate of monogenic causes of 
HI prompts us to perform ES for patients with pigmentary 
mosaicism, preferably by collecting skin samples, as this 
may lead to the optimal therapeutic approaches in the future. 
Although using skin tissue instead of brain tissue may allow 
regular ES with 40–70× read coverage for reliably detecting 
somatic mosaic variants with > 4% of VAF in pigmentary 
mosaicism, higher read coverage in the NGS analysis is bet-
ter to avoid missing low-prevalent (≦ 4%) variants.
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