
Vol.:(0123456789)1 3

Human Genetics (2022) 141:1529–1544 
https://doi.org/10.1007/s00439-021-02393-x

REVIEW

The promise of automated machine learning for the genetic analysis 
of complex traits

Elisabetta Manduchi1,2   · Joseph D. Romano1   · Jason H. Moore1,2 

Received: 21 April 2021 / Accepted: 22 October 2021 / Published online: 28 October 2021 
© The Author(s) 2021

Abstract
The genetic analysis of complex traits has been dominated by parametric statistical methods due to their theoretical proper-
ties, ease of use, computational efficiency, and intuitive interpretation. However, there are likely to be patterns arising from 
complex genetic architectures which are more easily detected and modeled using machine learning methods. Unfortunately, 
selecting the right machine learning algorithm and tuning its hyperparameters can be daunting for experts and non-experts 
alike. The goal of automated machine learning (AutoML) is to let a computer algorithm identify the right algorithms and 
hyperparameters thus taking the guesswork out of the optimization process. We review the promises and challenges of 
AutoML for the genetic analysis of complex traits and give an overview of several approaches and some example applica-
tions to omics data. It is our hope that this review will motivate studies to develop and evaluate novel AutoML methods and 
software in the genetics and genomics space. The promise of AutoML is to enable anyone, regardless of training or expertise, 
to apply machine learning as part of their genetic analysis strategy.

Outline

We provide a review of current Automated Machine Learn-
ing (AutoML) systems with a special emphasis on their 
applicability to the biomedical domain and, in particular, 
on omics and genetic applications. The content is organ-
ized as follows. In the next section, we describe Machine 
Learning (ML) in general, including open-source ML tools, 
feature importance, and biomedical applications. In the fol-
lowing section, we focus on AutoML, describing first three 
widely used open-source solutions (Auto-WEKA, Auto-
sklearn, and TPOT). Then, we present AutoML solutions 
that include neural networks or allow for neural architecture 
search. Finally, we briefly discuss a few additional systems, 
including commercial ones. The next section focuses on 
TPOT applications to omics, since this tool has been particu-
larly used in this context and some of its refinements were 
motivated by this type of applications. We conclude in the 
next section with a discussion of promises and challenges 

of AutoML in the genetics domain, including the typically 
large dimensionality of genetics data and class imbalance.

Machine learning

Generalities

Machine Learning (ML) refers to approaches by which com-
puters learn from data to accomplish certain tasks, without 
a programmer having to specify every single algorithmic 
instruction. In supervised ML, which will be the focus of 
what follows, the task is to learn a predictive model from 
training data that provide examples of inputs and their cor-
responding outputs. This means learning a general rule that 
can then be used to predict the outputs for new inputs of the 
same type as the training data. Each input consists of the 
values that a collection of features (the independent/explana-
tory variables, also referred to as predictors) have for a par-
ticular sample (e.g. an individual or subject, also referred 
to as observation), and the output is the value of a target 
outcome of interest (the dependent/response variable) for 
that sample. Inputs can be represented by a matrix X whose 
columns correspond to p features and rows to n samples 
and the output by a vector y of n target values for those sam-
ples. In a classification problem the target can take finitely 
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many possible values (class labels), whereas in a regression 
problem, the target is continuous. Any given algorithm in 
ML can have parameters and hyperparameters. Parameters 
are internal configuration variables learned from the data 
during training. For example, the coefficients in a linear or 
logistic regression model are parameters for that model. 
Hyperparameters are instead values that are specified before 
the learning starts. For example, in regularized regression, a 
penalty hyperparameter λ is specified to discourage complex 
models; in a random forest (RF), the number of trees is a 
hyperparameter, etc.

There are several metrics that can be used to assess the 
effectiveness of a predictive model. In classification prob-
lems, a frequently used metric is the accuracy (i.e., the 
percentage of correct predictions) or its variants which are 
appropriate in the presence of imbalance between the num-
ber of samples from the different classes, such as the bal-
anced accuracy. Metrics frequently used for regression prob-
lems include the root mean squared error (RMSE), i.e. the 
square root of the average squared difference between true 
and predicted values, and the coefficient of determination, 
which reflects the proportion of target variance explained 
by the model. But there are many other choices of metrics 
that can be selected when optimizing algorithms and hyper-
parameters in an ML application (Kuhn and Johnson 2013; 
Zheng 2015). An ML model’s performance should be evalu-
ated by computing its score for the chosen metric on a data 
set separate from that used for training. The score on the 
training set is not a good indicator of the generalizability 
of the learned model as it could be affected by overfitting, a 
phenomenon by which the model has adapted to character-
istics which are specific to the training set. Thus, the typical 
flow is to use a training set to learn the model parameters, 
i.e. to fit the model, and then to assess the model perfor-
mance on a hold-out testing set, with samples drawn from 

the same population. Often, it is desirable to tune the choice 
of algorithm and its hyperparameters. This can be done 
using an independent validation set, with samples drawn 
from the same population as the training set. Essentially, for 
each of different choices of algorithm and of its hyperparam-
eter settings, one fits the model with those selections to the 
training set and then evaluates its performance on the valida-
tion set. The model with the choices that optimize perfor-
mance on the validation set is then selected and evaluated on 
the hold-out testing set. In practice, more complex schemes 
are employed. For example, a common approach is k-fold 
cross-validation (CV), where the input data are randomly 
partitioned into k equal sized subsets. For each of different 
choices of algorithm and of its hyperparameter settings, in 
turn one of the subsets serves as the validation set and the 
model is fit to the union of the remaining k – 1 subsets and 
evaluated on the validation set. Then, the selection yielding 
the best average performance across the k folds is adopted 
and the corresponding model is fit to the entire training set 
and evaluated on a hold-out testing set (see Fig. 1).

There are several steps involved in setting up a full ML 
solution for a given task, from pre-processing to predictive 
model generation. First, the data must be cleaned as appro-
priate; this includes decisions on how to handle missing 
values, how to encode nominal variables, etc. Then, prior to 
running a classifier or regressor ML algorithm, one needs 
to decide whether to use all or a subset of the features and, 
in the latter case, what algorithm to use to select such fea-
tures. Moreover, one needs to decide on possible transforma-
tions to apply to the features and creation of new features, 
which is referred to as feature engineering. Thus, in effect, 
the typical solution consists of a pipeline of feature selec-
tor, feature transformation, and estimator algorithms (clas-
sifiers or regressors), where the output of a step becomes 
the input of the following step. Each pipeline could involve 
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Fig. 1   Flow for k-fold CV on algorithm/hyperparameter selection and evaluation. Ai indicates the selection of an algorithm with specified hyper-
parameters
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more than one feature selector, feature transformer, and esti-
mator. Indeed, multiple pipelines could be combined in a 
workflow, yielding an even more complex architecture. The 
ultimate goal is to obtain a solution with good predictive 
performance, but at the same time there is a tradeoff between 
complexity and interpretability; a simpler solution may be 
preferable to a very complex one if the latter is only slightly 
better in terms of performance. Thus, many decisions must 
be made, different options assessed (including hyperparam-
eter settings), and in general, the process is labor intensive 
and requires considerable domain expertise.

Open‑source software

Along with scientific software used in other domains, ML 
has benefitted substantially from the “free and open-source 
software” (FOSS) movement. “Free” software (or libre soft-
ware) is computer software that can be used for any purpose 
without restrictions, including modifying and/or redistrib-
uting the software. “Open-source” specifically refers to 
making the source code for the software publicly available, 
either by distributing the software directly as source code 
at no cost, or by maintaining a separate source code reposi-
tory (e.g., GitHub, Sourceforge, or similar) that the public 
can use to browse the source code directly through a web 
browser or other interfaces. Most popular ML software today 
is open-source, and even many ML frameworks developed 
by large corporations are released as open-source and devel-
oped publicly, often allowing for external contributions and 
improvements from end-users.

WEKA (Frank et al. 2016) is one of the earliest open-
source ML software still in common use, originally devel-
oped in 1993 at the University of Waikato. WEKA supports 
classification, regression, pre-processing, and other common 
data mining tasks, and provides a graphical user interface 
catered towards users with little to no programming expe-
rience or users who prefer not to work in a command line 
environment. Deep learning (described below) is supported 
via the Deeplearning4j library for the Java programming 
language.

Scikit-learn (Pedregosa et al. 2011) is one of the most 
popular ML libraries and acting as one of the main interfaces 
for ML in the Python programming language. Scikit-learn 
focuses on providing a common, easy-to-use application pro-
gramming interface (API) for a wide range of ML tasks, and 
supports advanced features including pipeline construction, 
semi-supervised learning, and others. Many other ML tool-
kits imitate or extend the scikit-learn API due to its familiar-
ity and simplicity.

Several open-source programming languages have 
ML features implemented either as part of the core lan-
guage or in the language’s standard library. The R pro-
gramming language—designed mainly for statistical 

computing—implements a number of ML algorithms as core 
functions that are actively loaded at all times. For example, 
the k-nearest neighbors algorithm can be trained on a dataset 
by calling knn(X_train, X_test, y_train), where X and y are 
features and targets (class labels), respectively, and ‘train’ 
and ‘test’ refer to training and testing datasets, respectively 
(note that no import statements or other external libraries 
are needed). The Julia programming language offers similar 
basic functionality as part of the language’s standard library, 
but most Julia users apply ML algorithms using the MLJ.jl 
library, developed and released as free and open-source by 
the Alan Turing Institute.

Feature importance

After a predictive model has been built, it is usually of inter-
est to explore which features are driving the model. There 
are various approaches to rank features in terms of their 
importance for the model. Some estimators naturally yield 
quantities that can serve this purpose. For example, the coef-
ficients of a linear or logistic regression model reflect feature 
importance when the features have the same scale; in deci-
sion trees (and their ensembles, such as RFs), the criteria 
used to select the split points yield importance scores. A 
general method which can be employed with any estimator 
(i.e., model-agnostic) is permutation importance (see https://​
github.​com/​TeamHG-​Memex/​eli5 for an implementation). 
The idea is to measure feature importance for each feature 
by examining how much the selected performance score 
(e.g., accuracy, or RMSE, etc.) degrades when that feature 
is not available. However, removing one feature at a time, 
retraining the model, and computing the new score would 
be too intensive computationally. Instead, after the model 
is fit, for each feature, its values in the hold-out testing set 
are permuted and the model evaluated on the resulting set 
(typically multiple permutations are applied and the result-
ing scores averaged). Essentially, instead of removing that 
feature, one replaces it by random noise. Features can then 
be ranked according to how much worse performance on the 
permuted set is as compared to performance on the unper-
muted set. We note that this approach should be used with 
care, as discussed in Molnar et al. (2021). For example, if 
features are correlated, permuting a feature could produce 
unrealistic data instances which could lead to misleading 
results. The effects of breaking feature dependencies in 
various model setups are explored in Hooker et al. (2021) 
and alternative approaches are discussed, which, however, 
require more computation. Another point to keep in mind to 
avoid misleading interpretations, is that permutation impor-
tance does not separate between main and interaction effects, 
but reflects both the importance of a feature as well as that 
of its interactions with the other features (Casalicchio et al. 
2019; Molnar et al. 2021).

https://github.com/TeamHG-Memex/eli5
https://github.com/TeamHG-Memex/eli5
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Permutation importance measures the overall relevance 
of a feature to a model; it is a so-called ‘global’ method. 
However, it is also of interest to examine how each feature 
contributes to the individual predictions. This is particularly 
relevant in the context of precision medicine and when there 
is heterogeneity among subjects (i.e., when different features 
are responsible for the same outcome in different subjects). 
Approaches have recently been developed with this goal in 
mind; these are termed ‘local’ methods. For example, SHAP 
(Lundberg and Lee 2017) are game-theory-derived metrics 
indicating, for each sample, how much each feature contrib-
uted to the model prediction for that sample. These values 
can also be summarized across samples to rank features 
according to their overall contribution to all predictions. 
SHAP values need to be used with care too. For example, 
KernelSHAP, a model-agnostic method to compute them, 
ignores feature dependencies. TreeSHAP, a method to com-
pute SHAP values for tree-based models, does not have this 
problem but could assign nonzero values to features that 
have no influence on the prediction.

Feature importance falls within the umbrella of interpret-
ability in ML, a relevant and complex research area. There 
are other model-agnostic global and local methods besides 
those mentioned above. An overview of these and a guide to 
interpretable ML in general is provided by Molnar (2021).

Biomedical applications

ML approaches are now routinely used in biomedical appli-
cations, as an alternative or a complement to statistical 
approaches. This includes applications leveraging omics 
data. For example, Bazaga et al. (2020) utilize multiple 
ML algorithms to build drug-target prediction models for a 
variety of cancer types. The features include genetic muta-
tions, gene expression, gene essentiality, and gene interac-
tions. The resulting models are then applied to more than 
15,000 protein coding genes to identify novel cancer type-
specific drug-target candidates. In Adams et al. (2020), an 
RF-driven method is applied to a genome-wide association 
study (GWAS) to identify epistasis-networks that may pro-
vide insights into the risk for on-statin major adverse cardio-
vascular events. More generally, RFs have been an effective 
ML approach to identify epistasis, i.e. interactions between 
two or more genetic loci which are associated to a given 
phenotype (Orlenko and Moore 2021). Another type of ML 
application specific to genomics consists of building classi-
fiers for deleterious versus non-deleterious genetic variants. 
For example, CADD (Rentzsch et al. 2019) is based on a 
logistic regression model trained on more than 30 million 
variants and leveraging features from 60 different annota-
tions, including conservation, epigenetic modifications, 
functional predictions, and genetic context. Using this model 
CADD then generated deleteriousness scores for variants 

throughout the human genome reference assembly. Another 
example is GWAVA (Ritchie et al. 2014), which employs 
RFs trained on functional genomics features to build a vari-
ant prioritization tool for non-coding variants. RFs are also 
used in TraP (Gelfman et al. 2017) to build an annotator 
for pathogenic non-coding variants in genic regions, and in 
REVEL (Ioannidis et al. 2016), to predict the pathogenicity 
of rare missense variants.

One important consideration for ML applications to 
omics data is the ‘big p, little n’ (p >  > n) issue. In the omics 
context, unlike the more traditional tabular data to which 
ML is often applied, the number p of predictors is usually 
much larger than the number of observations. This curse of 
dimensionality makes it challenging to have a sufficiently 
representative sample of the p-dimensional feature domain, 
needed to build a good predictive model which does not 
suffer from overfitting. Thus, applications of ML to omics 
typically require pre-processing steps to reduce the number 
of predictors in the input to the ML. These include feature 
selection, based on expert knowledge or computationally 
based, and feature transformations aimed at dimensionality 
reduction.

Automated machine learning

According to the No Free Lunch Theorems (Wolpert 1996; 
Wolpert and Macready 1997), there is no single ML algo-
rithm that works well on all tasks. Every aspect of an ML 
application needs careful configuration and, as we have 
indicated above, setting up a pipeline requires considerable 
ML experience to best tune it for the specific task at hand. 
Therefore, methods which can assist in the design and opti-
mization of ML pipelines, referred to as Automated Machine 
Learning (AutoML), are particularly appealing to biomedi-
cal investigators with limited data science expertise. There 
are approaches aimed at automating single tasks of an ML 
pipeline, such as feature engineering or hyperparameter opti-
mization for a specified algorithm, but AutoML methods 
that can handle multiple tasks are particularly appealing 
as they provide off-the-shelf options for non-expert users. 
Below, we discuss several AutoML approaches, summarized 
in Table 1. For an in-depth description of fundamentals and 
an extensive review of state-of-the-art AutoML methods, we 
refer the reader to Hutter et al. (2019) and, with a healthcare 
perspective, to Waring et al. (2020).

Open‑source AutoML pipeline optimization 
methods

Here, we adopt the terminology by Waring et al. (2020) 
and refer to pipeline optimization AutoML as those meth-
ods which address more than one task in an ML pipeline. 
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The three most popular open-source pipeline optimiza-
tion AutoML systems to date are Auto-WEKA (Thornton 
et al. 2013; Kotthoff et al. 2019), built on top of the WEKA 
package; Auto-sklearn (Feurer et al. 2015), built on top of 
the scikit-learn package; and Tree-based Pipeline Optimi-
zation Tool (TPOT) (Olson et al. 2016; Olson and Moore 
2019), which also leverages scikit-learn. All three of these 
approaches aim to solve the Combined Algorithm Selection 
and Hyperparameter (CASH) optimization problem. The 
idea is to also model the choices of algorithms for pipe-
line steps as hyperparameters and then consider conditional 
dependencies between hyperparameters, i.e., a hyperparam-
eter may be relevant only when other hyperparameters have 
certain values. For example, if the hyperparameter ‘estima-
tor algorithm’ takes the value ‘random forest’, then the RF 
hyperparameters become relevant. Thus, the entire pipeline 
optimization task can be formulated in terms of a structured 
hyperparameter optimization problem. Auto-WEKA and 
Auto-sklearn optimize pipelines with a fixed architecture, 
in terms of the number and type of pipeline steps, whereas 
TPOT supports arbitrarily sized and complex pipelines by 
leveraging genetic programming as we illustrate below. Both 
Auto-WEKA and Auto-sklearn are based on Bayesian opti-
mization (Brochu et al. 2010). Bayesian optimization aims to 
find the optimal architecture quickly without reaching a pre-
mature sub-optimal architecture, by trading off exploration 
of new (hence high-uncertainty) regions of the search space 
with exploitation of known good regions. This is achieved by 
generating a probabilistic model capturing the relationship 
between hyperparameter settings and performance, using 
this model to select the next most promising hyperparameter 
setting, updating the model with the result from evaluation 
at the new setting, and iterating.

Auto‑WEKA

Auto-WEKA is an Auto ML extension built on top of 
WEKA (discussed above), designed primarily for users 
without the technical expertise to know which particular 

ML algorithm or hyperparameter settings are ideal for the 
specific task they are performing. Auto-WEKA is a level 
of abstraction that treats the entirety of WEKA as a single 
ML algorithm comprised of other, specific ML algorithms:

Briefly, the goal of Auto-WEKA is to find the correct 
algorithm A(i) ∈ A—and the correct hyperparameter set-
tings for that algorithm—resulting in the best CV perfor-
mance on a user-provided training data set. This is done 
using the previously mentioned Bayesian optimization 
approach for the CASH problem. A Bayesian approach 
provides the flexibility for specific applications to choose 
their own optimization model, but an effective one should 
be able to handle the tradeoff between model complex-
ity and computational performance, while simultaneously 
choosing sensible prior distributions and initial param-
eterizations. The specific Bayesian optimization algorithm 
used in Auto-WEKA is Sequential Model-based Algorithm 
Configuration (SMAC), which is one of several evaluated 
during the project’s original development. From a high 
level, SMAC iteratively selects candidate algorithms for 
evaluation and uses both prior knowledge (based on simi-
lar problems) and results from previous iterations to pro-
pose new sets of hyperparameters for them that are likely 
to perform well on the learning task. At the beginning 
of an experiment, SMAC evaluates all candidate algo-
rithms to identify their best initial parameter set � based 
on their expected positive improvement, which is computed 
by optimizing the expectation of a loss function defined 
over the means and standard deviations of the parameters 
in � . At each iteration, this value is maximized based on 
the current model, the models are evaluated using these 
new optimal parameters, the average CV loss of those 
parameters on a training data set is computed, and the 
model is updated based on the actual improved value. Spe-
cifically, this expectation is defined over M

L
 —a predic-

tive model for the best algorithm along with its optimal 

A = {A(1),… ,A(k)}.

Table 1   For each of the 
AutoML systems that we 
discussed, the architecture 
type of the resulting pipeline 
and optimization method are 
indicated together with the type 
of applications described in this 
work

BO Bayesian optimization, B biomedical, not omics, O omics, but not genomics, G genomics

System Pipeline architecture Optimization method Application type

AutoGluon Layers Stacked Ensenble B
AutoPrognosis Ensemble BO B
Auto-sklearn Fixed CASH via BO (SMAC) B
Auto-WEKA Fixed (and simple) CASH via BO (SMAC) B
H2O Ensemble BO and SuperLearner
Model search NN NAS via GP
PennAI Fixed (and simple) Recommender B
TPOT Flexible CASH via GP B, O, G
TPOT-NN NN GP
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hyperparameter configuration, which is implemented in 
SMAC as a random forest.

In the case of Auto-WEKA, the candidate algorithms con-
sist of 39 (as of Auto-WEKA 2.0’s initial release) algorithms 
contained within WEKA, each of which falls into one of 
4 categories: learners, ensemble methods, meta-methods, 
and attribute selection methods (i.e., feature selectors). A 
complete list of the candidate algorithms is given in Kot-
thoff et al. (2017). “Prior knowledge” consists of a database 
of candidate algorithms and hyperparameter configurations 
previously evaluated within the same run of Auto-WEKA, 
and accordingly the estimation capacity of SMAC improves 
at each iteration of the algorithm’s main loop. At the begin-
ning of an Auto-WEKA experiment, all parameters for all 
algorithms are assigned either a uniform or log-uniform 
prior (as semantically appropriate for each algorithm). Com-
prehensive details on SMAC and how it is used in conjunc-
tion with Auto-WEKA are given in Hutter et al. (2011) and 
Kotthoff et al. (2019). When run on a set of training data, 
the output of Auto-WEKA is a trained model comprised 
of a specific ML algorithm with hyperparameters identified 
by SMAC. For example, this might consist of an RF for 
the algorithm and certain values for number of iterations, 
minimum number of instances per leaf, maximum depth of 
trees, and others as the optimized hyperparameters (these 
are specific to RF, and would change if a different ML algo-
rithm was selected). In contrast, competing AutoML soft-
ware implementations (such as Auto-sklearn and TPOT; see 
below) often produce pipelines comprising multiple steps 
(data preprocessors, estimators, and meta-operators) that 
manipulate the data in various ways that are often crucial in 
real-world applications of ML.

Biomedical applications of Auto-WEKA currently in the 
literature include using genotypes and biochemical labora-
tory values to predict liver fibrosis in patients with hepati-
tis C (Shousha et al. 2018), predicting functional outcome 
scores for brain hemorrhage patients using combined demo-
graphic, laboratory, and radiometric imaging data (Wang 
et al. 2019), and various applications in quantitative struc-
ture/activity relationship (QSAR) modeling (Nantasenamat 
et al. 2015).

Auto‑sklearn

Auto-sklearn, like Auto-WEKA, tackles the CASH prob-
lem using the SMAC Bayesian optimization method, but 
it combines it with an initial warm starting step to improve 
efficiency and a final (optional) ensemble step to improve 
performance and reduce overfitting. The warm starting step 
consists of initializing the Bayesian optimizer with hyperpa-
rameter settings based on meta-learning. More precisely, an 
a priori step, performed just once by the Auto-sklearn main-
tainers, uses Bayesian optimization to determine optimal 

settings for a large number of data sets in the OpenML 
repository (Vanschoren et al. 2014). Each data set in this 
repository is summarized by a set of meta-features, such 
as the number of data points, features, and classes, the data 
skewness, the entropy of the targets, etc. When Auto-sklearn 
is run on a new dataset, its meta-features are computed and 
the precomputed hyperparameter settings for the (25) most 
similar (based on meta-features) data sets in the repository 
are used to initialize the optimizer. Once warm started, the 
optimizer searches trough pipelines whose architecture con-
sists of zero or one feature preprocessors (feature selectors 
or transformers which change the set of input features), up 
to three data preprocessors (transformers which change the 
feature values) and an estimator. There are several possible 
choices for the algorithms for each of these steps drawn from 
scikit-learn. At the end of optimization an optional post hoc 
step allows the user to request, instead of the best pipeline 
from the optimizer, an ensemble of the pipelines stored dur-
ing optimization constructed using a method described in 
Caruana et al. (2004). When running Auto-sklearn, a user 
specifies the resource limits (memory and time) which is 
necessary, especially when working with large data sets. Of 
course, there is a tradeoff between resource limits and num-
ber of pipelines that can be tested.

Auto-sklearn has been applied very successfully to data 
sets from the ChaLearn AutoML challenges (Guyon et al. 
2019), winning in several phases of these challenges. A 
search on PubMed (http://​pubmed.​ncbi.​nlm.​nih.​gov) has 
yielded a few works employing Auto-sklearn in the biomedi-
cal context (Padmanabhan et al. 2019; Howard et al. 2020; 
Tran et al. 2020). We have not identified in the literature 
any Auto-sklearn application to omics data, likely due to 
the challenging size of these types of data sets. As progress 
is being made towards handling large data sets more effec-
tively, such as in the recent extension PoSH Auto-sklearn 
(Feurer et al. 2018), we expect to see the use of this system 
also in the omics field.

TPOT

Whereas Auto-WEKA and Auto-sklearn optimize pipelines 
with a fixed architecture, TPOT allows for arbitrarily sized 
ML pipelines. These pipelines involve operators (e.g. feature 
selectors, feature transformers, and ML estimators) drawn 
from scikit-learn and XGBoost (Chen and Guestrin 2016), 
as illustrated by the example in Fig. 2.

TPOT tackles the CASH problem using genetic program-
ming (GP). It starts by generating an initial population of N 
random pipelines (the population size N defaults to 100 but 
can be user-specified) and evaluates them using the aver-
age k-fold CV score on the input data set (k defaults to 5 
but can be user-specified), where the metric to be used for 
the score can be chosen from several available options. For 

http://pubmed.ncbi.nlm.nih.gov
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each of G generations (G defaults to 100 but can be user-
specified), the GP algorithm selects the top 20 pipelines in 
the current population according to a specific scheme (Deb 
et al. 2002) that aims at optimizing the average CV score and 
minimizing the complexity, i.e. the number of steps. These 
pipelines produce the next generation of the population via 
transformations that mimic genetics, such as point muta-
tions (random change of one of the pipeline operators) and 
cross-over of two pipelines (Fig. 3). At every generation, the 
algorithm updates a Pareto front of the pipelines discovered 
at any point in the GP run, where the Pareto front consists 
of those pipelines for which there is no other pipeline with 
both a better average CV score and a smaller complexity. 
This process iterates for the G generations, whereby add-
ing and tuning pipeline operators that improve the average 
CV score and pruning those that degrade it. At the end, the 
algorithm selects the pipeline from the Pareto front with the 
best average CV score as the optimized pipeline and retrains 
it on the entire data set (i.e., without CV splits). As indicated 
earlier, it is good practice to evaluate the score of this pipe-
line on a hold-out testing set. Typically, one approach is to 

split the original data set into two portions; one (e.g., 75%) 
to be used as input to TPOT, and the other (e.g., the remain-
ing 25%) as a hold-out set on which to assess the optimized 
pipeline. Actually, due to the stochasticity inherent to GP, it 
is also good practice to run TPOT multiple times with dif-
ferent such splits of the original data. Each such run yields 
a pipeline, and these pipelines can then be explored to get 
insights into the data. In particular, for each such pipeline, 
one can rank the features in terms of their importance, and 
the results can be combined across pipelines.

Since TPOT was first introduced in Olson et al. (2016), 
several specializations and extensions have been developed 
which were motivated by biomedical informatics applica-
tions. In Sohn et al. (2017), a specialized version of TPOT 
is introduced that focuses on genetic analysis studies, named 
TPOT-MDR, where the TPOT search space is constrained 
to utilize pipelines whose steps use some special operators. 
The main special operator is an implementation of Multi-
factor Dimensionality Reduction (MDR), a non-parametric 
method that combines two or more features to create a single 
feature that captures their interaction effects (Ritchie et al. 
2001) and is, therefore, particularly suited to study epista-
sis in genetic analyses. Another useful operator employed 
in TPOT-MDR pipelines is the Expert Knowledge Filter 
(EKF), which allows feature selection based on statistical 
or biological filters. This is particularly relevant for appli-
cations to data sets comprising a large number of features.

Scalability is an important consideration for the appli-
cability of AutoML to data sets stemming from the omics 
world. This has inspired two useful extensions of the stand-
ard TPOT framework that reduce TPOT computation time 
(Le et al. 2020). One is the Template which lets the user 
specify the architecture of pipelines to be searched by TPOT 
and imposes restrictions on which operator can be chosen 
at each node. The other is the Feature Set Selector (FSS), 
which is used in combination with Template, whereby at the 
very first stage of each pipeline FSS passes only a specific 
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Fig. 2   A hypothetical machine learning pipeline which could be 
discovered by TPOT. In the top branch of the pipeline, features are 
selected from a random forest (RF) analysis according to their impor-
tance scores and then subjected to a polynomial transformation. The 
transformed features are then analyzed using a k-nearest neighbors 
(kNN) algorithm with the output given to a decision tree (DT) as a 
new engineered feature. In the bottom branch, principal components 
(PCA) are analyzed by a support vector machine (SVM) with the out-
put given to the DT. The DT performs the final classification using 
the newly engineered features from the kNN and SVM
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Fig. 3   The essence of genetic programming-based optimization is 
the selection of good AutoML pipelines (parents) and the introduc-
tion of variability to generate new pipelines (children) for evaluation. 
On the left are two selected parental pipelines. In the first pipeline, 
features are selected according to their importance scores from a ran-
dom forest (RF) analysis and then given to a decision tree (DT) which 
performs the classification. The second pipeline performs a k-nearest 

neighbors (kNN) and gradient boosting (GB) analysis with the out-
put given to a naïve Bayes (NB) algorithm for classification. Two 
new pipelines are created by randomly swapping or recombining the 
RF and kNN algorithms and mutating the NB algorithm to a logis-
tic regression (LR) algorithm. This results in two new pipelines to be 
evaluated
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subset of the features onwards. This essentially corresponds 
to slicing a potentially large original data set into smaller 
ones allowing TPOT to identify the feature subset that opti-
mizes the k-fold CV score. Besides rendering the analyses of 
large data sets more feasible, the combination of Template 
and FSS also serves to generate more interpretable models.

Another extension of TPOT which was motivated by 
applications to biomedical informatics is the ability to adjust 
for covariates affecting features and/or target (resAdj TPOT). 
In Manduchi et al. (2020), an approach is presented to do 
this in a ‘leakage-free’ manner, meaning that the correction 
is applied in a way that prevents models built on the train-
ing part of a CV split from accessing information involv-
ing the validation part of the same split. Two other recent 
TPOT extensions are TPOT-NN, discussed below, and 
TPOT-cuML which provides a restricted configuration with 
GPU-accelerated estimators. Among the AutoML pipeline 
optimizers, TPOT has the most applications to date within 
the biomedical field, in particular omics applications, so we 
will discuss these in a separate section below.

Neural network AutoML

Traditionally, AutoML software tends to build ML pipe-
lines out of relatively simple candidate algorithms. This is 
due to various reasons, including the relative computational 
efficiency of training less complex models, portability of 
simple models to many domains, and sometimes ease of 
model introspection and interpretability. Despite these rea-
sons, there is increasing interest in using artificial neural 
networks (ANNs/NNs) within the context of AutoML (Men-
doza et al. 2019). NNs are mathematical approximations of 
biological neural networks, where sets of neurons (simple 
linear transformations composed with pointwise nonlineari-
ties called activation functions) act by accepting input from 
one or more data points or other neurons, and potentially 
propagating a signal to subsequent groups of neurons based 
on whether the inputs pass a threshold specified by the acti-
vation function. Neurons are organized into layers that are 
stacked in a serial configuration. Deep learning is a branch 
of ML that uses NNs with many stacked layers; often tens or 
hundreds of layers. Specific arrangements of neurons result 
in different NN architectures, each of which has various per-
formance advantages and disadvantages on certain tasks. 
NNs have exploded in popularity in recent decades, largely 
due to their ability to approximate any arbitrary function 
given sufficient size of the network, but also because com-
puters have reached processing speeds that can adequately 
deal with the very large numbers of tunable parameters these 
networks contain (billions, in some cases).

The significant flexibility of NN architectures allows for a 
more general AutoML paradigm to be used when compared 
to non-NN applications of AutoML. As covered above, most 

AutoML can be summarized as pipeline optimization, which 
itself consists of several subtasks, including hyperparameter 
optimization, feature selection, and others. AutoML soft-
ware that utilizes NNs can generally fall into two categories: 
(1) systems that aim to discover a larger NN architecture 
composed of smaller NN units, an approach known as Neu-
ral Architecture Search (NAS) (Elsken et al. 2019); and (2) 
systems that incorporate simpler, pre-specified NN architec-
tures (such as multilayer perceptrons) as individual operators 
within a larger ML pipeline. In either of these approaches, 
NN layers can simultaneously accomplish feature selec-
tion (either by ‘dropping out’ or filtering uninformative 
features, or by explicitly highlighting important features 
through attention mechanisms (Wang et al. 2017)), classifi-
cation/regression, dimensionality reduction, and many other 
tasks that usually need to be explicitly modeled in non-NN 
systems. A major benefit of NAS is that it can implicitly 
perform any of these during a single optimization problem. 
The actual search process of NAS can be accomplished in a 
number of ways, including via random search, evolutionary 
methods, Bayesian optimization, and others, which comprise 
some of the main differences between existing NN-based 
AutoML systems. The second (non-NAS) approach to NN-
based AutoML simply predefines neural networks, possibly 
with a dynamic number of layers and layer sizes encoded as 
hyperparameters.

There are several noteworthy AutoML systems that have 
successfully incorporated ANNs. Here, we provide a brief 
survey of some of these; we direct readers to (Mendoza 
et al. 2019) for a detailed technical analysis of some of 
these NN AutoML systems, as well as several others. Auto-
Gluon—which is discussed more extensively below—is a 
Python AutoML tool developed by Amazon Web Services 
that supports NAS, and employs an ensemble stacking and 
bootstrap aggregation approach to constructing its estima-
tors (Erickson et al. 2020). H2O, also discussed below, is a 
general-purpose AutoML system that uses a nearly identical 
approach to build estimators, and also supports NNs (spe-
cifically, a simple type of NN known as a multilayer per-
ceptron) through its included deep learning module (Candel 
and LeDell 2021). H2O’s deep learning capabilities have 
been used successfully within several biomedical studies, 
most notably in the context of predicting estrogen recep-
tor status using breast cancer metabolomics data, where the 
H2O deep learning approach outperformed a wide variety 
of alternate ML algorithms (Alakwaa et al. 2018). TPOT—
which was discussed above—contains a submodule, named 
TPOT-NN, that provides a flexible framework for defining 
new NN operators (Romano et al. 2021) that can be incor-
porated into AutoML pipelines aside non-NN operators sup-
ported by base-TPOT. TPOT-NN currently only provides 
NN implementations of logistic regression and multilayer 
perceptrons, but the developers have been testing complex 
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neural architectures, including convolutional neural net-
works (e.g., for image classification) and recurrent neural 
networks (e.g., for text classification or application to time 
series data). Furthermore, TPOT-NN provides tools for users 
to extend the software to make use of any arbitrary NN-
based operator that suits their needs.

Google has recently released a new NAS-based tool 
named Model Search, which is an open-source AutoML 
tool built on the neural computing library Tensorflow 
(which is, itself, another open-source software platform 
written by Google) that combines various strengths of pre-
vious AutoML systems. Briefly, Model Search’s strategy for 
identifying optimal architectures consists of training mul-
tiple candidate architectures in parallel, and the results for 
each candidate are saved in a database. The system then 
uses a heuristic search algorithm named beam search (Ow 
and Morton 1988) to compare and rank the results of all 
candidate models. The best model is then mutated, and the 
process is repeated for a number of cycles until the system 
reaches some stopping criterion. Overall, this approach is 
similar to TPOT/TPOT-NN, where the ranking and mutation 
strategy of Model Search is analogous to TPOT’s GP opti-
mization approach, but rather than constructing a pipeline 
from a pool of multi-purpose operators (which may consist 
of preprocessors, transformers, and a wide variety of ML 
algorithms), each of the blocks consists of a single neural 
network “motif” (e.g., a convolutional block, an LSTM 
block, a ResNet block, or others) that is composed into a 
larger neural network architecture. In other words, rather 
than a pipeline, Model Search finds a neural network archi-
tecture comprised of smaller blocks of neural network layers, 
potentially arranged in a branching tree-like configuration.

Several other examples of AutoML applications of NNs 
exist, but to lesser degrees of popularity. In general, NN 
applications within AutoML come with several important 
caveats. Due to the aforementioned large number of param-
eters, the time required to learn these NNs can be substan-
tially greater than when the AutoML software only consid-
ers simpler (i.e., non-NN) estimators. This is sometimes 
alleviated by performing training on computers with cer-
tain hardware that can accelerate the training process (e.g., 
using CUDA-enabled graphics processing units), but such 
computing resources are costly and may not be available to 
all users. Furthermore, the fact that NNs are challenging to 
introspect and interpret may make these applications unsuit-
able when it is important to understand why the AutoML 
system made specific predictions. For example, consider an 
AutoML analysis of genotype data, where the goal is to pre-
dict phenotypic outcomes using SNPs of possibly unknown 
effects as inputs. If the AutoML system performs exception-
ally well, the user may want to understand which SNPs are 
most predictive of the phenotypic outcome. With simpler 
ML building blocks (e.g., logistic regression, decision trees, 

etc.), it can be easy to interpret the contributions of these 
kinds of input features, but NNs could effectively obscure 
the effects of individual SNPs due to the complex nonlinear 
relationships between inputs and outputs of the network. 
Ultimately, these factors need to be considered on a case-
by-case basis, and new research is needed to potentially alle-
viate these shortcomings.

Other AutoML approaches

There are several other AutoML approaches, some of which 
we discuss in this section. We also point the interested read-
ers to MLPlan (Mohr et al. 2018), OBOE (Yang et al. 2019), 
and Microsoft’s AutoML projects that include FLAML 
(Wang et al. 2021) and NNI (https://​www.​micro​soft.​com/​
en-​us/​resea​rch/​proje​ct/​neural-​netwo​rk-​intel​ligen​ce/).

AutoGluon

Recently, Amazon has open-sourced an AutoML tool named 
AutoGluon (https://​auto.​gluon.​ai), for Text, Image, and Tab-
ular data. The AutoGluon Tabular (Erickson et al. 2020), 
which is the most relevant for applications of interest to this 
readership, does not focus on CASH optimization. Instead, 
it uses a custom set of base estimators (including RFs and 
NNs) in a multilayer stacked ensemble scheme. More pre-
cisely, in the base layer, these estimators are individually 
trained. Then, their aggregate predictions are added to the 
initial features and become the inputs of the next stacked 
layer, which consists of the same base estimators, and so 
on until the final step where an ensemble selection like that 
used in Auto-Sklearn (Caruana et al. 2004) is employed to 
aggregate the predictions from the last stacked layer in a 
weighted manner. AutoGluon automatically recognizes 
the data type for each feature and the type of prediction 
problem (e.g. regression, classification) and applies model-
agnostic pre-processing that transforms the inputs to all 
estimators followed by model-specific pre-processing that 
is only applied to the inputs used in a particular estimator. 
Moreover, the layer-wise training is done in such a way to 
obtain high-quality data within an allotted time constraint. 
AutoGluon first estimates the required training time for each 
estimator in a layer and if this exceeds the remaining time 
for that layer (based on the allotted time constraint), it skips 
to the next layer. Base estimators have a predefined order so 
that the more reliable and less expensive models are trained 
prior to the less reliable and more expensive ones. Overfit-
ting is mitigated throughout via a careful approach termed 
‘repeated k-fold ensemble bagging’ which utilizes all the 
available data for both training and validation, ensuring that 
the higher layer models are only trained upon lower layer 
validation predictions. AutoGluon is among the methods 
evaluated by Seo et al. (2021) for forecasting the walking 

https://www.microsoft.com/en-us/research/project/neural-network-intelligence/
https://www.microsoft.com/en-us/research/project/neural-network-intelligence/
https://auto.gluon.ai
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assistance rehabilitation level of stroke patients based on 82 
features in 6 categories (anthropometry, stroke, blood tests, 
functional assessment, biosignal ward, and disease). We are 
not aware of omics applications of AutoGluon to date, prob-
ably due to its relatively recent release, but it is a promising 
method for this field.

AutoPrognosis

AutoPrognosis is an autoML system tailored to clinical 
prognosis and able to handle a diversity of clinical data types 
(including longitudinal and survival data). The approach 
uses an advanced Bayesian optimization technique to design 
a prognostic model consisting of a weighted ensemble of ML 
pipelines (Alaa and van der Schaar 2018a). The system also 
provides explanations of its predictions in the form of logical 
association rules linking patients’ features to predicted risk 
strata. AutoPrognosis was used (Alaa et al. 2019) to develop 
a cardiovascular disease risk predictor based on ~ 500 fea-
tures, using a study of 423,604 UK Biobank (Bycroft et al. 
2018) participants. Another application was prediction of 
short-term survival of cystic fibrosis (CF) patients using data 
from the UK CF registry (Alaa and van der Schaar 2018b).

H2O

H2O is a commercial entity providing cloud-based machine 
learning services. Components of their software are freely 
available and open-source including software for AutoML. 
The H2O AutoML software includes a grid search and 
Bayesian optimization algorithms for hyperparameter tun-
ing and the use of the Super Learner algorithm (van der 
Laan et al. 2007) which combines multiple machine learning 
algorithms as an ensemble for prediction (LeDell and Poirier 
2020). Super Learner is more extensively discussed below.

H2O, Auto-WEKA, Auto-sklearn, and TPOT are part 
of an open-source, extensible, and ongoing benchmark for 
AutoML frameworks publishing online the latest results on 
the performance of these tools on public datasets (Gijsbers 
et al. 2019).

PennAI

PennAI was designed as an accessible and user-friendly 
AutoML software package for non-experts (Olson et al. 
2018). It features the scikit-learn library for machine learn-
ing, a controller for launching jobs, a database for storing 
machine learning results as a memory of the system, a 
singular-value decomposition (SVD) algorithm-based rec-
ommender system, and a user-friendly interface accessible 
via web browser. The recommender system analyzes previ-
ous machine learning results from the database and auto-
matically launches and runs new analyses. PennAI has been 

shown to be competitive with Auto-Sklearn and HyperOpt, 
an automated hyperparameter tuner (Bergstra et al. 2015; 
Komer et al. 2019). PennAI has been applied to biomedical 
data in (La Cava et al. 2020). We are not aware of any omics 
applications of PennAI.

TPOT omics applications

TPOT has been applied in several omics contexts. Tran-
scriptomics was one of the motivations for the FSS and 
Template extensions described above and a first applica-
tion to RNAseq data from individuals with or without 
major depressive disorder was presented in that paper (Le 
et al. 2020). In Manduchi et al. (2020), two more extensive 
transcriptomics applications can be found. The first used 
a toxicogenomics Affymetrics microarray data set (1693 
features and 933 samples) to build models leading to the 
identification of pathways and genes whose expression is 
associated with creatinine levels in rat kidney, after utiliz-
ing the covariate adjustment extension introduced in that 
paper to remove confounding effects such as study batch, 
compound treatment, dose, and sacrifice time. The second 
used an RNAseq expression data set (4952 features and 
1072 samples) to build models leading to the identification 
of pathways associated with differential expression between 
schizophrenic and control individuals. Interestingly, the lat-
ter yielded known pathways which could not be detected by 
the more popular gene set enrichment tool GSEA (Subra-
manian et al. 2005).

Metabolomics is another area where TPOT has been 
successfully applied. The first application in this field was 
presented in Orlenko et al. (2018) to study type 2 diabetes 
patients with glycemic control exposed to metformin mono-
therapy as compared to matched healthy controls. In a sec-
ond metabolomics TPOT application, described in Orlenko 
et al. (2020), a cohort of 925 patients is analyzed using 73 
metabolic and 27 demographic and clinical features with 
respect to an endpoint of obstructive, non-obstructive, and 
no Coronary Artery Disease (CAD). Interestingly, in this 
work, the pipeline discovered by TPOT as having the best 
classification performance (see Fig. 4) includes the Bernoulli 
Naïve Bayes classifier. The latter is typically employed in 
text analyses for spam detection and is rarely considered for 
biomedical predictive analyses, so it would unlikely be used 
in a manually configured ML pipeline for this task. The most 
recent metabolomics application of TPOT utilizes > 500 
measurements to build predictive models of early childhood 
caries, in Heimisdottir et al. (2021).

As for genomics, besides applications of TPOT (Olson 
et al. 2016) and TPOT-MDR (Sohn et al. 2017) to a data 
set extracted from a GWAS on prostate cancer aggres-
siveness, more recently (Manduchi et al. 2021) TPOT and 
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resAdj TPOT were used to analyze a large CAD data set 
extracted from the UK Biobank, consisting of > 19,000 
cases and > 320,000 controls. Functional genomics data 
from Roadmap Epigenomics (Kundaje et al. 2015), previ-
ous results on putative CAD druggable genes (Tragante et al. 
2018), and an integrative network resource (https://​het.​io/) 
were employed as a biology-based feature filter. A 2-stage 
TPOT approach yielded the identification of a recurrent 
signal from a subset of 28 SNPs and feature importance 
analyses uncovered links between the top SNPs in this subset 
and genes related to atherosclerotic plaques and myocar-
dial infarction. We will return to this example below where 
we discuss the challenges presented to AutoML by full-
fledged GWAS data sets and potential directions for future 
development.

Radiomics has also seen an application where TPOT 
was employed to determine the prognosis of clear cell renal 
cell carcinoma prior to any invasive therapy on the basis 
of > 6000 MRI-based features in a cohort of 374 patients 
(Choi et al. 2021). Aside from the omics area, TPOT is suit-
able for other types of biomedical predictive tasks, includ-
ing public health, as recently highlighted in Manduchi and 
Moore (2021).

AutoML in genetics; promises, challenges, 
future directions

Potential applications of AutoML to genetics and genomics 
are not limited to predictive models for traits based on fea-
tures derived from genotyping assays. For example, AutoML 

could be used to possibly improve on methods such as the 
SNP deleteriousness scorers described earlier. However, the 
possibility of using AutoML to study phenotype-genotype 
relationships is probably the most appealing as it offers a 
means to automatically explore associations that go beyond 
those investigated with traditional GWAS approaches. It 
might be ideally suited to genetic analysis in the presence 
of epistasis, genetic heterogeneity, and gene–environment 
interactions. These are all genetic phenomena which tend to 
be non-additive thus requiring machine learning to comple-
ment parametric approaches. The challenge for modeling 
interactions and heterogeneity is knowing which pre-pro-
cessing and machine learning algorithms are the right ones 
to use. AutoML has the potential to improve machine learn-
ing results by making fewer assumptions about the right 
methods to use.

There are two main purposes that may drive ML, hence 
AutoML, applications in the study of phenotype–genotype 
relationships. In the first and most frequent scenario, the 
main goal is to identify the genes associated to a given trait. 
This includes applications where ML is directly used to dis-
cover relevant features (e.g., Adams et al. 2020; Manduchi 
et al. 2021), in which case the emphasis is on feature impor-
tance and, more generally, interpretability. It also includes 
applications where ML is used for post-GWAS prioritiza-
tion; we are not focusing on these but refer to (Nicholls et al. 
2020) for a review. In the second scenario, often motivated 
by precision medicine applications, the main interest is in 
the immediate output of the ML i.e., the predictive model 
itself (Li et al. 2021; Huang et al. 2021), in which case the 
emphasis is on predictive ability.
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Fig. 4   An optimal TPOT pipeline derived from the analysis of metab-
olomics data (Orlenko et al. 2020). In the first step of the pipeline, an 
Extra Trees analysis is performed with recursive feature elimination 
to select a subset of most informative features. These selected fea-
tures are then analyzed using Logistic Regression (LR) and the out-
put included in the data set as a newly engineered feature. This same 

process is then repeated using a multinomial naïve Bayes (MNB) 
algorithm. The selected and engineered features are then scaled by 
subtracting the mean and dividing by the standard deviation. These 
newly transformed features are then used to classify subjects as cases 
with coronary artery disease (CAD) or controls with no CAD using a 
Bernoulli Naïve Bayes (BNB) classifier

https://het.io/
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A GWAS data set can present many challenges to 
AutoML analyses. First, the search space is very large, both 
in terms of number of samples and features (SNPs). Sec-
ond, the signal is usually weak as common variants typically 
have small effect sizes. In fact, one of the reasons GWAS 
comprise very large numbers of samples (often combining 
several cohorts under the umbrella of consortia) is to pro-
vide enough power to detect such signals. Third, a trait may 
present genetic heterogeneity, meaning that different variants 
may be responsible for that trait in different individuals, and 
this increases the difficulty in detecting the signals. Finally, 
for binary traits, often there is a large imbalance between 
the number of cases and controls. This is, for example, 
true for data collected as part of national biobanks, like the 
UK Biobank (https://​www.​ukbio​bank.​ac.​uk/) or All of Us 
(https://​allof​us.​nih.​gov/). To date, applications of AutoML 
to GWAS data are very few and we have indicated those that 
we know of above. Computational feasibility is certainly a 
major hurdle. Reducing the number of SNPs is generally 
the first step and is also needed to handle the p >  > n issue. 
Systems like Auto-sklearn and TPOT comprise various 
(computationally based) feature selectors and transformers 
among the operators of the explored pipelines, and TPOT 
Template allows to specify that one of these operators should 
be the first step of any explored pipeline. In these pipelines, 
the dimensionality of what is passed to subsequent classi-
fier/regressor operators is, therefore, reduced. Moreover, the 
entire pipeline, including the feature selector/transformer 
step, is assessed via CV. However, with GWAS data contain-
ing millions of SNPs (the large majority of which have val-
ues in {0, 1, 2}), in current AutoML systems, it is still typi-
cally necessary to filter SNPs prior to running the program. 
Employing computationally based filters to this end may not 
be ideal, also because this process would not be leakage free. 
Filters based on domain-specific knowledge are independ-
ent of the training data and provide an attractive approach, 
especially when the emphasis is on interpretability. When 
using this type of filter, the goal is no longer to look for all 
possible signals of interest but to focus on a promising sub-
set. SNP filters can be based on biological knowledge, e.g. 
restricting the analyses to SNPs in pathways that are known 
to be relevant to the trait, as is done in Olson et al. (2016) 
and Sohn et al. (2017). Another approach, as in Manduchi 
et al. (2021), is to integrate various resources, including 
functional genomics data from tissues that are relevant to the 
trait as well as the computational scorers for variant deleteri-
ousness described above. But there are difficulties that come 
along with this. For example, for some traits, the culprit 
tissue(s) may not be fully known or the functional genomics 
data for known culprit tissues may not be available. Even 
when the tissues are known and the data are available, the 
reliability of the derived regulatory regions (e.g., enhanc-
ers) or SNP functional scores are tied to the computational 

methods used and it is possible that the trait-relevant SNPs 
are erroneously removed from the search space. In addition, 
filtering of SNPs as just described, typically still yields more 
features than an AutoML system can handle. To overcome 
this, the FSS option in TPOT can be valuable. For example, 
in Manduchi et al. (2021), SNP sets are created based on 
pairs of connected genes in the Hetionet integrative network 
and each searched pipeline starts with the step of select-
ing one of these sets. An additional advantage of using the 
FSS is that it is also a way of facilitating interpretability. 
More efficient handling in AutoML of feature selection and 
feature transformation approaches in general, represents an 
avenue for future developments to improve AutoML appli-
cability to genomics. Including selectors that are not based 
on main effects, like the RELIEFF based selectors (Konon-
enko et al. 1997) used in TPOT-MDR, is desirable to better 
explore potential epistatic effects. As for feature transforma-
tions, efficient incorporation within the AutoML of feature 
fusion approaches such as, for example, that discussed in 
Venugopalan et al. (2021), is another interesting area for 
development.

While filtering and engineering SNPs to reduce dimen-
sionality is an important area of investigation, it is important 
to note that there are machine learning algorithms such as 
deep learning neural networks and gradient boosting meth-
ods which can scale to genome-wide genetic and genomics 
data. These are especially attractive when the emphasis is 
on predictive ability. For example, deep learning has been 
applied to the analysis of GWAS data from studies of Alz-
heimer’s disease (Li et al. 2021). One of the challenges of 
deep learning is that there are a number of hyperparam-
eters which need to be tuned. The Auto-Net methods was 
designed to automate the construction and hyperparameter 
tuning of deep learning models (Mendoza et al. 2019). This 
approach is synergistic with Auto-Sklearn and, as discussed 
above, opens the door to AutoML using neural networks. 
The scaling of deep learning to GWAS and other genome-
wide studies with AutoML methods such as Auto-Net needs 
to be evaluated. Another approach to address scalability is 
to take advantage of an increasing number of cloud-based 
commercial AutoML solutions. These are quickly becom-
ing mature and are integrated with cloud-based high-perfor-
mance computing which makes scaling easy. The advantages 
and disadvantages of these solutions for AutoML analysis of 
genome-wide data should also be explored.

Even after filtering SNPs and grouping them in feature 
sets, the number of samples from GWAS is typically too 
large for current AutoML capabilities. In this case though, 
rather than filtering subjects, one could instead run the 
AutoML several times using different subsets of the subjects. 
For example, in Manduchi et al. (2021), TPOT is run mul-
tiple times, each time using all available cases and a subset 
of the controls of the same size as the cases, which also has 

https://www.ukbiobank.ac.uk/
https://allofus.nih.gov/
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the effect of balancing the input of each run. Other schemes 
are possible and could involve imbalance-aware approaches 
such as that described in Schubach et al. (2017), leverag-
ing packages like the Python imbalanced-learn (https://​
imbal​anced-​learn.​org/​stable/). Another interesting avenue 
to explore, for better tailoring of AutoML to genomics in 
view of large sample sizes, is incorporation of approaches 
like FABOLAS (Klein et al. 2017), a Bayesian optimization 
method that evaluates models on subsets of the data to learn 
good hyperparameter settings, aiming to assess configura-
tions that yield, per time spent, the most information about 
the globally best hyperparameters for the full dataset.

We note that, even with SNP filtering and multiple runs 
on subsets of the samples, the computational resource 
requirements can be demanding and having the availability 
of a computer cluster for parallel runs of the AutoML is 
highly desirable. As more progress is made to leverage GPU 
for AutoML to improve scalability and GPU cost decrease, 
we expect analysis of GWAS data using these systems to 
become more common.

When a given AutoML is run multiple times, either for the 
reasons indicated in the previous example or simply due to 
inherent stochasticity (like in TPOT), multiple optimal pipe-
lines are generated. When the emphasis is on interpretability, 
feature importance can be computed for each such pipeline 
and the results combined to get insights. But it is also pos-
sible to combine these pipelines with ensemble methods, 
either simple approaches such as voting or more sophisti-
cated approaches such as Super Learner, so to obtain a sin-
gle model at the end, which may outperform the individual 
models upon which it is built. (This is useful both when the 
emphasis is on interpretability and predictive ability.) Super 
Learner is an ensemble-based algorithm that is particularly 
attractive for AutoML for two primary reasons. First, it is 
compatible with any arbitrary machine learning algorithm to 
comprise its individual components. Other ensemble meth-
ods often do not have this flexibility—for example, gradient 
tree boosting algorithms rely on individual learning func-
tions with differentiable losses (many sophisticated AutoML 
approaches generate learners that might not have computable 
gradients). Furthermore, there are often technical limitations 
related to the complexity of the individual candidate learn-
ers, such as AdaBoost relying on simple and quickly trained 
candidate learners that perform classification or regression 
only slightly better than average. Second, Super Learner is 
analytically known to (asymptotically) produce an ensemble 
learner that is as accurate as the best possible prediction 
algorithm. Briefly, Super Learner trains V arbitrary candi-
date learners, each on a collection of data with a different 
validation block of samples held out from the learning pro-
cess. Each candidate learner is then used to predict outcomes 
on samples from their individual validation blocks, and the 
overall body of predictions is then used to train a regression 

model that assigns relative weights to the predictions of each 
candidate algorithm. Super Learner—out of the context of 
AutoML—has been successfully used to a substantial degree 
in biomedical data science (Sinisi et al. 2007; van der Laan 
et al. 2007; Golmakani and Polley 2020). TPOT is currently 
in the process of developing an extension that combines 
individual AutoML pipelines into a Super Learner.

One of the important limitations of many machine learn-
ing methods and applications is that only one objective (e.g., 
classifier accuracy or area under the ROC curve) is used to 
evaluate the quality of the model. This may work well for 
some problems. However, there may be additional objec-
tives of importance for problems in genetic and genomics. 
For example, a machine learning model designed to iden-
tify genes representing new drug targets might care about 
whether there is evidence that the protein products are drug-
gable. A model with no druggable genes might predict a 
phenotype with a high accuracy but might not be useful or 
interesting from a pharmacology perspective. Fortunately, 
there are methods for assessing the quality of a model using 
multiple objectives. An example of a multi-objective algo-
rithm is Pareto optimization which ranks models according 
to two or more objectives. Models are referred to as Pareto 
optimal if one objective cannot be improved by selecting 
another model without being worse for one or more other 
objectives. The TPOT AutoML approach uses a type of 
Pareto optimization called non-dominated sorting (Deb et al. 
2000) and by default selects Pareto optimal models using 
accuracy and pipeline complexity. These objectives could 
be modified to include biological criteria such as druggabil-
ity. It will be important to evaluate whether biology-based 
objectives improve AutoML for genetic and genomics prob-
lems beyond standard metrics such as accuracy.

Automated machine learning shows tremendous prom-
ise for the genetic analysis of complex traits. Particularly 
important is the ability of AutoML to bring machine learn-
ing to non-experts by taking much of the guesswork out of 
selecting algorithms and hyperparameters. High-throughput 
genetic data have specific characteristics that distinguish 
them not only from the tabular data which are more typi-
cally used in ML and AutoML, but also from other types 
of omics data. They are much larger scale both in terms of 
number of features and samples, they can be highly imbal-
anced (e.g., when derived from biobanks), imputation of 
missing values requires sophisticated and time consuming 
methods (Shi et al. 2018), it is typically important to iden-
tify relevant mechanisms (e.g., genes) hence interpretabil-
ity is often a requirement. We note that the latter is further 
complicated by the fact that, even when relevant SNPs are 
identified, subsequent identification of the genes affected by 
these SNPs is non-trivial, since the affected genes are not 
necessarily those closest to the SNP in the linear genome 
and typically integration of additional data sources (other 

https://imbalanced-learn.org/stable/
https://imbalanced-learn.org/stable/
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types of functional genomics data) is necessary to further 
elucidate mechanisms. Thus, several areas need to be devel-
oped further before the full potential of AutoML methods 
can be realized in the genetics domain. First, many of these 
approaches are computationally intensive, because they are 
iterating over many different algorithms. Additional work is 
needed to scale AutoML to genome-wide data, for example. 
Second, genetic analysis has the potential to be informed by 
functional genomics data. It will be important to develop 
powerful methods which allow AutoML to take advantage 
of these data for model building and search. Third, interpre-
tation is always an important challenge for any ML result. 
AutoML has the potential to develop complex ML pipelines. 
The combination of multiple different ML algorithms in a 
pipeline can make interpretation more challenging. Finally, 
enabling geneticists with no ML experience to use AutoML 
will be key to maximizing the value of omics data we have 
collected for the study of complex traits. An emphasis on 
accessible and user-friendly software will be essential. We 
look forward to a time when anyone who wants to use ML 
for genetic analysis can do so with ease of running a t test.
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