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Abstract
Objective  In the present study, we sought to identify causal relationships between obesity and other complex traits and 
conditions using a data-driven hypothesis-free approach that uses genetic data to infer causal associations.
Methods  We leveraged available summary-based genetic data from genome-wide association studies on 1498 phenotypes 
and applied the latent causal variable method (LCV) between obesity and all traits.
Results  We identified 110 traits causally associated with obesity. Of those, 109 were causal outcomes of obesity, while only 
leg pain in calves was a causal determinant of obesity. Causal outcomes of obesity included 26 phenotypes associated with 
cardiovascular diseases, 22 anthropometric measurements, nine with the musculoskeletal system, nine with behavioural or 
lifestyle factors including loneliness or isolation, six with respiratory diseases, five with body bioelectric impedances, four 
with psychiatric phenotypes, four related to the nervous system, four with disabilities or long-standing illness, three with the 
gastrointestinal system, three with use of analgesics, two with metabolic diseases, one with inflammatory response and one 
with the neurodevelopmental disorder ADHD, among others. In particular, some causal outcomes of obesity included hyper-
tension, stroke, ever having a period of extreme irritability, low forced vital capacity and forced expiratory volume, diseases 
of the musculoskeletal system, diabetes, carpal tunnel syndrome, loneliness or isolation, high leukocyte count, and ADHD.
Conclusions  Our results indicate that obesity causally affects a wide range of traits and comorbid diseases, thus providing 
an overview of the metabolic, physiological, and neuropsychiatric impact of obesity on human health.

Introduction

Obesity is a complex, multifactorial and preventable disease 
in which an imbalance between daily caloric energy intake 
and expenditure leads to unwanted and atypical accumula-
tion of fat or adipose tissue, which in turn results in the 
impairment of human health (Hruby and Hu 2015; Purnell 
2018; Panuganti et al. 2020). Obesity is the second most 
common cause of preventable death after smoking (Hurt 
et al. 2010; Mitchell et al. 2011; Ng et al. 2014; Panuganti 
et al. 2020), making it an essential target of public health 
interventions. Globally, its prevalence has increased by 
27.5% for adults and 47.1% for children in the last three 
decades (Ng et al. 2014; Apovian 2016), affecting over 500 
million adults (Panuganti et al. 2020).

Obesity is typically defined according to body mass 
index (BMI), which is estimated as the ratio of weight in 
kilograms and height in meters squared (De Lorenzo et al. 
2016; Panuganti et al. 2020). Typically, an individual with 
obesity has a BMI higher than 30  kg/m2 (De Lorenzo 
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et al. 2016; Panuganti et al. 2020). The BMI-based clas-
sification includes underweight (BMI < 18.5), normal range 
(18.5 < BMI < 24.9), overweight (25 < BMI < 29.9), obesity 
class I (30 < BMI < 34.9), obesity class II (35 < BMI < 39.9) 
and obesity class III (BMI > 40) (De Lorenzo et al. 2016; 
Panuganti et al. 2020).

Genetic epidemiological studies have made considerable 
advances in the understanding of the genetic propensity to 
obesity. Genome-wide association studies (GWAS) have 
identified ~ 950 genomic loci associated with an obesity 
measure (Yengo et al. 2018; Tam et al. 2019) and genetic 
overlap with other anthropometric measurements, coronary 
artery disease, blood pressure and type 2 diabetes, among 
others, has been reported (Locke et al. 2015). A genetic cor-
relation (rG) between two traits could be explained by hori-
zontal pleiotropy (i.e. genetic variants have a direct effect on 
both traits, not via each other) or by vertical pleiotropy (i.e. 
the effect of a genetic variant on a trait is mediated by its 
effect on another trait) (O’Connor and Price 2018; Haworth 
et al. 2020).

Horizontal pleiotropy represents a challenge for statis-
tical methods seeking to determine causality between two 
traits. For example, traditional Mendelian randomisation 
(MR) methods can be biased due to horizontal pleiotropy, 
which increases the likelihood of false-positive findings 
(O’Connor and Price 2018; Koellinger and de Vlaming 
2019; García-Marín et al. 2021). The latent causal variable 
(LCV) is a recently developed statistical approach developed 
to investigate whether a genetic correlation between traits 
is explained by causal effects or by horizontal pleiotropic 
effects (O’Connor and Price 2018; Haworth et al. 2020; 
García-Marín et al. 2021).

Understanding the extent to which obesity is causally 
associated with other conditions is a fundamental question 
in obesity research. Here, we conduct a genetic screening 
using GWAS summary data to identify potential causal 
associations between obesity and other phenotypes. Specifi-
cally, we apply the LCV method to perform a hypothesis-
free phenome-wide screening to the extensive collection of 
phenotypes with GWAS summary data (N = 1498) compiled 
in the Complex Trait Genetics Virtual Lab (CTG-VL) web 
platform.

Methods

Data

The present study used summary statistics from GWAS for 
obesity and 1498 other phenotypes. Summary statistics sum-
marise relevant parameters such as allele frequency, effect 
size, standard error and the p value of genetic variants tested 
on the trait of interest. Several published GWAS have made 

available their summary statistics to the scientific commu-
nity to enable researchers to advance understanding of the 
genetic components of several phenotypes. The CTG-VL 
web platform (https://​genoma.​io/) (Cuéllar-Partida et al. 
2019) has compiled a set of 1610 GWAS summary statistics, 
and the inclusion criteria was a nominally significant herit-
ability derived from LD-score regression. The CTG-VL web 
platform includes GWAS summary statistics from the UK 
Biobank released by Neale’s Lab (www.​neale​lab.​is/​uk-​bioba​
nk/) (Neale’s Lab 2018) and from GWAS consortia. For this 
study, we only used GWAS derived from European popula-
tions to avoid potential biases due to population differences 
in linkage disequilibrium and allele frequencies.

Obesity dataset

The obesity GWAS summary statistics used here cor-
respond to a sample (N = 361,194) of European ancestry 
from the second wave of GWAS results released by Neale’s 
Lab (ICD10 code E66) (Neale’s Lab 2018; Cuéllar-Partida 
et al. 2019) available in the CTG-VL web platform. Obesity 
was assessed as a binary trait based on BMI classification 
(BMI > 30), and GWAS summary statistics were adjusted for 
age, age2, inferred_sex, age * inferred_sex, age2 * inferred_
sex, and 20 genetic ancestry principal components (Neale’s 
Lab 2018; Cuéllar-Partida et al. 2019).

LCV analysis

Genetic causal proportion (GCP) between the obesity GWAS 
and 1498 GWAS was estimated using the phenome-wide 
LCV pipeline implemented in the CTG-VL web platform 
as described previously (Haworth et al. 2020; García-Marín 
et al. 2021). Briefly, GWAS summary statistics for obesity 
were formatted and uploaded onto the CTG-VL web plat-
form. Then, we used the phenome-wide analysis pipeline 
(Haworth et al. 2020) that is available at the CTG-VL web 
platform, which includes LD-score regression (Bulik-Sul-
livan et al. 2015b) as well as LCV analysis (O’Connor and 
Price 2018). Lastly, causal architecture plots were used to 
visualise the results. In particular, as part of the phenome-
wide analysis pipeline, the LCV method was applied to all 
traits that showed a genetic correlation with obesity based on 
bivariate LD-score regression (Bulik-Sullivan et al. 2015b) 
at Benjamini–Hochberg’s False Discovery Rate (FDR < 5%). 
Then, to account for multiple testing on LCV estimates, we 
applied an FDR < 5% to the GCP estimates.

The phenome-wide analysis pipeline (Haworth et  al. 
2020), which is publicly available in the CTG-VL web plat-
form, is performed in R 4.00 based on the R script that the 
original authors of the LCV method (O’Connor and Price 
2018) have made available (https://​github.​com/​lukej​oconn​
or/​LCV). Within this pipeline, to ensure consistency of 

https://genoma.io/
http://www.nealelab.is/uk-biobank/
http://www.nealelab.is/uk-biobank/
https://github.com/lukejoconnor/LCV
https://github.com/lukejoconnor/LCV
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alleles and variants across GWAS summary statistics, data 
are formatted using munge_sumstats.py made available by 
the LD-score software and HapMap SNPs are extracted 
using the list of SNPs w_hm3.snplist (https://​github.​com/​
bulik/​ldsc/​wiki). Full details about the phenome-wide analy-
sis pipeline in the CTG-VL web platform are described and 
illustrated in previous studies (Haworth et al. 2020; García-
Marín et al. 2021).

The LCV method does not distinguish between the ‘expo-
sure’ and the ‘outcome’ (O’Connor and Price 2018). These 
are exchangeable labels that do not affect the degree of cau-
sality; specifically, the sign of the result denotes which trait 
is the determinant and which trait is the outcome (O’Connor 
and Price 2018). Further, the LCV method estimates GCP 
by assuming a latent variable L that mediates the genetic 
correlation between two traits, which is assumed to be a 
causal component mediating the genetic correlation between 
the phenotypes (O’Connor and Price 2018; Haworth et al. 
2020; García-Marín et al. 2021). The GCP ranges from -1 
(full genetic causality of Trait 2 on Trait 1) to 1 (full genetic 
causality of Trait 1 in Trait 2). A |GCP| of 1 indicates that a 
genetic correlation between traits may be explained by verti-
cal pleiotropy, whereas a GCP of 0 indicates that a genetic 
correlation between traits may be explained by horizontal 
pleiotropy. (O’Connor and Price 2018; Haworth et al. 2020; 
García-Marín et al. 2021). Notably, a |GCP|< 0.60 is con-
sidered low and indicates limited partial genetic causality 
(O’Connor and Price 2018).

Sensitivity analysis

As a sensitivity analysis, we applied Bonferroni correction 
for multiple testing comparisons to identify traits with sta-
tistically significant genetic correlations and with evidence 
of a causal relationship with obesity based on their genetic 
correlation and GCP estimates. Bonferroni is a stricter, more 
conservative approach than FDR to determine statistical 
significance.

Results

We conducted a phenome-wide LCV analysis between obe-
sity and 1498 other phenotypes to estimate their genetic cor-
relation and GCP. We identified 266 traits genetically corre-
lated with obesity at FDR < 5%. Of those, 105 were causally 
associated (|GCP|> 0.6; FDR < 5%; Online Resource 1) and 
five showed evidence of a limited partial genetic causality 
(|GCP|< 0.6; FDR < 5%; Online Resource 1). Putative out-
comes of obesity included cardiovascular diseases, anthro-
pometric measurements, the health of the musculoskeletal 
system, behavioural or lifestyle factors, respiratory diseases, 
body bioelectric impedances, psychiatric disorders, diseases 
of the nervous system, disabilities or long-standing illness, 
health of the gastrointestinal system, use of analgesics, meta-
bolic diseases, inflammatory response and neurodevelop-
mental disorders, among others (Table 1 and Fig. 1).

Table 1   LCV method summary 
results for obesity

The number of potential causal relationships with obesity corresponds to those results with FDR < 5%. 
Obesity was tested against a panel of 1498 potentially heritable traits in the CTG-VL web platform cata-
logue

Category Number of potential 
causal relationships

Number of causal 
outcomes of obesity

Number of causal 
determinants of 
obesity

Cardiovascular 26 26 0
Anthropometric measurements 22 22 0
Musculoskeletal system 9 8 1
Behavioural/lifestyle 9 9 0
Respiratory 6 6 0
Bioelectric impedances 5 5 0
Psychiatric 4 4 0
Nervous system 4 4 0
Disabilities 4 4 0
Gastrointestinal system 3 3 0
Use of analgesics 3 3 0
Metabolic disease 2 2 0
Inflammatory response 1 1 0
Neurodevelopmental 1 1 0
Mouth problems 1 1 0
Others 9 9 0

https://github.com/bulik/ldsc/wiki
https://github.com/bulik/ldsc/wiki
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Our results show 26 cardiovascular phenotypes as poten-
tial consequences of obesity. For instance, we identified 
obesity as a causal determinant of self-reports in hyperten-
sion (GCP = 0.94, p valueGCP = 7.71 × 10−76) and heart attack 
(GCP = 0.39, p valueGCP = 1.68 × 10−04). Conditions diag-
nosed by a doctor such as high blood pressure (GCP = 0.93, 
p valueGCP = 4.34 × 10−55), heart attack (GCP = 0.32, p 
valueGCP = 1.58 × 10−03) and angina problems (GCP = 0.63, 

p valueGCP = 1.82 × 10−02) were causal outcomes of obesity. 
A similar pattern was observed for chronic ischaemic heart 
disease (GCP = 0.72, p valueGCP = 1.26 × 10−04) and dias-
tolic blood pressure. In contrast, obesity was found to cause 
a decline in high-density lipoprotein (HDL) cholesterol 
(GCP = 0.68, p valueGCP = 1.68 × 10−02; Fig. 1 and Table 2).

Our results show a potential causal effect of obesity on 22 
anthropometric measurements. In particular, obesity caused 

Fig. 1   Causal associations for 
obesity (FDR < 5%). Causal 
architecture plots showing 
the latent causal variable 
exposome-wide analysis results. 
Each dot represents a trait with 
a significant genetic correla-
tion with obesity. The x-axis 
shows the GCP estimate, whilst 
the y-axis shows the genetic 
causality proportion (GCP) 
absolute Z-score (as a measure 
of statistical significance). The 
statistical significance threshold 
(FDR < 5%) is represented by 
the red dashed lines, while the 
division for causal determinants 
of obesity (on the left) and 
causal outcomes of obesity (on 
the right) is represented by the 
grey dashed lines. Results are 
shown separately for traits with 
a positive genetic correlation 
with obesity (a) and with a 
negative genetic correlation 
with obesity (b). *Phenotypes 
causally associated with obesity 
in the present study but not with 
BMI in Haworth et al. (2020). 
Phenotypes without an asterisk 
(*) were also identified for BMI 
in Haworth et al. (2020)

a

b
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increments of 18 traits, including fat percentages through-
out the body and ankle spacing width, while a decline in 
height (GCP = 0.72, p valueGCP = 1.22 × 10−04) and handgrip 
strength were caused by obesity. Similarly, we found evi-
dence of obesity causing the decrease of five body bioelec-
trical impedance measures, including in both arms and legs.

Obesity was a causal determinant of eight pheno-
types involving diseases of the musculoskeletal and 

connective tissue (Table  2). Pain-related phenotypes 
such as knee (GCP = 0.87, p valueGCP = 5.81 × 10−14) 
and hip (GCP = 0.79, p valueGCP = 2.44 × 10−07) pain 
in the last month along with self-reported osteoarthri-
tis, arthrosis and gonarthrosis (ICD10), were caused by 
obesity. In contrast, leg pain in calves (GCP = − 0.80, 
p valueGCP = 4.18 × 10−06) was a causal determinant of 
obesity.

Table 2   Traits causally associated with obesity across categories (FDR < 5%)

This table shows some traits with a significant (FDR < 5%) strong genetic causal proportion (GCP > 0.60) for obesity. The number of potential 
causal relationships corresponds to those results with FDR < 5%. Due to space restrictions, all nominally significant genetic correlations (i.e. p 
value < 0.05 before multiple testing correction) for obesity are reported in Online Resource 1
Phenotypes without an asterisk (*) were also identified for BMI in Haworth et al. (2020)
Category category of trait, Trait trait causally associated with obesity, rG genetic correlation, GCP genetic causal proportion, GCP pval genetic 
causal proportion p value unadjusted for multiple testing
*Phenotypes causally associated with obesity in the present study but not with BMI in Haworth et al. (2020)

Category Trait rG GCP GCP p val

Cardiovascular Self-reported hypertension 0.42 0.94 7.71E−66
Cardiovascular Diastolic blood pressure 0.27 0.85 4.97E−14
Cardiovascular *Chronic ischaemic heart disease (ICD10) 0.41 0.72 5.94E−04
Cardiovascular Major coronary heart disease event 0.49 0.74 1.58E−04
Cardiovascular *Myocardial infarction 0.49 0.70 1.56E−03
Cardiovascular *HDL cholesterol − 0.32 0.68 1.68E−02
Anthropometric measurement *Height − 0.22 0.72 1.22E−04
Anthropometric measurement Waist circumference 0.71 0.66 5.02E−03
Anthropometric measurement *Hip circumference 0.64 0.63 9.49E−03
Musculoskeletal system Self-reported osteoarthritis 0.71 0.91 1.20E−24
Musculoskeletal system Gonarthrosis (ICD10) 0.57 0.88 7.16E−18
Musculoskeletal system Knee pain in the last month 0.70 0.87 5.81E−14
Musculoskeletal system Arthrosis 0.47 0.83 1.29E−11
Musculoskeletal system Hip pain in the last month 0.55 0.79 2.44E−07
Behavioural/lifestyle *Loneliness/isolation 0.48 0.93 6.11E−52
Behavioural/lifestyle *Previous smoker 0.32 0.72 3.11E−05
Behavioural/lifestyle Previous alcohol drinker 0.44 0.73 1.87E−04
Behavioural/lifestyle *Age first had sexual intercourse − 0.50 0.77 2.16E−06
Respiratory *Forced vital capacity (FVC) − 0.37 0.89 1.48E−03
Respiratory Forced expiratory volume in 1 s (FEV1) − 0.27 0.83 3.69E−12
Respiratory *Shortness of breath walking on level ground 0.76 0.85 2.16E−06
Respiratory Wheeze or whistling in the chest in the last year 0.46 0.69 8.09E−04
Psychiatric *Ever had period of extreme irritability 0.36 0.85 5.67e−13
Psychiatric *Manifestations of mania or irritability 0.43 0.68 1.77E−03
Psychiatric *Gained weight during worst episode of depression 0.70 0.63 1.82E−02
Nervous system *Diseases of the nervous system 0.48 0.76 8.77E−06
Nervous system Mononeuropathies and upper limb (ICD10) 0.39 0.72 1.37E−04
Nervous system Carpal tunnel syndrome 0.43 0.68 1.27E−03
Nervous system Nerve, nerve root and plexus disorders 0.51 0.66 3.70−E03
Gastrointestinal system *Diverticular disease of intestine (ICD10) 0.51 0.67 3.43E−03
Gastrointestinal system *Self-reported gastro-oesophageal reflux/gastric reflux 0.50 0.62 1.22E−02
Metabolic disease *Diabetes diagnosed by a doctor 0.60 0.75 3.49E−04
Inflammatory response *Leukocyte count 0.20 0.66 2.00E−03
Neurodevelopmental *Attention-deficit—hyperactivity disorder (ADHD) 0.85 0.64 1.84E−02
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Six causal relationships were observed between obe-
sity and respiratory-related phenotypes. For instance, obe-
sity was observed to increase risk of shortness of breath 
(GCP = 0.85, p valueGCP = 1.43 × 10−10) and whistling in 
the chest (GCP = 0.69, p valueGCP = 8.09 × 10−04). Consist-
ently, obesity caused the decline of forced vital capacity 
(FVC; GCP = 0.89, p valueGCP = 1.48 × 10−23) and forced 
expiratory volume in one second (FEV1; GCP = 0.83, p 
valueGCP = 3.69 × 10−12) (Fig. 1 and Table 2).

Obesity was a causal determinant of four psychiat-
ric-related traits (Fig.  1 and Table  2), including gain-
ing weight during the worst period of depression 
(GCP = 0.63, p valueGCP = 1.82 × 10−02). Also, obesity 
was observed to increase irritability through traits such as 
ever having a period of extreme irritability (GCP = 0.85, 
p valueGCP = 5.67 × 10−13), experiencing manifestations of 
mania or irritability (GCP = 0.68, p valueGCP = 1.77 × 10−03) 
and ever highly irritable for 2 days. Similarly, an increase in 
the behavioural trait loneliness or isolation (GCP = 0.93, p 
valueGCP = 6.11 × 10−52) was found to be caused by obesity 
(Fig. 1 and Table 2).

Obesity was a causal determinant of four diseases of the 
nervous system (GCP = 0.76, p valueGCP = 8.77 × 10−06; 
Table  2) including mononeuropathies of upper limb 
(ICD10; GCP = 0.72, p valueGCP = 1.37 × 10−04), carpal 
tunnel syndrome (GCP = 0.68, p valueGCP = 1.27 × 10−03) 
and nerve, nerve root and plexus disorders (GCP = 0.66, p 
valueGCP = 3.7 × 10−03; Fig. 1).

Three phenotypes related to the gastrointestinal sys-
tem, including diverticular disease of the intestine 
(ICD10; GCP = 0.67, p valueGCP = 3.43 × 1 −03) and 
self-reported gastro-oesophageal reflux (GCP = 0.62, p 
valueGCP = 1.22 × 10−02) were identified as potential out-
comes of obesity (Table 2).

Diabetes,  both self-repor ted (GCP = 0.72, p 
valueGCP = 1.90 × 10−03) and diagnosed by a doctor 
(GCP = 0.75, p valueGCP = 3.49 × 10−04), showed evi-
dence of being causal outcomes of obesity. Also, obesity 
was also found to pose a causal effect on high leukocyte 
levels (GCP = 0.66, p valueGCP = 2.00 × 10−03) and atten-
tion-deficit/hyperactivity disorder (ADHD; GCP = 0.64, p 
valueGCP = 1.84 × 10−02).

Sensitivity analysis

As a sensitivity analysis, we applied a Bonferroni correction 
to our results instead of FDR to account for multiple testing 
(Bonferroni < 0.05; Fig. 2). Bonferroni is well known to be a 
much more conservative approach than FDR (Noble 2009). 
Using this approach, we identified 86 genetic correlations. 
Of those, 52 were causal outcomes of obesity (GCP > 0.6; 
Online Resource 2); these included anthropometric and 
bioelectrical impedance measurements, poor health of the 

musculoskeletal system, hypertension, diabetes, and ADHD 
(Table 3). We did not find any causal determinants of obesity 
with this approach.

Discussion

In this work, we performed a phenome-wide screening 
of potential causes and effects of obesity on a number of 
health conditions. Although previous research has made 
extensive efforts to describe how obesity and metabolic 
syndrome affect several body systems, their relationships 
with inflammatory response, hypertension, cardiovascular 
disease, neurodevelopmental disorders, and the musculo-
skeletal and nervous system has not been fully elucidated. 
In this study, we found that obesity was causally associated 
with increased leukocyte count, self-reported hypertension, 
high blood pressure and diabetes diagnosed by a doctor. 
Leukocytes are white blood cells involved in both local and 
general inflammatory response (Langer and Chavakis 2009; 
Leick et al. 2014). Further, it has previously been reported 
that obesity increases adipose tissue dysfunction, leading 
to a pro-inflammatory state, which in turn can result in vas-
cular dysfunction impairing endothelium vasodilation with 
an impact on hypertension and affecting the responsiveness 
of the insulin-vasodilator mechanism (Campia et al. 2012; 
Swarup et al. 2020). Also, obesity is considered the main 
cause of metabolic syndrome components such as high 
blood pressure and triglycerides, while the increased risk 
of diabetes is attributed to a decrease in insulin secretion as 
a consequence of obesity-related effects (Goodarzi 2018).

Obesity and metabolic syndrome are major risk factors 
for cardiovascular disease (Goodarzi 2018; Swarup et al. 
2020; Panuganti et al. 2020). In the present study, several 
cardiovascular diseases were causal outcomes of obesity. 
Specifically, our results indicate that obesity is a causal 
determinant of major coronary heart disease events, heart 
attacks, myocardial infarctions, chronic ischaemic heart 
disease (ICD10) and angina problems. Consistently, an 
increase in Aspirin’s intake, which is commonly prescribed 
for secondary prevention of cardiovascular diseases (Ansa 
et al. 2019), was also identified as an outcome of obesity. 
Further, it has been previously shown that inflammation is a 
significant risk factor for heart disease events (Hoffman et al. 
2004; Kim et al. 2017). Thus, our findings are consistent 
with previous studies reporting a causal effect of obesity on 
cardiovascular disease and support the hypothesis in which 
obesity-related inflammation (i.e. high leukocyte levels) 
could lead to high blood pressure and hypertension, which 
in turn are known risk factors for cardiovascular disease.

Obesity causes an increase in the mechanical load 
across weight-bearing joints, which has been associated 
with musculoskeletal deterioration and neuropathic pain 
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(Anandacoomarasamy et al. 2008; Hozumi et al. 2016). Fur-
ther, previous studies have suggested that an increase in fat 
mass may result in a decrease in bone mass (Anandacoomar-
asamy et al. 2008). Our findings uncovered causal associa-
tions in which obesity is the putative causal determinant of 
musculoskeletal pain and diseases such as osteoarthritis. A 
similar pattern was observed for diseases of the nervous sys-
tem, including mononeuropathies and nerve, nerve root and 

plexus disorders. Consistently, obesity caused an increase 
in the use of analgesics such as Aspirin, Codamol and Par-
acetamol. Our results suggest that an increase in analgesics 
use may be explained by the development of musculoskeletal 
pain and damage to the nervous system. It is possible that 
the inflammatory state induced by obesity may also result 
in poorer musculoskeletal and nervous system health. How-
ever, more research is needed to disentangle the complex 

Fig. 2   Causal associations for 
obesity (Bonferroni < 5%). 
Causal architecture plots show-
ing the latent causal variable 
exposome-wide sensitivity 
analysis results. Each dot rep-
resents a trait with a significant 
genetic correlation with obesity. 
The x-axis shows the GCP esti-
mate, whilst the y-axis shows 
the genetic causality propor-
tion (GCP) absolute Z-score 
(as a measure of statistical 
significance). The statistical 
significance threshold (Bonfer-
roni < 5%) is represented by 
the red dashed lines, while the 
division for causal determinants 
of obesity (on the left) and 
causal outcomes of obesity (on 
the right) is represented by the 
grey dashed lines. Results are 
shown separately for traits with 
a positive genetic correlation 
with obesity (a) and with a 
negative genetic correlation 
with obesity (b)

a

b
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relationships between specific-tissue inflammation, pain and 
obesity.

Previous studies have described a higher incidence of 
disability among people with obesity (Anandacoomarasamy 
et al. 2008; Queirós et al. 2015). Our results identified causal 
associations between obesity and disability-related pheno-
types such as disability living allowance and long-standing 
illness or disability. Thus, it is possible that the develop-
ment of disabling conditions among people with obesity 
is explained by poor musculoskeletal and nervous system 
health.

Despite extensive efforts to advance our understanding 
of the relationship between obesity and lung function, the 
effects of obesity on the respiratory system have not been 
fully elucidated. Previous findings suggest that obesity 
may be associated with complex respiratory diseases such 
as chronic obstructive pulmonary disease (COPD) and its 
severity (Zammit et al. 2010; Mafort et al. 2016; Dixon and 

Peters 2018). Consistently, our results suggest that obesity 
causes increased risk of shortness of breath and whistling in 
the chest, as well as decreases in FVC and FEV1. Moreover, 
traits such as COPD onset and other obstructive pulmonary 
disease (ICD10) were identified as causal outcomes of obe-
sity. Previous studies have also reported leukocyte accumu-
lation in lung tissue in individuals with a chronic obstructive 
pulmonary disease, which in turn increases the expression 
of adhesion molecules in bronchial blood vessels (Davis 
et al. 2012; Koo et al. 2017). Our results would suggest that 
obesity poses a deteriorative effect on the respiratory sys-
tem, which could contribute to the development of complex 
respiratory diseases. We speculate that this relationship 
could be explained by the accumulation of adipose tissue 
and inflammation arising from an increase in trunk fat mass, 
which in turn could lead to physiological changes decreasing 
lung capacity and weakening the respiratory muscles. How-
ever, more research is needed to disentangle the intricate 

Table 3   Traits causally 
associated with obesity across 
categories (Bonferroni < 5%)

This table shows some traits with a significant (Bonferroni < 5%) strong genetic causal proportion 
(GCP > 0.60) for obesity. Due to space restrictions, all nominally significant genetic correlations (i.e. p 
value < 0.05 before multiple testing correction) for obesity are reported in Online Resource 2
Category category of trait, Trait trait causally associated with obesity, rG genetic correlation, GCP genetic 
causal proportion, GCP pval genetic causal proportion p value unadjusted for multiple testing

Category Trait rG GCP GCP pval

Anthropometric Waist circumference 0.71 0.66 5.02E−0.3
Anthropometric Hip circumference 0.64 0.63 9.49E−3
Behavioural/lifestyle Loneliness/isolation 0.48 0.93 6.11E−52
Behavioural/lifestyle Rent accommodation 0.61 0.87 2.32E−15
Behavioural/lifestyle No major dietary changes in the last 5 years − 0.73 0.82 3.17E−08
Behavioural/lifestyle Age first had sexual intercourse − 0.50 0.77 2.16E−06
Cardiovascular Self-reported: hypertension 0.42 0.94 7.71E−66
Cardiovascular High blood pressure diagnosed by doctor 0.39 0.93 4.34E−55
Cardiovascular Diseases of the circulatory system 0.59 0.80 8.77E−07
Cardiovascular HDL cholesterol − 0.32 0.68 1.68E−02
Disabilities Long-standing illness, disability or infirmity 0.61 0.86 4.59E−15
Disabilities Blue badge disability allowance 0.69 0.86 2.01E−13
Disabilities Disability living allowance 0.66 0.80 3.41E−07
Metabolic disease Diabetes diagnosed by doctor 0.60 0.75 3.49E−04
Metabolic disease Self-reported diabetes 0.60 0.72 1.90E−03
Musculoskeletal system Self-reported osteoarthritis 0.71 0.91 1.20E−24
Musculoskeletal system Gonarthrosis (ICD10) 0.57 0.88 7.16E−18
Musculoskeletal system Knee pain in last month 0.70 0.87 5.81E−14
Musculoskeletal system Diseases of the musculoskeletal system and 

connective tissue
0.57 0.84 7.95E−12

Musculoskeletal system Other joint disorders 0.63 0.76 4.82E−05
Neurodevelopmental ADHD 0.85 0.64 1.84E−02
Respiratory Forced vital capacity (FVC) − 0.37 0.89 1.48E−23
Respiratory Shortness of breath walking on level ground 0.76 0.85 1.43E−10
Respiratory Wheeze or whistling in the chest in last year 0.46 0.69 8.09E−04
Behavioural/lifestyle Loneliness/isolation 0.48 0.93 6.11E−52
Behavioural/lifestyle Rent accommodation 0.61 0.87 2.32E−15
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relationship between obesity, inflammation, lung function 
and disease.

Observational studies have reported an association 
between obesity and gastrointestinal diseases such as diver-
ticular diseases and gastro-oesophageal reflux (Camilleri 
et al. 2017). Similarly, increased adipose tissue has been 
inversely linked with adiponectin levels, which are a pro-
tective factor of gastro-oesophageal reflux complications 
(Chang and Friedenberg 2014). Consistently, our findings 
show causal associations in which obesity is a causal deter-
minant of diverticular diseases of the intestine (ICD10) and 
self-reported gastro-oesophageal reflux.

Previous studies have sought to describe the extent to 
which obesity could be involved in the development of 
depression, leading to an unclear set of conclusions (Mannan 
et al. 2016; Day et al. 2018; Chauvet-Gelinier et al. 2019; 
Speed et al. 2019). For instance, some studies suggest a bidi-
rectional relationship between obesity and depression (Man-
nan et al. 2016; Chauvet-Gelinier et al. 2019), while others 
report that anthropometric measurements such as BMI, fat 
mass and height are only risk factors for depression (Speed 
et  al. 2019). Also, a Mendelian randomisation analysis 
reports a one-way causal association for BMI causing lone-
liness and a bidirectional causal association between BMI 
and depressive symptoms, suggesting that the relationship 
between these traits is complex and perhaps a consequence 
of shared biological mechanisms (Day et al. 2018) or life-
style factors such as sleep quality, diet and physical inactiv-
ity (Hawkley and Cacioppo 2010). In the present study, we 
provide evidence for obesity as a causal determinant of psy-
chiatric-related phenotypes, such as gaining weight during 
the worst period of depression and loneliness or isolation. 
However, we did not find evidence for a causal association 
between obesity and depression (Supplementary File 1). It 
is most likely that obesity causes weight gain due to the 
effect of obesity’s genetic variants regardless if an individual 
is depressed or not. Nonetheless, as previous studies have 
noted, there may be bidirectional effects between obesity 
and depression (Luppino et al. 2010; Day et al. 2018). As we 
discuss in the limitations below, LCV is not able to estimate 
bidirectional causality, and null findings from LCV analyses 
could be due to bidirectional causal effects or the absence 
of causality.

Previous research has pointed out an association between 
ADHD and obesity. However, cause–effect links and the 
underpinning molecular mechanisms of this association 
remain unclear (Cortese and Tessari 2017; Cortese 2019). 
Observational studies have examined the relationship 
between ADHD and obesity with both traits as exposure 
and outcome, suggesting that this association is independ-
ent of potential confounding factors (Cortese and Tessari 
2017). Also, some genetic studies show a one-way causal 
relationship in which high BMI is a causal determinant of 

ADHD (Martins-Silva et al. 2019), while others suggest 
that a plausible bidirectional causal association may exist 
between obesity and ADHD (Liu et al. 2020). In the present 
study, results show a causal association in which obesity is 
a causal determinant of ADHD. However, to fully under-
stand the effect of obesity on ADHD, additional research 
should seek to elucidate potential mechanisms underlying 
this association.

Pleiotropic effects, both horizontal and vertical, among 
obesity-related phenotypes have become a focal point of 
interest in genetic epidemiological studies, and pleiotropic 
effects have been identified between abdominal obesity and 
immune response (Kaur et al. 2019). However, Kaur et al. 
(2019) were unable to delineate vertical from horizontal 
pleiotropic effects in the association between abdominal 
obesity and immune response. Other studies have reported 
that abdominal obesity increases the risk to develop autoim-
mune diseases due to a chronic inflammatory state (Gustafs-
son et al. 2013; Rosenberg et al. 2013). Our results add up 
to the evidence (Lumeng and Saltiel 2011; Andersen et al. 
2016; Kaur et al. 2019) suggesting that obesity prompts an 
immune response and a chronic inflammatory state with det-
rimental effects on the overall health.

The main strengths of the LCV method as compared to 
traditional MR methods include (O’Connor and Price 2018; 
Koellinger and de Vlaming 2019; Haworth et  al. 2020; 
García-Marín et al. 2021): (i) it is less prone to bias due to 
horizontal pleiotropy; (ii) it is robust to sample overlap, and 
(iii) it uses aggregated information across the entire genome, 
increasing statistical power and enabling analyses between 
pairs of phenotypes that would be considered “underpow-
ered” for other statistical methods.

Our results are consistent with previous studies report-
ing that LCV is a meaningful tool to detect potential causal 
associations in underpowered phenotypes for which MR 
methods have not been able to determine potential causation 
(O’Connor and Price 2018; Haworth et al. 2020; García-
Marín et al. 2021). We suggest that the causal relationships 
pointed out through LCV could be used as a testable hypoth-
esis for future epidemiological observational and genetic 
studies.

Methods and findings in the present study must be com-
pared to those in Haworth et al. (2020). The main differ-
ence between the work by Haworth et al. (2020) and ours 
is the phenotypes that were investigated. For instance, the 
GWAS summary statistics used by Haworth et al. (2020) 
represent BMI as a continuous variable; whereas, in the 
present study, GWAS summary statistics correspond to 
obesity defined as the dichotomisation of BMI (De Lorenzo 
et al. 2016; Panuganti et al. 2020). This difference between 
phenotypes is directly reflected in the genetic correlation 
between the GWAS of obesity used here and GWAS of 
BMI used by Haworth et al., 2020 (rG = 0.67, SE = 0.11, p 
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value = 7.87 × 10–10), showing that although BMI is a com-
mon screening tool for obesity (Hall and Cole 2006), a con-
tinuous BMI measurement does not entirely reflect obesity 
as a disease. Furthermore, the study by Haworth et al. (2020) 
assessed BMI against 1340 other phenotypes. In contrast, in 
the present study, we have expanded the panel of traits and 
tested obesity against 1498 other phenotypes.

Regarding the results, one of the principal differences 
is that in our study, we only identified one potential causal 
association in which obesity was the outcome of another 
phenotype (leg pain in calves), which is most likely 
explained by lack of physical activity. In contrast, the study 
by Haworth et al. (2020) identified 23 traits potentially 
affecting BMI; however, none of them included leg pain in 
calves. Most of the causal determinants of BMI in the study 
by Haworth et al. included occupational-related phenotypes, 
which are most likely explained by lack of physical activ-
ity and socioeconomic variables such as assortative mating 
and educational attainment. As we discuss in the limitations 
below, it is possible that we did not observe as many causal 
determinants for obesity as Haworth et al. did for BMI due 
to a reduction of statistical power. In addition, Haworth et al. 
(2020) identified 110 traits as outcomes of BMI, whereas our 
study identified 109 traits as outcomes of obesity. A total of 
40 causal outcomes were identified in both studies (Fig. 1, 
Table 2 and Online Resource 1); these included self-reported 
hypertension, high blood pressure diagnosed by a doctor, 
gonarthrosis (ICD10), diastolic blood pressure, heart attack 
diagnosed by a doctor, knee pain in the last month, hip pain 
in the last month, FEV1, carpal tunnel syndrome, waist cir-
cumference, bioelectrical impedance measurements and fat 
percentages throughout the body.

Sixty-eight potential causal outcomes were only observed 
in the present study, but not by Haworth et al. (2020). These 
include those between obesity and leukocyte levels, ADHD, 
loneliness, long-standing illness or disability, self-reported 
and diagnosed by a doctor diabetes, cardiovascular diseases, 
diseases of the nervous system, and diseases of the musculo-
skeletal system and connective tissue, among others (Fig. 1, 
Table 2 and Online Resource 1). We attribute these substan-
tial differences among the findings of both studies to the 
differences in phenotype definition. Also, we note that the 
following 11 phenotypes causally associated with obesity in 
the present study were not tested in Haworth et al. (2020): 
Any ischemic stroke (Europeans only), any ischaemic stroke 
(trans-ethnic meta-analysis), any stroke (trans-ethnic meta-
analysis), any stroke (European only), coronary artery dis-
ease, HDL Cholesterol (both sexes, males only and females 
only), age at menarche, ADHD, and leukocyte count.

Establishing causal associations should always arise 
only after convergent evidence from studies with mul-
tiple designs. Ideally, at least one should be an interven-
tional design (e.g. a randomised controlled trial). However, 

interventional studies are not only expensive and time-con-
suming, but also, in many instances, are unfeasible or unethi-
cal to conduct (i.e. when an exposure known to harm partici-
pants is evaluated). In these cases, assessing causality using 
genetics can be informative. Nonetheless, some limitations 
of the present study must be acknowledged. Although our 
data included GWAS summary statistics derived from con-
sortia, which include only individuals of European ancestry 
but are on participants from a number of countries, most 
of our data were retrieved primarily from the UK Biobank, 
which predominantly consists of participants of European 
ancestry, and previous studies have highlighted ethnic dif-
ferences in obesity (Higgins et al. 2019). Thus, our results’ 
generalisability is limited to European ancestry individu-
als until tested in other ethnicities. Also, by dichotomising 
BMI to define obesity, statistical power is reduced compared 
to the continuous BMI measurement used in the study by 
Haworth et al. (2020). It is possible that the results identified 
in Haworth et al. (2020) but not in the present study are due 
to the difference of statistical power between studies.

Differences between methods used to correct for multiple 
comparisons should be noted. FDR has been used in previ-
ous studies describing LCV analyses results (O’Connor and 
Price 2018; Haworth et al. 2020; García-Marín et al. 2021). 
A main advantage of FDR is that it does not require tests to 
be independent of each other. Thus, it is useful when assess-
ing several hypotheses that are simultaneously tested (Chen 
et al. 2017), like in the present study. However, FDR is less 
stringent than other multiple testing correction methods, 
such as Bonferroni (Chen et al. 2017). Although a Bonfer-
roni correction for multiple tests is much stricter and less 
prone to false-positive findings, it assumes that all tests must 
be independent of each other (Stevens et al. 2017). This con-
dition is not met in the present study because some traits in 
the phenome-wide scan are correlated (i.e. cardiovascular 
phenotypes, anthropometric traits, psychiatric phenotypes, 
among others). Here, we included results for potential causal 
associations between obesity and 1 498 other phenotypes 
using FDR < 5% correction and, as a sensitivity analysis, 
we have included the results for the phenome-wide analysis 
pipeline using a Bonferroni < 5% correction; however, we 
note that our tests are not entirely independent from one 
another.

Regarding potential bias in our analyses due to sample 
overlap, the LCV method and genetic correlations estimated 
with LD-score regression can handle sample overlap (Bulik-
Sullivan et al. 2015a; O’Connor and Price 2018). For poten-
tial bias due to sample ascertainment, we note that the UK 
Biobank cohort is selected for older adults aged between 40 
and 69. Around 9 million individuals were invited to par-
ticipate (Munafò et al. 2018). However, the UK Biobank 
only achieved a 5% response rate (Munafò et al. 2018); thus, 
the resulting sample is not entirely representative of the UK 
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population. For instance, in the first release of genetic data, 
current smokers were underrepresented (19% in the general 
population vs 11% in UK Biobank) (Munafò et al. 2018). 
However, this was no longer the case for the full release of 
genome-wide association data (Munafò et al. 2018), which 
is the one available at the CTG-VL web platform. Ascertain-
ment bias within the UK Biobank can induce spurious cor-
relations and genetic effects. For example, recent analyses 
have shown autosomal heritability of sex in big cohorts is 
likely explained by participation bias (Pirastu et al. 2020).

Our analyses included more than 1400 phenotypes; how-
ever, causal associations with other traits not tested here may 
exist. Related to this is the interpretability of some of the 
phenotypes used here, such as taking medication: Aspirin 
which could be considered a proxy trait for pain or cardio-
vascular disease, taking medication: Candesartan cilexetil 
and lisinopril which could be considered a proxy trait for 
hypertension. Unfortunately, other traits for which GWAS 
summary statistics are available lack such a straightforward 
proxy interpretation.

Similarly, diabetes phenotypes, both self-reported and 
diagnosed by a doctor, included gestational diabetes, type 1 
diabetes, type 2 diabetes, diabetes insipidus and unclassified 
diabetes. Considering that the physiopathology of these phe-
notypes is substantially different (Skyler et al. 2017), future 
studies should aim to further assess the associations between 
obesity and specific types of diabetes. In addition, even 
though the LCV method uses genetic information aggregated 
across the entire genome, the GCP estimates are still tied to 
the statistical power of the GWAS. Thus, the ability to causal 
associations for some phenotypes is limited, particularly for 
those with small sample sizes. Also, the LCV may estimate 
spurious associations when the genetic correlation between 
traits is mediated by multiple latent factors (O’Connor and 
Price 2018). However, the presence of multiple latent fac-
tors would reduce statistical power and lower GCP estimates 
biasing results towards the null (O’Connor and Price 2018). 
Lastly, the LCV method seeks to detect the predominant 
causal direction between two phenotypes (O’Connor and 
Price 2018; Haworth et al. 2020), and therefore, bidirectional 
causality cannot be tested between traits. This limitation is 
intrinsic to the nature of the LCV method in which a bidirec-
tional causal association would mimic horizontal pleiotropy 
biasing the GCP towards the null. Therefore, null findings 
may have occurred due to a lack of power, because there is 
truly no causal relationship or because the relationship is 
bidirectional. The possibility of bidirectional effects should 
be further explored in future studies using methods that can 
test for bidirectionality.

In summary, we assessed potential causal relation-
ships between obesity and 1498 phenotypes, and identi-
fied 110 traits with significant causal associations with 
obesity. Our findings uncovered the effect of obesity on 

leukocyte-related inflammation, which may incur in a 
chronic pro-inflammatory state and several metabolic syn-
drome components. Further, we provide evidence for the 
impact of obesity on cardiovascular disease, poor health of 
the respiratory and musculoskeletal systems and its poten-
tial damage to the nervous system. We observe a causal 
effect of obesity on gastrointestinal disorders, psychiatric 
phenotypes and the neurodevelopmental disorder ADHD. 
Also, we identified causal associations of obesity on bio-
electrical impedances and physical disability. Altogether, 
our results confirm some previously reported associations 
and identify some new testable hypotheses that could 
contribute to advance our understanding of the effects of 
obesity on metabolic inflammation in specific tissues and 
organs, which in turn may provide novel perspectives on 
the metabolic implications of obesity and the development 
of anti-inflammatory therapeutics.
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