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Abstract
Extensive studies have been conducted on the analysis of genome function, especially on the expression quantitative trait loci 
(eQTL). These studies offered promising results for characterization of the functional sequencing variation and understand-
ing of the basic processes of gene regulation. Parent of origin effect (POE) is an important epigenetic phenomenon describ-
ing that the expression of certain genes depends on their allelic parent-of-origin and it is known to play important roles in 
human complex diseases. However, traditional eQTL mapping approaches do not allow for the detection of imprinting, or 
they focus on modeling the additive genetic effect thereby ignoring the estimation of the dominance genetic effect. In this 
study, we proposed a statistical framework to test the additive and dominance genetic effects of the candidate eQTLs along 
with detection of the POE with a functional model and an orthogonal model for RNA-seq data. We demonstrated the desir-
able power and preserved Type I errors of the methods in most scenarios, especially the orthogonal model with un-biased 
estimation of the genetic effects and over-dispersion of the RNA-seq data. The application to a HapMap project trio dataset 
validated existing imprinting genes and discovered two novel imprinting genes with potential dominance genetic effect and 
RB1 and IGF1R genes. This study provides new insights into the next generation statistical modeling of eQTL mapping for 
better understanding of the genetic architecture underlying the mechanisms of gene expression regulation.

Introduction

With the completion the 1000 Genomes Project (Genomes 
Project et al. 2015), an unprecedented wealth of knowledge 
has been accumulated for understanding the variations at the 
human DNA level. However, little of this DNA-level knowl-
edge has been translated into understanding the mechanisms 
of human diseases. Gene expression quantitative trait locus 
(eQTL) mapping is one of the most promising approaches 
to fill this gap, which aims to explore the genetic basis of 

gene expression (Cookson et al. 2009). Among the eQTL 
techniques, cis-eQTL mapping is the most commonly used 
technique to map local eQTLs on the same chromosome 
of the gene. To date, many statistical methods for eQTL 
mapping have been developed, however, the modeling of 
imprinting is typically ignored in these methods.

Imprinting is a type of parent-of-origin effect (POE) that 
the expression of certain genes depends on their allelic par-
ent-of-origin. As such, the same alleles transmitted from the 
mother have different expression levels on transcripts com-
pared with those transmitted from the father. Consequently, 
the influences on the phenotype between the two types of 
heterozygotes are different, as so-called parent-of-origin 
effect (POE). There are at least 80 imprinted genes discov-
ered in humans, many of which are involved in embryonic 
and placental growth and development (Perry et al. 2014). 
Studies have suggested that POE is an important contributor 
to phenotypic variation in human complex diseases and may 
explain some of the “hidden” heritability. An earlier study 
showed that for type II diabetes, a variant of SNP rs2334499 
in chromosome region 11p15 was protective when mater-
nally transmitted, whereas it conferred risk when paternally 
transmitted (Kong et al. 2009). Important roles of POEs 
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are also implicated in type I diabetes, breast cancer and 
other carcinomas (Kong et al. 2009; Wallace et al. 2010). 
In the past few years, there were few approaches that mod-
eled POEs while searching for eQTLs with RNA-seq data. 
The only report was from a study recently conducted by 
Zhabotynsky et al. which proposed to jointly model genetic 
effect and POE focusing on modeling the allele specific 
expression (ASE) (Zhabotynsky et al. 2019).

In recent years, the inclusion of dominance in animal 
genomic models has been proposed by several researchers 
(Duenk et al. 2017; Ertl et al. 2014; Su et al. 2012; Xiang 
et al. 2018). From the theory of quantitative genetics, statisti-
cal additive genetic effects are obtained from average allele 
substitution effects, whereas dominance genetic effects reflect 
the deviation of the genotypic values of the heterozygotes 
and the expected midpoint of the two homozygotes. In quan-
titative genetics, the partition of the variance in statistical 
components is due to additivity. Dominance does not reflect 
the biological effect of the genes, but it is most useful for pre-
diction, selection, and evolution (Huang and Mackay 2016).

Multi-collinearity, however, is an important issue arising 
from modeling multiple genetic effects. To achieve straight-
forward model selection and variance component analysis, 
uncorrelated estimation of the additive and dominance effects 
is necessary. To achieve this goal, in our study, we developed an 
orthogonal model to jointly evaluate the effect from both addi-
tive and dominance genetic effects along with the detection of 
POE in eQTL mapping for RNA sequencing read count data. 
To evaluate gene expression levels, RNA sequencing (RNA-seq) 
technology has recently become a widely used high-throughput 
technology to assess the gene expression abundance, especially 
in discovery of novel eQTLs (Ellis et al. 2013).

Genetic imprinting affects complex diseases through regu-
lating the gene expression and can reveal an important compo-
nent of heritable variation that remains “hidden” in traditional 
complex trait studies. In this study, we hypothesized that POEs 
contribute to regulating gene expression along with the main 
allelic effect (i.e., additive and dominance effects) from the 
gene. Accordingly, we developed a statistical framework to test 
the main allelic effects of the candidate eQTLs along with the 
detection of POE with a natural model and an orthogonal model. 
Intensive simulations were conducted to evaluate the methods. 
We also applied the methods to an existing HapMap project trio 
dataset to validate the reported imprinting genes and identify 
novel cis-eQTLs for these genes.

Methods

The stat‑POE and func‑POE methods

Our methods were developed from a basic model of eQTL 
mapping of a single gene with RNA-seq data that are read 

counts. Therefore, we consider a single gene and study the 
association of its expression with the j th candidate eQTL. 
Let yi be the total read counts mapped to this gene in the 
ith sample, where i = 1,… , n and n is the sample size. We 
model yi using the negative binomial(NB) distribution as 
they are sparse count data. The NB distribution allows over-
dispersion (the variance exceeds the mean) estimation. Let 
fNB(yi;�i,�) be the probability mass function for a NB dis-
tribution with mean �i and dispersion parameter �:

where Γ(⋅) is the gamma function. It’s easy to find that the 
variance Var(yi) = �i + ��2

i
 , in which ��2

i
 is the over-dis-

persion part. As the over-dispersion parameter � converges 
to 0 , fNB(yi;�i,�) converges to fp(yi;�i) = �

yi
i
e−�i∕yi! , 

which is the probability mass function for Poisson distribu-
tion with mean parameter �i . Let �i be a set of p covari-
ates and � = (�1,… , �p)

� be the regression coefficients, and 
�G = (R, a, d, l)� be the genetic effects from genotypes ( G ) 
of the eQTL on Y  , where R is the baseline, a , d and l are the 
additive, dominance and imprinting effects from G , respec-
tively. The covariate effect of G = Gi and covariates � = �i 
on the gene expression, can be formulated through the fol-
lowing log-linear regression model

where �(Gi, �G) is the function reflecting the genetic effects.
For a bi-allelic locus, let the major and minor alleles 

of the j th candidate eQTL as A1 and A2 , respectively. The 
genotype G takes four possible values �⃗A1A1,

�⃗A1A2 ,  �⃗A2A1 and 
�⃗A2A2,, the first allele of which with arrow denotes the pater-
nal allele and the second allele denotes the one originated 
from the maternal side. We use p11, p12, p21 and p22 to denote 
genotype frequencies in the population, and use M to denote 
the number of variant allele A2 , which takes values of 0, 1, 1 
and 2 for the four genotypes separately. M = 1 + p22 − p11 
and V = (p11 + p22) − (p11 − p22)

2 are the mean and variance 
of M.

For estimation of the genetic effects, there are different 
methods we can epress the genetic effect function �(Gi, �G) . 
Early in 2013, we proposed a unified orthogonal framework 
to model genetic variants displaying imprinting effects 
for quantitative traits (Xiao et al. 2013). We proposed two 
related methods for identifying genetic variants influences 
on quantitative traits with different characteristics, the sta-
tistical and functional POE methods. The statistical POE 
method in Xiao et al. (2013) was claimed to be partially 
orthogonal and allows for imprinting effect detection while 

(1)

fNB(yi;�i,�) =
Γ(yi + 1∕�)

yi!Γ(1∕�)

(

1

1 + ��i

)1∕�

×

(

��i

1 + ��i

)yi

, yi = 0,1, 2,…

(2)log(�i) = ��
�i + �(Gi, �G),
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maintaining sufficient power for main allelic effects (i.e., 
the additive and dominance effects) in certain conditions. 
Motivated by that study, we here develop �(Gi, �G) in a pop-
ulation-referenced formulation with an orthogonal model, 
termed Stat-POE model, generated from reparameterization 
procedure:

With the orthogonality property, this model allows for un-
correlated estimation of the genetic effects including the 
additive, dominance and imprinting effects. Such orthogo-
nal model also enables straightforward model comparison 
with nested genetic models (Alvarez-Castro and Carlborg 
2007). Note that we continued to use the same terminol-
ogy of the Stat-POE model as what we used in Xiao et al., 
2013, although the Stat-POE model in this study as shown 
in Eq. (3) is a newly proposed model that is fully orthogonal.

For a functional model without the orthogonalization 
property but with a POE component, the genetic effect func-
tion �(Gi, �G) can be expressed as

from which we obtain

where �iA1A1
,�iA1A2

,�iA2A1
 and �iA2A2

 are the underlying 
means of the read counts for subjects with the four geno-
types, respectively. The additive effect a measures the 
average fold change of gene expression between the two 
homozygotes; the dominance effect d measures the deviation 
of the heterozygotes from its additive expectation; and the 
imprinting effect l reflects the different effect from the two 
types of heterozygotes. Following the notations in Alvarez-
Castro and Carlborg (2007), the model in Eq. (5) is defined 
as a functional POE (Func-POE) model, or a natural model 
since it uses natural effects of allele substitutions as param-
eters, mainly focusing on the biological properties (Alvarez-
Castro and Carlborg 2007).

(3)𝜔
�

Gi, �G

�

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

R −Ma − 2p22
�

p12 + p21
�

d∕V ,

R +
�

1 −M
�

a + 4p11p22d∕V − 2p21l∕
�

p12 + p21
�

,

if Gi =
�⃗A1A1

if Gi =
�⃗A1A2

R +
�

1 −M
�

a + 4p11p22d∕V + 2p12l∕
�

p12 + p21
�

,

R +
�

2 −M
�

a − 2p11
�

p12 + p21
�

d∕V ,

if Gi =
�⃗A2A1

if Gi =
�⃗A2A2

(4)𝜔
�

Gi, �G

�

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

R

R + a + d − l,

if Gi =
�⃗A1A1

if Gi =
�⃗A1A2

R + a + d + l,

R + 2a,

if Gi =
�⃗A2A1

if Gi =
�⃗A2A2

(5)

a =
1

2
log

(

𝜇
iA⃗2A2

∕𝜇
iA⃗1A1

)

,

d =
1

2
log

(

𝜇
i⃗A1A2

+𝜇i
A⃗2A1

𝜇i
A⃗2A2

+𝜇i
A⃗1A1

)

l =
1

2
log

(

𝜇
iA⃗2A1

∕𝜇
iA⃗1A2

)

,

,

The general orthogonal and functional models have pre-
sented different properties for various application scopes 
in detecting epistasis, gene environment interactions and 
parent-of-origin effects in quantitative traits and qulitative 
traits (Ma et al. 2012; Xiao et al. 2013, 2014).

Parameter estimation and hypothesis testing

To estimate the genetic effects and POE, we can write the 
likelihood based on the data 

(

yi,Xi,Gi

)

 (i = 1, 2, ...N) as

where INB(y1,… , yN) is an indicator function which is equal 
to 1 if a negative binomial distribution is used and 0 if a Pois-
son distribution is used.

With Eq. 2.4, the maximum likelihood estimator (MLE) 
of the model parameters (��, �G) with �� ≜ (�′,�)� can be 
estimated by the following iterative procedure.

1.	 Initialization: we first fit a null model using Poisson 
regression using the covariate �i , and estimate � , using 
a Newton–Raphson optimization algorithm based on 
formulas given in Appendix A.1. Subsequently, a score 
test is conducted for the over-dispersion parameter � 
where the hypothesis testing procedure is illustrated in 
Appendix A.2. If the p value of the score test is smaller 
than a cutoff value, e.g., � = 0.05 , we estimate a nega-
tive binomial regression model for which the regression 
parameters are denoted �� . The details of the iterative 
formulas for estinating � and � are given in (A.10) and 
(A.11) in Appendix A.3, which are based on the itera-
tively re-weighted least squares method (Green 1984) 
and the Newton–Raphson iterative method, respectively.

2.	 Iteration: (a) given � or �� , we estimate �G by the New-
ton–Raphson method illustrated in Appendix B; (b). 
Given �G , we estimate � by a Poisson regression with 
offsets �(Gi, �G) , or estimate �� by a negative binomial 
regression with offsets �(Gi, �G) . The estimation for � 
under the Poisson regresion is the same as that in the 
initialization step with the first and second derivatives 

(6)

L(�, �G,�;{yi, �i}
N

i=1
)

=

N
∏

i=1

fNB(yi;�i(�, �G),�)
INB(y1,…,yN )

fP(yi;�i(�, �G))
1−INB(y1,…,yN ),
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given in Appendix B.6 for the Stat-POE model and 
Appendix B.8 for the Func-POE model, respectively. 
Under the negative binomial regression, the estimation 
method for �� described in the the initialization step 
is also used here with the detailed forlumas given in 
Appendix B.5 for the Stat-POE model and in Appendix 
B.7 for the Func-POE model, respectively.

3.	 Termination: until iterate steps (1) and (2) estimate of 
all the parameters converge.

To assess whether each covariate in the model is signifi-
cant on the read counts of the gene expression, statistical 
hypothesis testing will be performed. We constructed three 
testing methods including the likelihood ratio test (LRT), 
score test and Wald test as follows. For example, the of addi-
tive effect was tested using the hypotheses

Denote � = (�
�

�
, �

�

G
)� for the Negative Binomial (NB) 

regression, or � = (��, �
�

G
)� for the Poisson regression, the 

unrestricted MLE and restricted MLE under (Appendix D.1) 
obtained by the algorithm given in the above section are 
denoted as �̂ and ̂̃𝜃, respectively. Without loss of generality, 
we put the parameter a in the first position of � and denote the 
other parameters as � , i.e. � = (a, ��)� . Then the score function 

for � is U(�) =

[

�l(�)

�a
�l(�)

��

]

 , and the expected fisher information 

matrix is I(�) = −E

[

�2l(�)

�a2
�2l(�)

�a���

�2l(�)

���a

�2l(�)

�a2

]

 ≜
[

Iaa(�) Ia�(�)

I�a(�) I��(�)

]

 , where 

l(�) is the log-likelihood function given as in Appendix B.1 
for NB regression and the Stat-POE model, in Appendix B.2 
for Poisson regression and statistical model, in Appendix B.3 
for NB regression and the Func-POE model, and in Appendix 
B.4 for Poisson regression and the Func-POE model. The for-
mulas of U(�) and I(�) are given in Appendix C. The LRT 
statistic is

According to the theory from Rao (2005), in our statisti-
cal setting, the score test statistic is defined as

where Jaa(�) = (Iaa(�) − Ia�(�)I
−1
��
(�)I�a(�))

−1.
Moreover, the Wald test statistic is defined by:

(7)H0 ∶ a = 0 vs H1 ∶ a ≠ 0.

(8)TL = 2[l(�̂) − l()].

(9)TS =

(

𝜕l(�)

𝜕a

)2

| ̂̃𝜃
Jaa(�)| ̂̃𝜃 .

(10)TW =
â2

Jaa(�)|�̂
.

Under H0 , the statistics TL , TS , and TW all converge to �2
1−

 
distributions. For a given significance level � , we reject H0 
when the observed value of the statistics are greater than 
�2
1,1−�

 . The process of the hypothesis testing for the other 
parameters can be implemented in a similar manner.

Simulations

To evaluate the performance of the proposed statistical 
methods in eQTL mapping with RNA-seq data, we carried 
out extensive simulation studies in realistic settings. First, 
we compared the statistical power of the Stat-POE and Func-
POE methods in detecting the main allelic effects (i.e., the 
additive and dominance effects) and POE. We simulated yi , 
the total number of read counts of a gene in the ith sample as 
being generated from a negative binomial distribution with 
�iG = exp

(

0.1xi + �
(

Gi, �G
))

 . The over-dispersion param-
eter = 0.2 and the covariate X was a continuous variable 
� ∼ N(0,1) . To evaluate the performance of the methods 
in estimating both genetic effects and over-dispersion, we 
generated data with different sample sizes N = 50, 100, 200 
and 500, respectively. Hardy–Weinberg Equilibrium (HWE) 
proportion was used so that the genotype frequencies in the 
samples were set at [p11, p12, p21, p22] = [0.36, 0.24, 0.24, 
0.16]. In addition to the main scenarios of HWE proportions, 
non-HWE genotype proportions were also simulated that 
the proportions of two heterozygotes were different, [p12, 
p21] = [0.20, 0.28] or [p12, p21] = [0.28, 0.20]. The over-dis-
persion parameter was set at empirical values that was 0.2 or 
0.5. The additive effect α and dominance effect δ were both 
fixed at values of log (1.2) where the values of 1.2 reflected 
the fold change of the logarithm mean shift of the genotypic 
values, referring to Eq. (5). The POE parameter ι was set at 
log (1.1) or log (1.2), respectively.

Each simulation was replicated 500 times to evaluate the 
performance of the Stat-POE and Func-POE methods. Rela-
tive bias and mean square of errors (MSE) were calculated 
for each parameter in the different scenarios to evaluate 
the estimation accuracy. The estimation relative bias was 
defined as the difference between estimated value and the 
true parameter value and then divided by the true parameter 
value. We also used simulated data to quantify the statistical 
power and Type I error rates of the methods. To illustrate the 
performance of the proposed methods in detecting genetic 
effect terms and POE, the statistical power was calculated 
using a range of different critical values. Type I error was 
calculated under the null model where there was no genetic 
effect or POE for the three testing methods, the LRT, Wald 
and score tests.
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Application to a HapMap RNA‑seq dataset

Datasets

We used an RNA-seq dataset from 30 HapMap Cau-
casian samples obtained from the NCBI Bioproject 
(PRJNA385599). The samples were collected from lympho-
blastoid cell lines from 15 males and 15 females. For most 
of these samples, the RNA reads were 150 bp paired-end 
reads, with an additional run with 75 bp paired-end reads. 
The median of the total number of reads for these 30 sam-
ples was approximately 20 million. All of these reads were 
mapped to hg38 human reference genome using Tophat2 
(Zhabotynsky et al. 2019).

Since all of these samples were from children of fam-
ily trios, the parents of these children were also part of the 
samples included in the 1000 Genomes Project (2012). For 
these 30 trios, the HapMap project genotyped about 3.9 mil-
lion SNPs. Genotyping data of the 30 trios were used to 
obtain the phased genotype of the children. The phasing and 
imputation of these 30 trios were conducted by Zhabotynsky 
et al.’s study, from where the phased and imputed geno-
types in our study were directly obtained (Zhabotynsky et al. 
2019). Briefly, SHAPEIT2 (Delaneau et al. 2014) was used 
for phasing and IMPUTE2 (Howie et al. 2012) was used for 
imputation against the 1000 Genome reference panel con-
taining 2504 individuals and ~ 82 million SNPs. Based on 
the phased and imputed SNPs, we had 6,211,048 imputed 
SNPs of high confidence in total, the ones with at least one 
heterozygote in the sample which were all informative.

Identification of imprinted genes and genes 
with dominance effect

We selected 22 known imprinted genes based on the list 
reported by a recent publication (Jadhav et al. 2019). These 
genes were selected because they had abundant expression 
in the 30 samples. The genes and related information are 
listed in Supplementary Table 1. For each potential imprint-
ing gene, all SNPs in the gene coding region were defined 
as candidate cis-eQTLs. For each SNP and gene expression 
pair, the Stat-POE method was applied to detect candidate 
cis-eQTLs with additive, dominance and POE effects. Four 
covariates were adjusted in the model including the total 
read counts per individual and the first three principal com-
ponents computed from the matrix of normalized expres-
sion to remove the effect from potential confounders. In all 
of the above hypothesis testing, the Benjamini–Hochberg 
(BH) method was used for multiple comparisons to adjust 
the p-values obtained from the LRTs (Benjamini and Hoch-
berg 1995). We tested the POE of the previously reported 
imprinted genes in Supplementary Table 1 to evaluate the 

performance of our methods. For novel discovery of genetic 
effects of these potential imprinting genes, we tested the 
additive and dominance effects simultaneously.

Results

Simulations

The statistical power of the Stat-POE and Func-POE meth-
ods was investigated for POE at two scenarios with differ-
ent levels of POE: (a) a small POE with ι = log(1.1) and (b) 
a moderate POE with ι = log(1.2). The results are shown 
in Figs. 1, 2 for these two scenarios, respectively. In both 
scenarios, the additive and dominance effects were fixed at 
log (1.2). In the simulations, to demonstrate the desirable 
performance of the Stat-POE method when the effect size 
was relatively too small to detect, we evaluated the methods 
at a fixed and small fold change in both overall allelic effects 
(i.e., additive and dominance effects). Consequently, even at 
a sample size of 50 with moderate over-dispersion (ϕ = 0.2), 
the Stat-POE method presented around 70.8% power to 
detect genetic effect at 1.2-fold change in additive effect, 
corresponding to an effect size of log(1.2) = 0.18 (Fig. 1). 
To detect POE at the fold change of 1.2, the Stat-POE and 
Func-POE methods both reached a statistical power of 83% 
with a reasonable sample size of 100 (Fig. 2). Even with 
a very small effect size from POE at a fold change of 1.1, 
corresponding to an effect size of log (1.1) = 0.10, the meth-
ods yielded 61% power when the sample size was 200, and 
91% when the sample size was 500 (Fig. 1). As expected, 
the Stat-POE method yielded the same power in detecting 
POE but a more desirable power in detecting main genetic 
effects compared to the Func-POE model (Figs. 1, 2). We 
also simulated the proportion of non-HWE that genotype 
frequencies of the two heterozygotes are unequal. The Stat-
POE model always outperformed the Func-POE model in 
detecting additive effects, though it is not always the case for 
detection of the dominance effect (Supplementary Figs. 1, 
2). In conclusion, the Stat-POE method outperformed the 
Func-POE method in most simulation scenarios and these 
two methods all achieved sufficient power for detection of 
POEs with a practical sample size for family data (N = 100).

With the simulated data, we also evaluated the estima-
tion bias for all the parameters 

(

�, �G,
)

 estimated from the 
Stat-POE model. Table 1 shows that the estimation of all 
genetic effects achieved higher accuracy when sample size 
increased. Interestingly, the estimation of the covariate coef-
ficient � and over-dispersion parameter � was not notably 
affected by the sample sizes. Also, the estimation of genetic 
effects was not obviously affected by the value of the over-
dispersion parameter. These results revealed the accurate 



1112	 Human Genetics (2020) 139:1107–1117

1 3

and robust estimation of the covariates and over-dispersion 
parameters determined using the Stat-POE model. Moreo-
ver, large sample sizes and small over-dispersion ensured 
better overall performance of the proposed methods.

We observed the global trend of the type I error 
approaching the nominal level for all tests of both Stat-
POE and Func-POE methods when sample size increases. 
The overall type I error rate of the LRT was closer to the 
nominal level than were the rates for the score and Wald 
tests (Table 2). Although there were slightly inflated false 
positives in detecting genetic effect and POEs when sample 
sizes were small, the type I error rates were close to nominal 
levels for relatively large sample sizes. Also, the score test 
achieved approximately equivalent performance with the LR 
tests given large sample sizes (for example, when ϕ = 0.5, 
N = 500). Notably, the type I errors for detecting the genetic 

effects was comparable between the Stat-POE and Func-
POE models in most scenarios.

Real data application to HapMap parent–
child trio data

Using 30 children of the family trios from the HapMap pro-
ject, we applied the proposed Stat-POE methods to estimate 
the additive and imprinting effects for 22 genes with pre-
vious evidence of imprinting. These selected genes were 
identified as imprinted genes using 296 phased trios from the 
1000 Genomes Project and the Genome of the Netherlands 
participants (Jadhav et al. 2019).

With the proposed Stat-POE method, we identified 33 
significant cis-eQTLs (with adjusted p values in additive 

Fig. 1   Statistical power to detect additive, dominance and POE effect 
when a–c overdispersion φ = 0.2 and d–e φ = 0.5 for various samples 
sizes, using Stat-POE model (stat) or Func-POE model (func).The 
covariate coefficient � = 0.1 , the sample size (n) was set at 50, 100, 
200 and 500, respectively. Addi additive effect, domi dominant effect, 

impr imprinting effect, stat statistical model, func functional model. 
The additive effect α = log(1.2), dominant effect δ = log(1.2), imprint-
ing effect ι = log(1.1). The genotype frequencies in the samples were 
set at [p11, p12, p21, p22] = [0.36, 0.24, 0.24, 0.16]. Score test results 
are shown
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effects < 0.05) for seven genes (LPAR6, RB1, PXDC1, 
IGF1R, AC069277.2, IGF2BP3 and SNRPN) (Supplemen-
tary Table 2). Among them, most candidate cis-eQTLs 
presented maternal expression pattern in regulating the 
gene expression. In addition, we identified six genes with 
significant imprinting effects, which were LPAR6, PER3, 
RB1, PXDC, IGF1R and IGF2BP3 with adjusted p val-
ues < 0.05 (Table 3). Among the significantly imprinting 

genes, the gene expression of LPAR6 and IGF1R had signifi-
cant regulation from the candidate cis-eQTLs rs11633209, 
rs728075 and rs7329291 in additive effect (adjusted p val-
ues = 1.96 × 10–66, 3.57 × 10–64 and 3.57 × 10–64). Interest-
ingly, we also discovered two novel genes that presented 
significant dominance effect in gene expression (Table 4), 
including RB1 from multiple candidate cis-eQTLs (adjusted 
p value = 3.02 × 10–80) and IGF1R from SNP rs4965238 

Fig. 2   Statistical power to detect additive, dominance and POE effect 
when a–c overdispersion φ = 0.2 and d–e φ = 0.5 for various samples 
sizes, using Stat-POE model (stat) or Func-POE model (func).The 
covariate coefficient � = 0.1 , the sample size (n) was set at 50, 100, 
200 and 500, respectively. Addi additive effect, domi dominant effect, 

impr imprinting effect, stat statistical model, func functional model. 
The additive effect α = log(1.2), dominant effect δ = log(1.2), imprint-
ing effect ι = log(1.2). The genotype frequencies in the samples were 
set at [p11, p12, p21, p22] = [0.36, 0.24, 0.24, 0.16]. Score test results 
were shown

Table 1   Simulation results with different sample sizes

The estimation relative bias was defined as the difference between estimated value and true parameter value divided by the true parameter value. 
Relative bias and mean square of errors (MSE) have been multiplied by 100. for model parameters including additive effect (α), imprinting effect 
(ι), covariate (β), and dispersion parameter (φ)

Over-dis-
persion

True POE 
effect size

N = 200 N = 500

Bias MSE Bias MSE

α δ ι α δ ι α δ ι α δ ι

0.2 log(1.1) − 0.98 1.96 − 0.47 0.21 0.44 0.20 1.15 − 0.83 2.35 0.09 0.18 0.07
0.2 log(1.2) − 1.80 1.67 − 1.12 0.21 0.39 0.22 − 0.18 − 0.03 − 0.41 0.09 0.18 0.08
0.5 log(1.1) − 3.48 − 1.57 − 6.65 0.49 1.08 0.58 − 2.47 0.46 − 1.84 0.20 0.40 0.19
0.5 log(1.2) − 0.71 2.13 0.66 0.52 1.04 0.52 − 0.34 0.85 0.07 0.22 0.42 0.17
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(adjusted p value = 1.37 × 10–67). Among the identified genes 
presenting dominance effect in eQTL mapping, the RB1 
gene located on chromosome 13 was a tumor suppressor 

gene, the mutation inactivation of which has been found 
to be the cause of human cancer (Chinnam and Goodrich 
2011). It was also found to be an imprinting gene earlier in 

Table 2   Type I error of the 
methods in detecting genetic 
effects

Each simulation was replicated 1000 times
Stat Stat-POE model, Func Func-POE model, α additive effect, δ dominant effect, ι imprinting effect, � 
dispersion parameter, LRT likelihood ratio test

Model LRT Wald test Score test

α δ ι α δ ι α δ ι

� = 0.2
 N = 50 Stat 0.062 0.053 0.060 0.085 0.073 0.079 0.079 0.071 0.080

Func 0.067 0.057 0.060 0.090 0.073 0.079 0.086 0.071 0.080
 N = 100 Stat 0.047 0.044 0.053 0.056 0.063 0.068 0.058 0.061 0.069

Func 0.051 0.042 0.053 0.064 0.064 0.068 0.059 0.061 0.069
 N = 200 Stat 0.069 0.061 0.051 0.082 0.068 0.058 0.079 0.066 0.059

Func 0.068 0.057 0.051 0.085 0.066 0.058 0.081 0.064 0.059
 N = 500 Stat 0.046 0.047 0.050 0.058 0.059 0.068 0.056 0.060 0.069

Func 0.051 0.048 0.050 0.065 0.060 0.068 0.062 0.060 0.069
� = 0.5
 N = 50 Stat 0.059 0.065 0.064 0.075 0.083 0.079 0.072 0.079 0.070

Func 0.056 0.065 0.064 0.069 0.085 0.079 0.071 0.080 0.070
 N = 100 Stat 0.055 0.049 0.056 0.061 0.063 0.063 0.061 0.059 0.065

Func 0.052 0.048 0.056 0.060 0.059 0.063 0.062 0.053 0.065
 N = 200 Stat 0.054 0.049 0.053 0.068 0.056 0.058 0.064 0.053 0.058

Func 0.065 0.049 0.053 0.070 0.056 0.058 0.070 0.056 0.058
 N = 500 Stat 0.058 0.056 0.045 0.062 0.062 0.052 0.062 0.062 0.051

Func 0.057 0.058 0.045 0.064 0.062 0.052 0.063 0.061 0.051

Table 3   A list of genes with potential imprinting effects (p values < 0.05)

ATL alternative allele, a additive effect; d: dominance effect; l: imprinting effect; expression: imprinting status. The p values were adjusted by 
the BH multiple comparison method

ID Gene Chr SNP Position Allele ATL p value.a p value.d p value.l Expression

ENSG00000049246 PER3 Chr1 rs67537516 7864693 G A 0.96 1 0 Maternal
ENSG00000139687 RB1 Chr13 rs61949059 48923973 T G 0.18 1 6.26E−82 Maternal
ENSG00000139687 RB1 Chr13 rs150098624 49001371 T C 0.9 1 3.06E−80 Paternal
ENSG00000139687 RB1 Chr13 rs4258502 48989564 G A 0.9 1 3.06E−80 Paternal
ENSG00000139687 RB1 Chr13 rs9568143 48996494 T A 0.9 1 3.06E−80 Paternal
ENSG00000140443 IGF1R Chr15 rs4965238 99456357 T C 0.78 1.37E−67 1.12E−71 Paternal
ENSG00000140443 IGF1R Chr15 rs11633209 99221205 A T 1.96E−66 1 5.01E−71 Maternal
ENSG00000168994 PXDC1 chr6 rs113644426 3738592 C T 0.98 1 4.14E−69 Paternal
ENSG00000139679 LPAR6 Chr13 rs4942796 49011882 T C 0 1 5.81E−64 Maternal
ENSG00000139679 LPAR6 Chr13 rs728075 48999087 G A 3.57E−64 1 5.81E−64 Maternal
ENSG00000139679 LPAR6 Chr13 rs7329291 48999148 G A 3.57E−64 1 5.81E−64 Maternal
ENSG00000139679 LPAR6 Chr13 rs4942795 49003191 A G 0 1 7.86E−64 Maternal
ENSG00000139679 LPAR6 Chr13 rs7998359 48983977 G A 0 1 7.86E−64 Maternal
ENSG00000140443 IGF1R Chr15 rs62023801 99295429 T C 0.99 1 0.001 Maternal
ENSG00000140443 IGF1R Chr15 rs6598236 99299001 G A 1 1 0.001 Maternal
ENSG00000136231 IGF2BP3 Chr7 rs56259943 23400797 C T 0.15 1 0.0137 Maternal
ENSG00000136231 IGF2BP3 Chr7 rs73073066 23447351 C T 0.22 1 0.0207 Maternal
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2009 (Kanber et al. 2009). Interesting, IGF1R was the only 
gene that presented both dominance effect and imprinting 
effect from the candidate cis-eQTL rs4965238 (Table 4).

In conclusion, our real data application validated sev-
eral existing imprinting genes. Additionally, we mapped 
candidate eQTLs for these imprinted genes using our pro-
posed methods. More interestingly, we discovered that a few 
genes presented significant dominance effect which might 
be involved in tumorigenesis.

Discussion

This article stands on recent advances in genetic modeling 
for carrying out new methodological developments to the 
aid of the analysis of eQTL mapping with genetic imprinting 
detection. We developed two statistical methods. The Stat-
POE model provides a solution that allows for additive-by-
dominance genetic effects for cis-eQTL mapping with RNA-
seq data. The Func-POE is an alternative method which 
focuses on biological interpretations. We demonstrated the 
desirable power and preserved Type I error of the methods 
in most scenarios with un-biased estimation of the genetic 
effects and over-dispersion of the RNA-seq data. The appli-
cation to the HapMap project validated previously reported 
imprinting genes and discovered significant cis-eQTLs for 
these imprinted genes. More interestingly, we identified two 
novel imprinting genes with significant dominance effect.

In the parameter estimation and hypothesis testing, we 
implemented the Stat-POE and Func-POE with three differ-
ent tests, including the LRT, score and Wald tests. Among 
these three tests, the score and Wald tests are known to have 
poorer performance and less reliable results with small sam-
ple sizes by comparing to LRT (Table 2). From theory and 
our simulations (results not shown), the score test usually 
outperformed the other two in statistical power. To achieve 
a well-balanced Type I error and statistical power in detect-
ing these genetic effects, we will suggest users to use the 
LRT when sample sizes are relatively small and score test 
otherwise.

We developed two imprinting effect models with RNA-
seq data, including the Stat-POE model and Func-POE 
model both of which are appropriate for estimation of the 
genetic effects. The commonly used functional approach 
(i.e., Func-POE) is based on the observed genotype instead 
of the population frequencies therefore the results from 
which are easier to interpret. The disadvantage is that the 
functional model generates non-orthogonal estimates of 
regression coefficients when dominance components are 
included in the model. In contrast, parameters from appli-
cation of the Stat-POE model describe the variance compo-
nents rather than allele substitution effects, so may be seen 
to be having a less clear interpretation but it renders more 
straightforward model selection. Indeed, these two models 
can be transformed to each other in the estimates of the 
parameters, but the test statistics varied in formulas. (Xiao 

Table 4   A list of genes with potential dominance effects (p values < 0.05)

The p values were adjusted by BH multiple comparison
ATL alternative allele, a: additive effect, d dominance effect, l imprinting effect; expression: imprinting status

ID Gene Chr SNP Position Allele ATL p value.a p  value.d p  value.l Expression

ENSG00000139687 RB1 Chr13 rs9596041 48898297 C T 0.9 0 1
ENSG00000139687 RB1 Chr13 rs2122276 48893306 T C 0.9 0 1 –
ENSG00000139687 RB1 Chr13 rs1529370 48903892 G T 0.9 0 1 –
ENSG00000139687 RB1 Chr13 rs1427167 48885561 A G 0.9 0 1 –
ENSG00000139687 RB1 Chr13 rs1449574 48887861 A T 0.9 0 1 –
ENSG00000139687 RB1 Chr13 rs7490216 48897733 A T 0.9 0 1 –
ENSG00000139687 RB1 Chr13 rs4141954 48895766 A G 0.9 0 1 –
ENSG00000139687 RB1 Chr13 rs7985609 48945285 T G 0 0 1 –
ENSG00000139687 RB1 Chr13 rs9568118 48887412 T C 0.99 3.02E−80 1 –
ENSG00000139687 RB1 Chr13 rs1449576 48887803 C T 0.99 3.02E−80 1 –
ENSG00000139687 RB1 Chr13 rs1449577 48887205 G T 0.99 3.02E−80 1 –
ENSG00000139687 RB1 Chr13 rs6561483 48885946 T C 0.99 3.02E−80 1 –
ENSG00000139687 RB1 Chr13 rs9596038 48889438 T C 0.99 3.02E−80 1 –
ENSG00000139687 RB1 Chr13 rs6561482 48884687 A G 0.99 3.02E−80 1 –
ENSG00000139687 RB1 Chr13 rs1834735 48885404 C T 0.99 3.02E−80 1 –
ENSG00000139687 RB1 Chr13 rs9596040 48889980 T C 0.99 3.02E−80 1 –
ENSG00000140443 IGF1R Chr15 rs4965238 99456357 T C 0.78 1.37E−67 1.12E−71 Paternal
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et al. 2013 Text S5). As a result, the orthogonal model is pre-
senting better power than the functional model especially in 
detecting additive effect. To be noted, since the parameters 
are different biological properties and interpretations in the 
two models, the comparison of these two models should be 
understood in terms of the comparison of testing a genetic 
effect and/or the imprinting effects when the effect is exist-
ing, instead of the concrete values of the parameters. For 
example the orthogonal model presented increased power 
than the functional model when additive effect exists (Xiao 
et al. 2014).

Several alternative imprinting effect testing methods have 
been described in previous literature (Álvarez-Castro 2014; 
Palowitch et al. 2018; Wolf and Cheverud 2009; Xiao et al. 
2013). The Xiao et al. (2013) was indeed the initial attempt 
of our reseach team to implement imprinting effect detec-
tion with a one-locus orthogonal model which provided both 
statistical (i.e., population-referenced) and functional (which 
are not population-referenced) formulations of the genetic 
effects. This imprinting model was shown to be orthogo-
nal in certain conditions. Then Álvarez-Castro (2014) pro-
vided a formula similar to the model in our method (Eq. 3) 
for imprinting detection which was claimed to be fully 
orthogonal. However, their model in formula (10) was not 
completely accurate (might be due to typo or some other 
reasons). The developments by Wolf and Cheverud (2009) 
proposed a two-locus model that included epistatic inter-
actions involving imprinting effects. They also provided 
a model (Wolf and Cheverud 2009, Appendix 2) with an 
explicit imprinting parameter that is orthogonal under the 
Hardy–Weinberg proportions. Nevertheless, none of the 
above methods provides explicit expressions for performing 
variance decompositions or addressing the hypothesis testing 
problems. In a more recent article of Palowitch et al. (2018), 
eQTL analyses were performed using a non-linear regression 
model for log-transformed expression, termed ACME (Addi-
tive Contributions, Multiplicative Error), assuming additive 
allelic effects on the original expression scale. Their count-
based modeling approach through some transformations of 
expression is different from the traditional Poisson or NB 
generalized linear models for the count-based RNA-seq 
data. Also, it lacks the ability to test the imprinting effect 
and overdispersion of the RNA-seq data hence it cannot be 
fairly compared to our methods. It is worthwhile noticing 
that none of the above methods have been implemented the 
coding to be used with RNA-seq data for eQTL mapping.

This is the first time the performance of the natural and 
orthogonal (NOIA) models have been evaluated in RNA-seq 
data analyses. The NOIA method was proposed by Alvarez-
Castro et al. in 2007 (Alvarez-Castro and Carlborg 2007) 
which was composed by a one-locus functional model and 

statistical/orthogonal model, with which we have exten-
sively implemented to the estimation of statistical epista-
sis, gene-environmental interactions and imprinting effect 
in genotype–phenotype mapping for quantitative traits and 
qualitative traits (Ma et al. 2012; Xiao et al. 2013, 2014). 
It has been shown that the one-locus statistical model was 
orthogonal independent of whether HWE was satisfied 
or not for quantitative trait analysis (Alvarez-Castro and 
Carlborg 2007). The conclusion can be straightforwardly 
extended to the NB or Poisson regressions in our study after 
implementation of the imprinting effect detection. Through 
implementing the developed methods in RNA-seq data, we 
provide new insights into eQTL mapping with powerful 
accurate estimation of genetic effects, covariates and over-
dispersion parameters, especially that the proposed Stat-POE 
model allows uncorrelated estimation of the genetic effects.

We also investigated the parameter estimation and 
hypothesis testing of the two models with NB regression and 
Poisson regression assumption of the read counts for differ-
ent application scope (results not shown). NB regression is 
suggested when the over-dispersion is relatively large and 
Poisson regression is suggested to be used for small over-
dispersion. For observed RNA-seq data with excessive 
zeros, for example, when estimated 𝜇

A⃗1A2

 or 𝜇
A⃗2A1

 in Eq. (5) 
equals to zero, we suggest adding one to the read counts to 
satisfy the hypothesis of data distribution. Fitting a zero-
inflated Poisson regression is another promising direction to 
address such problems, which warrants a future research 
goal.

Still, this study has several limitations. First, family data 
such as trios are needed to obtain the genotypes of heterozy-
gotes in the offspring. Imputation-based approaches might 
be useful for haplotype-based inference of the phase of the 
heterozygotes, such as BEAGLE (Browning and Browning 
2009). Second, borrowing information from the whole sam-
ples will allow for more accurate modeling of the RNA-seq 
data. A third important direction would be incorporating 
the testing of allele specific gene expression (ASE) as con-
ducted in Zhabotynsky’s work so that we can extend our 
work to model both ASE and POE for candidate cis-eQTLs 
(Zhabotynsky et al. 2019). The decreased cost of RNA-seq 
technology and future studies in methodology are warranted 
to achieve a more powerful estimation of decomposed vari-
ance from different genetic components.
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