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Abstract

Malaria has been the pre-eminent cause of early mortality in many parts of the world throughout much of the last five thou-
sand years and, as a result, it is the strongest force for selective pressure on the human genome yet described. Around one
third of the variability in the risk of severe and complicated malaria is now explained by additive host genetic effects. Many
individual variants have been identified that are associated with malaria protection, but the most important all relate to the
structure or function of red blood cells. They include the classical polymorphisms that cause sickle cell trait, a-thalassaemia,
G6PD deficiency, and the major red cell blood group variants. More recently however, with improving technology and
experimental design, others have been identified that include the Dantu blood group variant, polymorphisms in the red cell
membrane protein ATP2B4, and several variants related to the immune response. Characterising how these genes confer
their effects could eventually inform novel therapeutic approaches to combat malaria. Nevertheless, all together, only a small
proportion of the heritable component of malaria resistance can be explained by the variants described so far, underscoring

its complex genetic architecture and the need for continued research.

Introduction

Malaria has been the biggest cause of childhood mortality
globally for much of the last 5000 years. Although now com-
ing under some degree of control, mortality remains high
in many countries and worldwide there were an estimated
405,000 deaths from malaria in 2018 alone, with more than
90% of these deaths occurring in sub-Saharan Africa (WHO
2019). Historically, this pressure has resulted in the selection
of a wide range of genetic variants that confer protection
against malaria-specific death. This review aims to outline
some of the more important protective genetic variants that
have been identified so far, as summarized in the Table 1.
Understanding how these variants confer their protective
effects has the potential to inform novel preventative and
treatment approaches.
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Malaria can be caused by five different species of pro-
tozoan Plasmodium parasites: P. falciparum, P. vivax, P.
malariae, P. ovale and P. knowlesi. P. falciparum and P.
vivax are the most prevalent and result in the majority of
deaths (Escalante et al. 1995; Singh et al. 2004; Martinsen
et al. 2008; WHO 2019). The propagation of all malaria
parasites involves both a sexual cycle in mosquitoes and an
asexual cycle in humans, in which parasites first infect the
liver before becoming established in red blood cells (RBCs).
The clinically symptomatic blood-stage involves sequential
rounds of parasite multiplication that incorporate invasion
of merozoites into RBCs followed by their maturation into
trophozoites then schizonts, which ultimately rupture from
the RBC to release fresh merozoites which rapidly infect
new RBCs (Fig. 1). The asexual cycle gives rise to an
exponential multiplication of parasites in the blood and to
the pathogenic features of malaria that are observed in the
human host (Schellenberg et al. 1994; Rogier et al. 1999;
Snow et al. 2005). The parasite is able to evade the host
immune response by sequestering in the deep capillaries
(Rowe et al. 1995, 2009; Williams et al. 2002; Butthep et al.
2006). There are multiple points in the parasite lifecycle that
have impacted host genetic variation, but the majority of
the malaria-protective variants described so far have vari-
ous important impacts on the structure and function of the
RBC (Fig. 1).
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The selective force of malaria on the human
genome

The “malaria hypothesis” was first proposed by JBS Haldane
more than seventy years ago (Haldane 1949). He specu-
lated that the reason why thalassaemia was common in the
Mediterranean region was because it conferred a survival
advantage against malaria. At around the same time, Alli-
son (Allison 1954) and others were speculating that malaria
selection might also have explained the high frequency of
haemoglobin S (HbS) in malaria endemic areas. Both the
thalassaemias and HbS are disorders of haemoglobin that
are caused by various mutations in the a- and pB-globin genes
(HBA and HBB). It took many years for the veracity of these
hypotheses to be established beyond reasonable doubt, but
it is now clear that the HbS variant confers the strongest
protective effect against severe malaria that has yet been
described, with an effect size of >80% in heterozygous car-
riers (HbAS; sickle cell trait), while a-thalassaemia confers
a protective effect of approximately 40% in homozygotes
(MalariaGEN 2014; Ndila et al. 2018). Other protective red
blood cell (RBC) polymorphisms have also been shown to
occur at their highest frequencies in malaria endemic popu-
lations, including glucose-6-phosphatase (G6PD) deficiency,
the O blood group, and variants of the gene for complement
receptor 1 (CRI) (Kwiatkowski 2005; Williams 2016; Rowe
et al. 1997; Opi et al. 2018).

One of the first and most conclusive examples of malaria
effecting a strong selective pressure on the human genome is
the Duffy antigen receptor for chemokines (DARC), which is
expressed on red blood cell membranes and has roles as both
a chemokine receptor (Horuk et al. 1993; Pogo and Chaud-
huri 1995; Hadley and Peiper 1997) and an invasion receptor
for Plasmodium vivax merozoites (Miller et al. 1975, 1976;
Wertheimer and Barnwell 1989; Adams et al. 1990; Chitnis
and Miller 1994; Grimberg et al. 2007). DARC is encoded
by the Duffy blood group FY gene, that occurs in the form
of three common alleles with starkly differing global allele
frequency distributions: FY*A, FY*B and the “erythro-
cyte silent” FY*ES. The FY*ES allele, which results in the
absence of the Duffy antigen, is found at frequencies nearing
fixation in sub-Saharan Africa but is virtually absent in non-
African populations (Hamblin and Di Rienzo 2000; Howes
et al. 2011). The allele frequency difference of the FY*ES
allele across populations is the largest difference observed
in the human genome to date (Cavalli-Sforza, Menozzi, and
Piazza 1994), a strong indicator of positive natural selec-
tion (Hamblin and Di Rienzo 2000). These and similar data
suggest that malaria has been responsible for exerting the
strongest selective pressure on the human genome that has
so far been described (Flint et al. 1998; Tishkoff and Wil-
liams 2002).

Heritability of malaria

The extent to which variation in the incidence of malaria
is attributed to host genetic factors has been investigated in
a number of studies. Using pedigree-based variance com-
ponent analysis, studies conducted in Sri Lanka (Mackin-
non et al. 2000), Kenya (Mackinnon et al. 2005), Senegal
(Sakuntabhai et al. 2008) and Thailand (Phimpraphi et al.
2008) have established that additive genetic factors explain
approximately one quarter of the total variation in the inci-
dence of uncomplicated P. falciparum malaria and more than
one third of the variation in severe and complicated disease.
However, only 2% of this variance appears to be explained
by HbS and a-thalassaemia together, two of the most impor-
tant polymorphisms discovered so far in terms of their fre-
quencies and effect sizes (Mackinnon et al. 2005). This indi-
cates that the genetic architecture of malaria susceptibility
is much more complex than is currently understood and that
“missing heritability” might yet be explained by polygenetic
or epigenetic effects, or by gene—gene and gene-environment
interactions (Manolio et al. 2009).

Protective loci identified by linkage
and genomic epidemiology

Malaria associated genes have been identified through
numerous approaches including family-based studies that
have linked broad chromosomal regions to the risk of
malaria parasite carriage (Garcia et al. 1998; Rihet et al.
1998; Flori et al. 2003a, b; Timmann et al. 2007). Such early
studies were, however, limited in their ability to fine-map
the specific gene variants underlying the broad chromo-
somal linkage signals. More recently, genomic epidemiol-
ogy approaches such as case—control and cohort studies have
focused on characterising the allele frequency distributions,
effect sizes and directions of effect of various candidates
including HbS, a-thalassaemia, G6PD deficiency, and the
ABO blood group locus (Allison 1954; Bienzle et al. 1972;
Ruwende et al. 1995; Wambua et al. 2006; MalariaGEN
2014). While many have now been shown to be associated
with significant effects, recent studies suggest that these
known candidate genes only explain a small fraction of the
heritability of malaria and that there could be many other
genetic variants that are unaccounted for by the single-gene
study approach (Mackinnon et al. 2005; Verra, Mangano,
and Modiano 2009; Damena et al. 2019).
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Fig. 1 The blood-stage of the P. falciparum life cycle in the human host. Inset: illustration of the malaria-protective variants that have important
roles in the red blood cell (RBC). Image made using ©BioRender (https://biorender.com)

Novel resistance loci identified
by genome-wide association studies

Recent genome-wide association studies (GWAS) in malaria
endemic populations have confirmed many of the classical
malaria associated genes (MalariaGEN 2014, 2019) and
enabled the identification of additional novel associations
(Jallow et al. 2009; Timmann et al. 2012; Band et al. 2015;
Ravenhall et al. 2018; MalariaGEN 2019). There have been
various challenges with performing GWAS in African
populations (Teo et al. 2010; Damena et al. 2019). Afri-
cans have high levels of genomic diversity due to their long
ancestral history and, compared to non-African populations,
their genomes are characterized by shorter linkage disequi-
librium blocks between loci (Tishkoff and Williams 2002;
Conrad et al. 2006; Campbell and Tishkoff 2008; Jakobsson
et al. 2008; Tishkoff et al. 2009). The genotyping platforms
that were used in early GWAS studies therefore had low
tagging efficiency in these populations and resulted in rela-
tively weak associations, even at some of the best known
malaria associated loci such as HbS (Jallow et al. 2009).

@ Springer

Furthermore, few analyses have considered interactions
between genes and even fewer have incorporated genomic
data from the parasites or vectors that might be relevant
to patient outcomes (Damena et al. 2019). While such
approaches are now becoming increasingly feasible from a
computational perspective, they are currently limited by the
availability of such rich phenotypic data—an aspiration for
future studies. In the meantime, the performance of human-
only GWAS studies have been substantially improved by
the imputation of missing variants through the inclusion
in reference panels of more diverse African populations
(Band et al. 2013; Gurdasani et al. 2015, 2019; Malaria-
GEN 2019), the use of customised representative genotyp-
ing platforms that better capture the genomic diversity of
African populations (Gurdasani et al. 2015, 2019; Johnston
et al. 2017) and the additional deep sequencing of target loci
(Jallow et al. 2009; Band et al. 2015; Leffler et al. 2017). In
a recent study, the inclusion of a denser reference panel in
combination with sequence data from Phase 3 of the 1000
Genomes Project (Auton et al. 2015) significantly improved
the quality of variant calling in one severe malaria GWAS,
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including the identification of copy number variants that had
not been detected in an earlier analysis (Leffler et al. 2017).
Such improvements have recently led to the identification
of new associations, including variants in ATP2B4 which
encodes the major calcium transporter in RBCs, PMCA4,
and confers a 40% protective effect (Timmann et al. 2012;
Band et al. 2015; MalariaGEN 2019). The ATP2B4 variants
lead to reduced expression of the PMCAA4 protein, possibly
due to altered binding of transcription factors that regulate
PMCAA4 expression (Zambo et al. 2017; MalariaGEN 2019).
This reduced PMCA4 expression could lead to alterations
in intracellular calcium homeostasis and affect the devel-
opment of parasites during their intra-erythrocytic lifecy-
cle (Gazarini et al. 2003; Tiffert et al. 2005). More func-
tional studies are required to elucidate the exact protective
mechanisms.

A second recently described novel malaria resistance
gene involves a complex structural rearrangement in the gly-
cophorin gene cluster that results in the gain of two GYPB-A
hybrid genes to encode the Dantu blood group antigen (Lef-
fler et al. 2017). Glycophorins are sialoglycoproteins that
are abundantly expressed on the surface of RBCs and that
bear the antigenic determinants of the MNS blood groups
(Blumenfeld and Huang 1995, 1997). This locus provides an
exciting potential therapeutic target for P. falciparum thera-
pies because, akin to the story of P. vivax malaria, the gly-
cophorins have been shown to act as invasion ligands for the
Duffy-Binding-Like (DBL) domains of a range of P. falcipa-
rum merozoite proteins (Sim et al. 1994; Tolia et al. 2005;
Mayer et al. 2001, 2002, 2004, 2006, 2009). In homozygotes,
Dantu confers a strongly protective effect size of 74% against
all forms of severe falciparum malaria (Band et al. 2015,
Leffler et al. 2017, Ndila et al. 2018, MalariaGEN 2019).
Curiously, this polymorphism is found at highest frequencies
in East Africa, specifically in the coastal region of Kilifi,
and is rare or absent in other malaria endemic regions. One
possible explanation is that positive selection for the Dantu
polymorphism by malaria might historically have been bal-
anced by increased mortality from other diseases. Interest-
ingly, features of ancient balancing selection are seen at this
locus (Leffler et al. 2013; Band et al. 2015), underscoring the
fact that malaria could be one of a number of opposing evo-
lutionary driving forces acting on the glycophorin region, a
question that is currently being addressed in ongoing studies.

In a recent GWAS conducted in north-east Tanzania,
novel variants were identified in the immune genes IL-23R
and IL-12RB2 which were specifically found to be associ-
ated with protection against severe malaria anaemia (Raven-
hall et al. 2018). These genes encode vital pro-inflammatory
cytokine receptors which have important immunoregulatory
roles in protective immunity against malaria infections (Luty
et al. 2000; Malaguarnera et al. 2002; Ong’echa et al. 2008;
Zhang et al. 2010; Munde et al. 2017). In the same cohort,

signals of recent positive selection were also found at sev-
eral loci within the MHC region, immune-related genes that
could potentially inform malaria vaccine development.

Functional validation of malaria-protective
genes

Beyond identifying malaria-protective gene variants, inves-
tigations into the mechanisms through which these variants
confer their protective effects are critical to informing novel
approaches to intervention. Functional studies have led to the
elucidation of key steps in the molecular processes involved
in parasite invasion of host RBCs, with the seminal exam-
ple of the FY gene that encodes DARC (formerly known as
the Duffy blood group system of antigens). This discovery
led to further functional studies that identified the P. vivax
Duffy-binding protein (PvDBP) that is crucial for RBC inva-
sion (Miller et al. 1979; Haynes et al. 1988; Wertheimer
and Barnwell 1989; Chitnis and Miller 1994), which is now
undergoing clinical trials as a vaccine candidate (Chitnis and
Sharma 2008; Mueller, Shakri, and Chitnis 2015). Cases of
P. vivax infection in FY*ES individuals have more recently
been reported (Ryan et al. 2006; Menard et al. 2010; Ngassa
Mbenda and Das 2014; Lo et al. 2015; Abdelraheem et al.
2016; Niangaly et al. 2017). Functional work leading to the
discovery of transferrin receptor 1 (TfR1) as an important
alternative receptor for P. vivax recognition and invasion of
RBCs could explain these cases (Gruszczyk et al. 2018).
TfR1 is a receptor for the P. vivax reticulocyte binding pro-
tein 2b (PvRBP2b) and as such it offers a potential alterna-
tive vaccine target.

In the case of the most strongly protective variant against
P. falciparum, HbAS, several mechanisms of protection
have been proposed, including sickling of the infected RBCs
(Mackey and Vivarelli 1954; Miller, Neel, and Livingstone
1956), leading to increased clearance by the spleen (Luz-
zatto, Nwachuku-Jarrett, and Reddy 1970), impaired hae-
moglobin digestion (Pasvol, Weatherall, and Wilson 1978;
Pasvol 1980; Friedman 1978), and acquired host immunity
(Williams et al. 2005). More recently, Cyrklaff et al. showed
that the actin cytoskeleton network that directs RBC traffick-
ing of parasite encoded proteins, such as the P. falciparum
erythrocyte membrane protein-1 (PfEMP1), was impaired
in HbAS RBCs (Cyrklaff et al. 2011). Impaired trafficking
of parasite proteins to the surface of the RBC could explain
the observation that cytoadherence of parasitised RBCs to
the vascular endothelium, and binding of parasitised RBCs
to uninfected RBCs to form rosettes, are both significantly
reduced in HbAS RBCs (Carlson et al. 1994; Cholera et al.
2008; Opi et al. 2014). The latter observation is akin to that
postulated as the protective mechanism for blood group
O (Rowe et al. 1995, 2007; Udomsangpetch et al. 1993).
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Furthermore, impaired parasite growth and development in
HbAS RBCs has also been reported (McAuley et al. 2010;
Komba et al. 2009; Makani et al. 2010), with one recent
study demonstrating that oxygen-dependent polymerization
of HbS is responsible for P. falciparum growth inhibition
(Archer et al. 2018). Finally, immune-mediated protective
mechanisms have also been postulated for HbAS, as well as
a- and fB-thalassaemias, and G6PD deficiency. These include
enhanced antibody binding and phagocytosis of infected var-
iant RBCs, possibly due to oxidative damage of the RBC
membrane (Yuthavong et al. 1988,1990; Luzzi et al. 1991a,
b; Ayi et al. 2004; Cappadoro et al. 1998).

Technological advances have further aided the functional
validation efforts for newly identified malaria-protective
variants. Lessard et al. investigated the ATP2B4 locus in
detail using transcriptomics, epigenomics, and gene-edit-
ing, and found that the ATP2B4 GWAS SNPs mapped to
enhancer elements that regulated ATP2B4 gene expression
and subsequent intracellular calcium homeostasis (Lessard
et al. 2017). Functional annotation of the malaria-protec-
tive ATP2B4 SNPs in the recent GWAS carried out by the
Malaria Genomic Epidemiology Network also found that
these SNPs regulate ATP2B4 gene expression by disrupting
the promoter upstream of the gene’s transcription start site
(MalariaGEN 2019). Similarly, since the protective associa-
tion of Dantu was first discovered, the molecular basis of the
Dantu blood group antigen has been further resolved through
whole genome sequencing (Leffler et al. 2017). It is now
clear that Dantu consists of duplicate GYPB-A hybrid genes
whose encoded protein contains the extracellular domain
of glycophorin B and the transmembrane and intracellular
domains of glycophorin A (Leffler et al. 2017). This molec-
ular structure was further validated by fluorescent in situ
hybridization using single-molecule DNA fibres (fibre-
FISH) in lymphoblastoid cell lines (Algady et al. 2018). A
recent study elucidated the inhibitory impact of Dantu on
parasite invasion and, further, demonstrated that this pro-
tective effect was mediated by increased membrane tension
(Kariuki et al. 2018). These functional studies have provided
crucial insights into the biology of host-parasite interactions,
and this biological knowledge is critical in developing novel
intervention approaches for combating malaria.

Conclusion

Malaria is the first, and arguably still remains the best,
example of the impact that infectious diseases can have on
the human genome. While numerous genes have now been
identified that are strongly associated with the risk of differ-
ent forms of malaria, it is those relating to the structure or
function of RBCs for which the data are most compelling.
This is entirely consistent with the fact that for all but a brief

@ Springer

period during the incubation phase, the biological success
of malaria parasites in humans is entirely dependent on their
ability to invade, grow, and survive within RBCs. While
some, including HbAS, the thalassaemias and G6PD defi-
ciency, have been selected to extreme frequencies because
of their malaria-protective effects, in many cases the mecha-
nisms are either too poorly understood or too complex to
suggest plausible approaches to the development of new
treatments (Lelliott et al. 2015; Goheen, Campino, and Cer-
ami 2017). Perhaps the most promising in this regard are
polymorphisms in genes that are integral to the pathways
by which parasites gain entry to red blood cells. Of par-
ticular current interest is the Dantu mutation in the glyco-
phorin molecules that are important ligands in the parasite-
invasion process. Remarkably however, the mechanism by
which Dantu results in reduced invasion does not appear to
be through a specific impact on receptor-ligand interactions
but through a more non-specific mechanism whereby Dantu
results in increased red cell tension. While further work is
necessary, it is possible that drugs or small molecules could
be developed with a view to inducing increased tension in
non-Dantu subjects and thus providing therapeutic benefit
in both treatment and prevention.
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