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Abstract
It is estimated that one in 100 men have azoospermia, the complete lack of sperm in the ejaculate. Currently, ~ 20% of azoo-
spermia cases remain idiopathic. Non-obstructive azoospermia (NOA) is mostly explained by congenital factors leading to 
spermatogenic failure, such as chromosome abnormalities. The knowledge of the monogenic causes of NOA is very limited. 
High genetic heterogeneity due to the complexity of spermatogenesis and testicular function, lack of non-consanguineous 
familial cases and confirmatory studies challenge the field. The reported monogenic defects cause syndromic NOA phe-
notypes presenting also additional congenital problems and isolated NOA cases, explained by spermatogenic defects. The 
established and recently reported NOA genes (n = 38) represent essential guardians of meiosis, transcriptional and endo-
crine regulators of reproduction. Despite the list being short, 92% of these loci are predicted to functionally interact with 
each other (STRING analysis: average 5.21 connections/gene, enrichment P < 10–16). Notably, ~ 50% of NOA genes have 
also been implicated in primary ovarian insufficiency, amenorrhea and female genital anomalies, referring to overlapping 
mechanisms. Considering the knowledge from respective female phenotypes and animal models, exploring the scenarios 
of di/oligogenic and de novo mutations represent perspective directions in the genetic research of NOA. Knowing the exact 
genetic cause in each patient improves the management of infertility and other health risks (e.g., cancer), and facilitates the 
counseling of family members about their reproductive health. Uncovering the loci and biological processes implicated in 
NOA will also broaden the understanding of etiologies behind spermatogenic failure and promote the development of novel 
non-invasive treatments for male infertility.

Introduction

Male infertility can be caused by either quantitative or quali-
tative spermatogenic impairment. The former refers to the 
condition, where mature sperm cells are few in number, but 
have no apparent defects in their structure, motility and ferti-
lization capacity. In the latter case, sperm cells have morpho-
logical malformations either in the head or tail and thus, are 
characterized by defective motility or inability to give rise to 
a viable embryo. In clinical practice, quantitative or qualita-
tive impairment of spermatogenesis in andrology patients 

may also appear hand-in-hand. The most severe form of 
male infertility is azoospermia, referring to the complete 
lack of sperm in the ejaculate. Despite the extreme pheno-
type, the estimated prevalence of azoospermia in the general 
population is surprisingly high, one in 100 men (Stephen and 
Chandra 2006). Among patients with male factor infertil-
ity [< 39 million sperm per ejaculate (WHO 2010)], azoo-
spermia cases represent 10–20% (Jarow et al. 1989; Olesen 
et al. 2017; Punab et al. 2017; Tüttelmann et al. 2011).

Azoospermia—established knowledge 
and current challenges

Etiology of azoospermia

Although the primary diagnosis of azoospermia is straight-
forward and explicit using semen analysis and hormonal 
evaluation, there is a high heterogeneity of clinical sub-phe-
notypes complicating the assessment of underlying disease 
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etiology in each patient (Fig. 1, Table 1). The current rou-
tine andrological workup is able to assign the primary cause 

to ~ 80% of azoospermia patients (Punab et al. 2017; Tüttel-
mann et al. 2011). Up to 30% of cases represent obstructive 
azoospermia (OA) due to physical blockage in their genital 
tract without directly affecting sperm production. OA can 
be suspected if testicular volume and serum FSH levels are 
within a normal range. The majority of OA cases are caused 
by acquired conditions (Fig. 1). Diagnostic workup of azoo-
spermia patients includes screening mutations in the CFTR 
gene that are known to cause congenital OA due to abnormal 
formation or bilateral absence of the vas deferens [~ 3% of 
azoospermia (Punab et al. 2017; Tüttelmann et al. 2011)].

The rest of the azoospermia patients (> 70%) represent 
non-obstructive azoospermia (NOA), a spectrum of testicu-
lar disorders resulting in spermatogenic failure and typically 
also reduced testes size. The majority of NOA patients have 
primary testicular failure due to an intrinsic defect in the 
initiation or normal progression of spermatogenesis that 
is often reflected in elevated serum FSH levels. A minor 
fraction of NOA cases present secondary testicular failure 
caused by endocrine disturbances or other pre-testicular 
factors, e.g., developmental defects. In contrast to OA, the 
majority of NOA cases represent various congenital condi-
tions and a notable proportion of patients are diagnosed with 
already known genetic causes, such as abnormal karyotype 

Fig. 1   Etiology of azoospermia (based on data from Punab et  al. 
2017)

Table 1   Core terminology used in the review

Term Explanation

Azoospermia Complete lack of spermatozoa in the ejaculate
Obstructive azoospermia (OA) Physical blockage in the genital tract without impaired spermatogenesis. The condition can be either an 

acquired obstruction of epididymis, vas deference or ejaculatory duct; or congenital due to mutations 
in the CFTR or ADGRG2 gene

Non-obstructive azoospermia (NOA) A spectrum of testicular disorders resulting in spermatogenic failure due to complete lack of sperm in 
the ejaculate

Hypo-spermatogenesis The condition of having decreased germ cell production
Primary testicular failure A condition where testes fail to produce sperm despite of adequate hormonal support. Typically char-

acterized by elevated FSH levels (hypergonadotropic hypogonadism) and mostly low testes volume. 
Usually not correctable

Secondary testicular failure Pre-testicular NOA pathology due to acquired or genetic defects in the hypothalamic–pituitary–gonadal 
axis leading to impaired central hormonal regulation of testis function. Frequently correctable

Isolated NOA NOA case without any other apparent health problems
Syndromic NOA NOA case with other health problems, most probably of congenital origin
Sertoli cell-only syndrome (SCOS) Histological analysis of the testicular biopsy fails to detect any germ cells in the seminiferous tubules. 

Not correctable. No option for TESE-ICSI in most cases
Maturation arrest (MA) Histological analysis of the testicular biopsy identifies concordant disrupted spermatogenesis in all 

tubules at a certain stage of germ cell development, either spermatogonia, spermatocyte or spermatid 
stage

Mixed testicular atrophy Histology of the testicular biopsy detects few elongated spermatids and co-occurrence of seminiferous 
tubules with germ cells or with Sertoli cells only

Disorders of sex development (DSD) A group of congenital conditions associated with atypical development of internal and/or external geni-
talia. In most extreme cases it presents as complete sex reversal

Premature ovarian insufficiency (POI) Cessation of ovarian function before the age of 40 years due to either congenital or acquired causes. 
Considered an equivalent phenotype to NOA in men

Loss-of-function mutations Genetic variants leading to a truncated protein, including nonsense (STOP), frameshift and splicing 
variants
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(up to 17% of the patients) and pathogenic Y-chromosomal 
microdeletions (2–10%; Fig. 1) (Krausz et al. 2014; Olesen 
et al. 2017; Punab et al. 2017; Tournaye et al. 2017; Tüt-
telmann et al. 2011). The most commonly detected genetic 
abnormality is 47, XXY karyotype causing the Klinefel-
ter syndrome and accounting for ~ 15% of all azoospermia 
cases (Punab et al. 2017; Vockel et al. 2019). Tests for kary-
otype abnormalities and Y-chromosomal microdeletions are 
routinely offered to andrology patients for 20 years already. 
However, the knowledge of monogenic causes of NOA is 
limited and none of the current clinical guidelines include 
mutational analysis of any NOA genes (Jarvi et al. 2015; 
Jungwirth et al. 2012; Practice Committee of the American 
Society for Reproductive Medicine in collaboration with the 
Society for Male Reproduction and Urology 2018).

Challenges in identifying the monogenic causes 
of spermatogenic failure

NOA is not a single genetic condition, but rather a clinical 
endpoint of a spectrum of alternative pathological processes 
and sub-phenotypes (Krausz and Riera-Escamilla 2018). 
Given the large number of genes implicated in spermato-
genesis and testicular function (Chalmel et al. 2012; Soraggi 
et al. 2020), a high heterogeneity in monogenic defects that 
may cause NOA is expected. Alternative forms of genetic 
inheritance of the condition are to be considered. NOA may 
manifest itself through autosomal recessive (AR) mutations 
inherited from fertile parents and combined to a pathogenic 
genotype in the homozygous, compound heterozygous or 
hemizygous form. Alternatively, NOA can be caused by 
maternally inherited or de novo mutations in X-chromo-
somal or dosage sensitive autosomal dominant (AD) genes. 
In rare occasions, an AD mutation with reduced penetrance 
or a de novo Y-chromosomal microdeletion can be inherited 
from a fertile father. Thus, a complete medical examination 
of the patient and his longitudinal health records is strongly 
recommended to complement the testicular and hormonal 
assessment during a routine andrology workup.

A specific challenge in research of the monogenic causes 
of NOA is the lack of familial cases. Most NOA patients 
are singleton, sporadic cases in their families. Due to this 
restriction, it is impossible to perform a proper familial seg-
regation and linkage analysis that has been the key tool to 
uncover inborn errors of other Mendelian phenotypes (Posey 
et al. 2019). To further complicate matters, mutations in AD 
genes implicated in syndromic forms of NOA often exhibit 
incomplete penetrance and variable phenotype, including 
non-affected carriers reported in the familial studies. This 
sets an additional challenge in interpreting the genetic tests 
and making conclusions about the causative nature of identi-
fied variants.

Finally, although the majority of the NOA cases are 
expected to be sporadic, analysis of the genomes of parents 
and siblings along with the proband will have a clear benefit 
in excluding candidate variants carried by fertile male fam-
ily members and in identifying de novo variants as possible 
causes of infertility. Still, in many cases the motivation and 
psychological readiness of either the patient or the family 
restrict the recruitment and genetic analysis of the whole 
pedigree. Family planning and related issues are usually 
considered highly private matters, and having difficulties 
conceiving a child is typically not discussed among relatives.

Monogenic causes of NOA

Approach for data extraction from the available 
literature resources

To reach a high-confidence list of genes implicated in mono-
genic NOA, a search was conducted in August 2019 in the 
following databases: Human Phenotype Ontology (HPO) 
(Köhler et al. 2019), Online Mendelian Inheritance in Man 
(OMIM, https​://omim.org/) and PubMed (https​://www.ncbi.
nlm.nih.gov/pubme​d). From the HPO database, all 39 genes 
listed under the term HP:0011961 (non-obstructive azoo-
spermia) were considered (Supplementary Table 1). OMIM 
was queried for “non-obstructive azoospermia”, listing 26 
candidate genes. In parallel, a literature search was con-
ducted in PubMed with the following search term: ("non-
obstructive azoospermia"[All Fields] OR "non-obstructive 
azoospermia"[All Fields]) AND ("mutation"[MeSH Terms] 
OR "mutation"[All Fields]) NOT ("review"[Publication 
Type] OR "review literature as topic"[MeSH Terms] OR 
"review"[All Fields]), which resulted in 214 publica-
tions. All extracted HPO and OMIM genes were manually 
assessed along with the supporting literature reports to show 
the evidence for the causative link between gene mutations 
and monogenic NOA. Among publications retrieved from 
the PubMed search, only studies reporting monogenic muta-
tions in NOA patients were considered, whereas all genetic 
associations (both SNP and CNV based) and reports on dele-
tions/duplication involving multiple genes were excluded.

The final manually assessed gene list was divided into 
three categories: established causative NOA genes with sup-
port from at least two independent studies (n = 22; Tables 2, 
3); promising candidate genes reported in a single study and 
supported by in vitro or in vivo experimental data (n = 16; 
Table 4); genes that currently lack explicit evidence for the 
monogenic causative link to NOA (n = 29; Supplementary 
Table 2). While the established monogenic causes of NOA 
represent diverse modes of inheritance including AR, AD 
and X-linked genes, mutations in the majority of novel 
proposed genes are expressed in the AR form. For some 

https://omim.org/
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proposed candidate genes, the inheritance mode is still 
unclear due to limited number of reported NOA cases and 
conflicting data in different sources of information.

Isolated and syndromic forms of monogenic NOA

Based on the critical assessment of available genotype–phe-
notype data, the known and recently proposed candidate 
genes were assigned to either an isolated form of NOA pre-
senting no other major health complications or a syndromic 
form of NOA characterized by several concurrent clinical 
symptoms with variable phenotypic expressivity, including 
NOA in male mutation carriers. Among the well-established 
genes implicated in NOA, 10 have been linked to isolated 
NOA and 12 reported to cause syndromic disease pheno-
types (Tables 2, 3). The recently proposed additional candi-
date genes represent 13 isolated and three syndromic NOA 
loci (Table 4).

The STRING analysis of physical and functional pro-
tein–protein interactions (Szklarczyk et al. 2019) demon-
strated that the established and novel candidate genes for 
monogenic NOA belong to a dense network of ‘predicted 
functional partners’ (Fig. 2a). Although the number of short-
listed genes is not extensive, the majority of them (35 of 
38; 92%) are functionally linked with an average of 5.21 
active connections per locus. Overall, there is a statistically 
highly significant enrichment of interactions among the loci 
in the network (observed 99, expected 7; P < 10–16; Sup-
plementary Table 3). Interestingly, the proteins form two 
separate clusters of interactions that largely overlap with 
the gene lists representing either the isolated or syndromic 
NOA condition. This further underlies different etiologies 
of the two forms of NOA and their accompanying health 
consequences. The following chapters introduce the three 
broader categories of genes implicated in NOA, represent-
ing essential guardians of meiosis, transcriptional regulators 
of male gonadal development and function, and endocrine 
regulators of the reproductive system.

Genetic defects affecting meiosis and DNA repair: 
isolated and syndromic NOA

The process of spermatogenesis is inherently complex, con-
sisting of various stages of mitosis, meiosis and spermio-
genesis to transform haploid spermatids into mature sperm. 
So far, the largest category of monogenic defects detected 
in NOA patients comprises 19 genes involved in different 
stages of spermatogenesis, mostly functioning in the pro-
phase of the first meiotic division (Fig. 3). Eight of these are 
established NOA genes (Table 2), whereas 11 still require 
independent confirmation of the link to monogenic NOA 
(Table 4). Mutations in the majority of these genes (16/19) O
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result in isolated NOA with maturation arrest (MA) or Ser-
toli cell-only syndrome (SCOS).

In the spermatogenic dynamics, balance between the 
maintenance of mitotic quiescence and meiotic entry of 
germ cells is crucial. Mutations in NANOS2 that contrib-
ute to the maintenance of the spermatogonial stem cell 
population and suppression of meiotic entry (Saba et al. 
2014), were recently reported to co-segregate with SCOS 
(Fakhro et al. 2018). Taking into account the high number 
of mitotic cell divisions in the pre-meiotic phase, defects 
in the proteins regulating DNA replication and repair, and 
maintaining overall genomic integrity are strong candi-
dates for spermatogenic failure. During the last couple of 
years, loss-of-function (LoF) or pathogenic missense vari-
ants in the FANCM, FANCA, XRCC2, MCM8, and SETX 
genes involved in these processes have been reported 
in either isolated or syndromic NOA patients (Becherel 
et al. 2019; Catford et al. 2019; Kasak et al. 2018; Krausz 
et al. 2014; Tenenbaum-Rakover et al. 2015; Yang et al. 
2018a; Yin et al. 2019). Importantly, as all these proteins 
are also involved in regulating meiotic recombination, 
double-stranded break (DSB) repair and ultimate chromo-
somal crossing over, they represent essential guardians of 
genome stability through spermatogenesis (Fig. 3). Three 
of these highlighted NOA genes—FANCM, FANCA, and 
XRCC2 belong to the Fanconi anemia (FA) pathway (Niraj 
et al. 2019), and MCM8 has been suggested to interact 
with members of the FA pathway in cross-link repair dur-
ing replication (Griffin and Trakselis 2019). FANCM is a 
testis-enhanced gene that fulfills the most diverse palette 
of functions in the pathway, including interstrand cross-
link removal, anti-crossover function, and protection 
against replication interference by RNA–DNA hybrids 
(Basbous and Constantinou 2019). Whereas FANCM is 
one of the few genes in the pathway that does not cause 
the FA phenotype, FANCA is the most commonly mutated 
gene in the genetically heterogeneous FA disorder with 
variable age of onset (Krausz et al. 2014; Shimamura and 
Alter 2010). Importantly, infertility is a fairly common 
clinical feature of male as well as female FA patients (Tsui 
and Crismani 2019). A novel NOA-linked gene is SETX 
encoding sentaxin acting as a DNA/RNA helicase involved 
in diverse aspects of RNA metabolism and genomic integ-
rity (Andrews et al. 2018; Bennett and La Spada 2018). 
Although SETX is primarily linked with Ataxia with Ocu-
lomotor Apraxia Type 2 (AOA2) (Moreira et al. 2004) and 
amyotrophic lateral sclerosis (Chen et al. 2004), recent 
independent reports have shown that AOA2 male patients 
also exhibit meiotic arrest at the primary spermatocyte 
stage (Table 2).

Centriole duplication, involving the PLK4 protein, is a 
further critical process to be completed before primary sper-
matocytes can undergo meiosis (Habedanck et al. 2005). Ta
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Although homozygous LoF variants in PLK4 cause micro-
cephaly and chorioretinopathy (Martin et al. 2014; Shaheen 
et al. 2014), a recent study reported a heterozygous LoF vari-
ant as a novel candidate to explain a NOA case (Miyamoto 
et al. 2016).

Creation of DSBs by a specific DNA topoisomerase 
called SPO11 is essential to initiate meiotic recombination 
and formation of the synaptonemal complex between homol-
ogous chromosomes (Tock and Henderson 2018). Fakhro 
et al. 2018 detected a homozygous missense mutation in 

SPO11 in two brothers with meiotic arrest. MEI1 represents 
a further gene that is implicated in DSB formation and has 
been reported to be mutated in NOA patients exhibiting MA 
at the spermatocyte stage (Ben Khelifa et al. 2018; Nguyen 
et al. 2018). Mei1 null mice fail to complete the first mei-
otic division (Libby et al. 2003). MEI1 along with other 
established NOA genes (MEIOB, TEX15, and TEX11) also 
contributes to the successful formation and maintenance of 
the synaptonemal complex and crossovers between homol-
ogous chromosomes. Tex11-deficient spermatocytes show 

Fig. 2   a STRING network 
analysis of 38 established and 
novel proposed NOA genes. 
The analysis of physical and 
functional protein–protein 
interactions was performed 
using the default settings 
(Szklarczyk et al. 2019). Edge 
colors correspond to interac-
tions according to the shown 
legend. The network consists 
of 99 inter–locus interactions, 
whereas the expected number of 
by-chance interactions between 
38 proteins is 7 (an enrichment 
P value < 1 × 10–16). Details on 
each protein–protein pairwise 
interaction are provided in 
Supplementary Table 3. b The 
most significant results from the 
functional enrichment analysis 
of the 38 NOA genes. Top 25 
terms from Gene Ontology 
‘Biological processes’ category 
are shown (FDR ≤ 4.62 × 10–8). 
GO terms are ordered on the 
X-axis based on the signifi-
cance of gene enrichment in 
this category, from left to right. 
Detailed results are presented in 
Supplementary Tables 4A–C
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abnormal synapsis and undergo apoptosis at the pachytene 
stage (Yang et al. 2008). In men, TEX11 mutations were 
first described in NOA patients in two parallel reports (Yang 
et al. 2015; Yatsenko et al. 2015) and have been henceforth 
referred in several studies being strongly associated with 
the manifestation of NOA due to MA (Sha et al. 2018). 
More recently, recessive missense or frameshift variants 
in the MEIOB gene were reported in seven patients (from 
three families) also presenting the testicular MA phenotype 
(Gershoni et al. 2017, 2019). Consistently, Meiob-deficient 
mice fail to form crossovers and repair DSBs in germ cells 
and are infertile due to meiotic arrest (Luo et al. 2013). The 
functional failure of synaptonemal complex to explain a 
subset of isolated NOA cases is further supported by fresh 
reports on novel defective genes CCDC155, SYCE1, and 
RNF212 identified in patients diagnosed with MA (Fakhro 
et al. 2018; Maor-Sagie et al. 2015; Riera-Escamilla et al. 
2019). The respective mutant mouse models are supportive 
to the human genetic data (Bolcun-Filas et al. 2009; Horn 
et al. 2013; Reynolds et al. 2013).

A critical step in the completion of crossing overs is DSB 
repair, involving a large complex of additional critical pro-
teins (e.g., TEX15, DMC1), that have been identified to har-
bor pathogenic mutations in NOA patients (Colombo et al. 
2017; He et al. 2018; Okutman et al. 2015). For example, 
TEX15 is responsible for the recruitment of DNA repair pro-
teins onto DSB locations and DMC1 is a meiosis-specific 

recombinase interacting with several DNA repair proteins 
in the FA pathway, such as BRCA2 (Thorslund et al. 2007). 
The most recent addition to the list of confident isolated 
NOA genes is STAG3 that was reported within a short time-
frame in two separate studies to be implicated in MA (Riera-
Escamilla et al. 2019; van der Bijl et al. 2019). In addition 
to meiotic DSB repair, STAG3 is involved in the formation 
of chromosomal axis and cohesion of sister chromatids after 
DNA replication. Disruption of this protein leads to the per-
sistence of meiotic DSBs and a failure to complete chromo-
some pairing (Riera-Escamilla et al. 2019). The dramatic 
chromosomal deficiencies in human (van der Bijl et al. 2019) 
were observed also in Stag3−/− mice (Winters et al. 2014).

Additional mechanism disrupted in NOA is the mainte-
nance of stable intercellular bridges, thought to enable rapid 
‘communication’ between gametes (Greenbaum et al. 2011). 
Mutations in TEX14 have proposed to cause impaired sper-
matogenesis due to failure in maintaining these intercellu-
lar cytoplasmatic connections (Fakhro et al. 2018; Gershoni 
et al. 2017). Interestingly, a pathogenic variant in the TDRD9 
gene essential for retrotransposon silencing in meiosis has 
lately been shown to segregate with NOA in a large consan-
guineous Bedouin family (Arafat et al. 2017). Expression 
of Line1 transcripts has been shown to be increased in the 
Tdrd9−/− mice and although spermatocytes initiate the early 
DNA recombination pathway, spermatogenesis arrests at the 
stage of zygotene due to failed synapsis (Shoji et al. 2009).

Taken together, prime candidates for defective genes in 
patients with isolated NOA presenting MA and SCOS are 
loci implicated in genomic integrity, regulation of meiotic 
progression, DNA recombination and repair. In addition, 
there is growing evidence that these pathways are also 
involved in syndromic NOA caused by mutations in pleio-
tropic genes.

Mutations in transcriptional regulators of testicular 
function: syndromic and isolated NOA

The second category of genes implicated in NOA represents 
transcriptional regulators of testicular development and sper-
matogenesis. Testicular gene expression across the life span 
follows a functionally and temporally conserved pattern, 
including critical time windows during the fetal, neonatal 
and pubertal development, and the highly conserved process 
of spermatogenesis (Cardoso-Moreira et al. 2019; Chalmel 
et al. 2012; Zimmermann et al. 2015). Although the tes-
ticular expression of each locus is expected to be tightly 
controlled by a high number of regulators and interlinked 
cellular processes (Soumillon et al. 2013), the list of identi-
fied transcription modulating genes mutated in NOA patients 
is rather short. This includes specific transcription factors 
(NR5A1, WT1) and regulators of transcriptional (ZMYND15) 
or translational activity (TDRD7) in human testis, and a 

Fig. 3   Established (green) and novel proposed (orange) NOA genes 
(n = 19) implicated in human spermatogenesis, and in the main-
tenance of genomic integrity in mitosis and meiosis. Some loci 
function only in specific spermatogenic stages, whereas others are 
involved in multiple steps. Defects in nearly half (n = 8; underlined) 
of these genes have also been reported in female patients with pri-
mary ovarian insufficiency
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ubiquitously expressed component of the transcription ini-
tiation complex, TAF4B (Tables 2, 4).

The two well-known and functionally interacting tran-
scription factors implicated in gonadal development in 
both sexes are NR5A1 encoding a Steroidogenic factor 1 
(SF1), and WT1 encoding Wilms’ tumor protein (Hanley 
et al. 1999). In fact, WT1 modulates SF1 expression in a 
sex-specific manner (Nachtigal et al. 1998). Mutations in 
NR5A1 and WT1 primarily cause AD syndromic phenotypes, 
including monogenic disorders of sex development [DSD; 
reviewed in (Cools et al. 2018)]. In andrology practice, 
defects in the WT1 or NR5A1 genes could be suspected in 
patients presenting hypospadias, cryptorchidism, and other 
signs of congenital testicular damage (Eggers et al. 2016; 
Köhler et al. 2011). Defects in both genes are characterized 
by variable expressivity and incomplete penetrance, includ-
ing asymptomatic family members (Kaneko et al. 2015; 
Lourenco et al. 2009).

While the action of WT1 in utero is critical in several 
stages in the development of the urogenital system, its post-
natal activity is limited to the renal glomerulus. Mutated or 
deleted WT1 leads to a spectrum of congenital defects in 
kidneys and genitalia (e.g., Denys-Drash syndrome, Wilms’ 
tumor, nephropathy etc.) (Hastie 2017). Molecular diagnos-
tics is critical as the majority of patients with the initial diag-
nosis of DSD will develop Wilms’ tumor, nephropathy and/
or gonadal tumor (Köhler et al. 2011). However, pathogenic 
WT1 missense variants have also been reported in patients 
with the primary diagnosis of NOA without malformations 
in the genitourinary tract (Seabra et al. 2015; Wang et al. 
2013; Xu et al. 2017).

NR5A1 represents the second most commonly mutated 
gene among DSD patients (Eggers et al. 2016), and in most 
extreme cases its defects may cause sex reversal in both, XY- 
and XX-subjects (Achermann et al. 1999; Bashamboo et al. 
2016). There is solid literature evidence that some patho-
genic missense variants may cause ‘only’ spermatogenic 
failure, including NOA, without any clearly identifiable 
developmental defects in the testis (Bashamboo et al. 2010; 
Ferlin et al. 2015; Zare-Abdollahi et al. 2015). As SF1 is also 
implicated in the adrenal, spleen and pituitary function, the 
syndromic phenotype in the patients may include additional 
congenital defects that have to be considered in the clinical 
management (Cools et al. 2018).

Recently, LoF variants in the TDRD7 gene were reported 
in two analyzed consanguineous families to cause a rare 
syndrome combining congenital cataract in both sexes and 
NOA in affected men, supported by respective mouse mod-
els (Tan et al. 2019). TDRD7 is a component of chromatoid 
bodies contributing to the post-transcriptional regulation of 
specific mRNAs and has dual roles in the development of 
lens in utero and haploid spermatids in adulthood (Lachke 
et al. 2011; Tanaka et al. 2011).

Two transcriptional regulators have been proposed to 
explain isolated NOA (Ayhan et al. 2014). Homozygous 
truncating variants in a testis-specific transcriptional repres-
sor ZMYND15 (Yan et al. 2010) and ubiquitous coactivator 
TAF4B were reported in azoospermic brothers in consan-
guineous families. As the patients shared large homozygous 
regions, oligogenic contributors to NOA cannot be ruled out 
and the claims require further supportive data.

Taken together, given the broad spectrum of downstream 
targets, and pre- and postnatal expressional dynamics, the 
potential target group to screen known or undescribed con-
genital defects in transcriptional regulators represents NOA 
patients with mostly syndromic phenotypes. However, iso-
lated NOA cannot be excluded.

Congenital hormonal defects in reproductive 
physiology: syndromic and isolated NOA

The third broader functional category of congenital defects 
causing the NOA phenotype includes genes that act in the 
hypothalamic–pituitary–gonadal (HPG) axis. Mutations in 
genes involved in this pathway lead to secondary testicu-
lar failure due to impaired central hormonal regulation of 
the testis function, referred as congenital hypogonado-
tropic hypogonadism (CHH) (Boehm et al. 2015; Swee and 
Quinton 2019; Young et al. 2019). Patients with CHH may 
show syndromic phenotypes characterized by endocrine 
disturbances, pubertal absence or delay, cryptorchidism, 
micropenis, small testis size (bitesticular volume < 8 ml), 
gynaecomastia and variable accompanying developmental 
defects (e.g., anosmia, renal agenesis, cleft-lip palate, anom-
alies of digits, hearing impairment) (Boehm et al. 2015). 
However, normosmic CHH may present delayed or com-
pletely absent puberty as an isolated phenotype (Young et al. 
2019). CHH is a rare clinical condition [prevalence 1/8000; 
(Dode and Hardelin 2010)]. The majority of andrological 
patients with CHH diagnosis present NOA and among all 
azoospermia patients, normosmic and anosmic CHH cases 
represent ~ 2.0–2.4% (Fig. 1; Punab et al. 2017; Tüttelmann 
et al. 2011). There is a wealth of literature reporting hetero-
geneous pathogenic variants in at least 30 genes causative to 
isolated, syndromic or both forms of CHH (Table 3; Maione 
et al 2018; Young et al. 2019). Notably, the mutations in 
genes implicated in CHH vary in regards to inheritance 
mode, penetrance and tolerance to asymptomatic carriers. 
There is also a solid body of data showing that pathogenic 
variants in several CHH genes are expressed only in oli-
gogenic background (Supplementary Table 2; Boehm et al. 
2015; Maione et al 2018; Pitteloud et al. 2007; Sykiotis et al. 
2010).

Classical CHH results from the abnormal development, 
migration or function of specific neurons responsible for the 
secretion of hypothalamic gonadotropin releasing hormone 



146	 Human Genetics (2021) 140:135–154

1 3

(GnRH) that stimulates the expression of FSH and LH in 
the pituitary. Due to absent or delayed puberty, the major-
ity of CHH cases are clinically recognized, diagnosed and 
managed already in adolescence or already during the min-
ipuberty in infancy (Swee and Quinton 2019; Young et al. 
2019). The first described CHH gene was ANOS1 (KAL1) 
encoding a secreted glycoprotein anosmin-1 regulating 
cellular adhesion and migration of nerve cell precursors, 
including olfactory and GnRH neurons. The primary phe-
notype resulting from the defective ANOS1 is Kallmann syn-
drome characterized by CHH combined with anosmia due 
to maldevelopment of the olfactory bulb (Bick et al. 1992; 
Hardelin et al. 1992). Further CHH genes are implicated in 
other syndromic phenotypes with variable expressivity. For 
example, mutations in orphan nuclear receptor gene NR0B1 
(DAX1) cause congenital adrenal hypoplasia with/without 
CHH or NOA (Muscatelli et al. 1994; Suntharalingham et al. 
2015). In extreme cases, NR0B1 mutations may cause sex 
reversal (Suntharalingham et al. 2015). Defects in brain-
expressed helicase CHD7 cause either milder CHH or more 
severe CHARGE syndrome phenotype (Marcos et al. 2014). 
Other major CHH genes encode either morphogenic proteins 
or their receptors that are critical in GnRH neuron fate speci-
fication (FGFR1), development (PROK2, PROKR2), GnRH 
secretion or action (GNRH1/GNRHR, KISS1R, TACR3) 
(Table 3).

Genetic defects affecting primarily the function of gonad-
otropins, follicle stimulating (FSH) and luteinizing hormone 
(LH) are extremely rare (Nagirnaja et al. 2010). Most of 
the patients reported in the literature originate from consan-
guineous families. During the past 20 years, only three male 
patients have been described with homozygous pathogenic 
mutations in the FSHB gene (Table 3). All cases showed 
low FSH, impaired sexual development, hypogonadism and 
NOA. Likewise for the LHB gene, only five azoospermia 
patients with homozygous or compound heterozygous 
pathogenic variants have been reported since the seminal 
publication in 1992. Other clinical features of congenital 
absence of LH include delayed/absent puberty and sexual 
infantilism, gynecomastia and micropenis, low testicular 
volume. In contrast to the defects in gonadotropin-encoding 
genes, mutations in the testicular receptors of FSH and LH 
do not cause NOA. FSHR mutations lead to premature ovar-
ian insufficiency (POI) in women (Tapanainen et al. 1997). 
Inactivating or activating LHGCR​ mutations cause other 
male reproductive disorders, such as Leydig cell hypoplasia 
or precocious puberty, respectively (Segaloff 2009).

Taken together, there is a broad spectrum of pathogenic 
variants and phenotypic variation in patients with hypog-
onadotropic hypogonadism, implicated in syndromic or 
isolated NOA. Although diagnosis of CHH among NOA 
patients is infrequent (~ 2%), the major genetic defects 
behind the condition are rather well known, the diagnostic 

yield of molecular tests exceeds 50% and clinical manage-
ment options are well-established (Boehm et al. 2015; Tour-
naye et al. 2017; Maione et al. 2018). Spermatogenic failure 
in patients diagnosed with CHH is often treatable using 
either gonadotropin hormone injections or pulsatile GnRH 
administration (Frapsauce et al. 2011; Pitteloud et al. 2002; 
Swee and Quinton 2019; Young et al. 2019).

Other reported rare monogenic defects in NOA 
patients

Mutations in the NOA patients have been reported in addi-
tional candidate genes involved in novel biological path-
ways. Two NOA brothers and a sporadic SCOS patient were 
identified as carriers of hemizygous missense variants in 
WNK3 that functions as a serine/threonine kinase in regulat-
ing intracellular chloride concentrations and cellular volume 
(Fakhro et al. 2018). Two brothers from a consanguineous 
family carried a homozygous LoF variant in the SPINK2 
gene encoding a serine protease inhibitor preventing prema-
ture activation of proacrosin to acrosin (Kherraf et al. 2017). 
In mice, deficiency of SPINK2 results in the fragmentation 
of the Golgi apparatus and arrest of cell proliferation. These 
novel NOA candidate genes and pathways require further 
confirmation in independent studies and clinical cases.

Discussion on the state‑of‑the‑art 
and beyond

Summary of the current knowledge 
on the monogenic causes of NOA

The reported monogenic defects causing NOA represent 
either distinct syndromic phenotypes that concern a small 
proportion of andrology patients or rare isolated NOA 
cases, explained by errors in various stages of spermato-
genesis (Tables 2, 3 and 4, Fig. 3). However, due to the 
limited number of published studies, the current list of genes 
under the category of non-syndromic NOA is not explicit 
as some of them may have unreported pleiotropic effects 
that cause other health-related issues. When further data on 
the patients’ phenotype become available, these loci may be 
later re-classified as syndromic. For example, the STRING 
analysis of protein–protein interactions linked FANCM that 
has been currently assigned to the category of isolated NOA 
with FANCA, XRCC2, CHD7 and SETX implicated in syn-
dromic cases (Fig. 2a).

Despite the list of established and novel NOA genes being 
rather short (n = 38), the functional enrichment analysis 
showed highly significant clustering of loci to several Gene 
Ontology (GO) categories and provided support to their rel-
evance to the NOA phenotype. The five most significantly 
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enriched (FDR < 6.2 × 10–18) biological processes are ‘repro-
ductive process’ (GO:0022414′; 30 of 38 genes), ‘multicel-
lular organismal reproductive process’ (GO:0048609; 23), 
‘meiotic nuclear division’ (GO:0140013; 15), ‘gamete gener-
ation’ (GO:0007276; 21), and ‘meiosis I’ (GO:0007127; 13) 
(Fig. 2b; Supplementary Table 4A). Among molecular func-
tions, the top enrichment (FDR = 0.002) was detected for 
‘helicase activity’ (GO:0004386; 5 genes) and ‘ATP bind-
ing’ (GO:0005524; 12 genes) (Supplementary Table 4B). 
NOA genes also cluster into cellular components that point 
to the tight link between the defective genome dynamics and 
integrity, and congenital spermatogenic failure (e.g., ‘chro-
mosome’ GO:0000794, 12 genes; ‘synaptonemal complex’ 
GO:0000795, 5 genes) (FDR < 7.6 × 10–6; Supplementary 
Table 4C). Interestingly, when inspecting the distribution of 
currently reported NOA genes implicated in meiosis, there 
is an enrichment of loci contributing to chromosomal pair-
ing and crossing over, whereas there are only few reports on 
genetic defects in other stages in spermatogenesis. Mapping 
the involved biological processes and uncovering new ones 
will promote filling the gaps with ‘missing NOA genes’.

Recent studies have revealed novel protein families 
implicated in NOA. An example is the FA pathway criti-
cal in DNA replication and repair, investigated mostly in 
the context of cancer development (Niraj et al. 2019). So 
far, LoF variants in NOA patients have been reported for 
the FANCA, FANCM, and XRCC2 genes. The demonstra-
tion of the involvement of Tudor Domain proteins in sper-
matogenic failure is an additional interesting finding. Both 
reported genes, TDRD9 and TDRD7 are responsible for the 
suppression of LINE1 retrotransposons in the male germline 
to guarantee its integrity (Tanaka et al. 2011). Supported by 
the reports on NANOS2 mutations, a novel biological etiol-
ogy behind NOA was highlighted—defects in the pathway 
‘cytoplasmic ribonucleoprotein granule’ (GO:0036464).

Caution in interpreting the published literature

A large proportion of the recently reported monogenic forms 
of NOA represent homozygous AR mutations identified in 
consanguineous families (Table 4). A strength of these stud-
ies is the availability of several affected and ideally, also 
non-affected family members. However, as the genomes 
of inbred subjects have long tracks of homozygosity, this 
sets a limitation to confidently define the reported genetic 
variant as a monogenic cause to their condition. Addition-
ally, the reports on the pleiotropic effects of these mutations 
to cause other clinical symptoms apart from NOA have to 
be taken with caution until confirmed by an independent 
source. Genetic ‘matchmaking’ is necessary to establish 
an explicit link between a particular monogenic defect and 
NOA. However, it has to be also considered that particular 
genes may carry ultra-rare mutations found only in one or a 

few consanguineous families worldwide and may seldom or 
even never be identified among NOA patients in the outbred 
populations.

Warningly, in depth assessment of published literature in 
the field has revealed that ‘all that glitters is not gold’ and 
not all reported loci immediately qualify to be utilized for 
diagnostic purposes. A recent careful systematic analysis of 
the available literature on monogenic causes of male infertil-
ity reached the conclusion that only 92/521 (17.6%) reported 
gene–disease relationships were based on actual adequate 
scientifically supportive evidence (Oud et al. 2019). Critical 
assessment of NOA genes for the current review revealed 
that even in medical genetics databases, OMIM and HPO, 
there are misclassified loci regarding the evidence to be 
implicated in monogenic NOA (Supplementary Table 2). 
An example of an uncertain NOA gene is SOHLH1 (MIM: 
618115; spermatogenic failure 32). From the first glance it 
fits perfectly as a candidate gene for spermatogenic failure, 
encoding a testis-specific transcription factor that induces 
spermatogonial differentiation during testicular development 
in mice (Ballow et al. 2006; Suzuki et al. 2012). Two studies 
have claimed SOHLH1 variants to cause AD form of NOA 
(Choi et al. 2010; Nakamura et al. 2017). However, the two 
highlighted missense variants (rs199935200, rs201142743; 
Choi et al. 2010) are defined as functionally ‘benign/toler-
ated’ according to all current in silico prediction tools. Fur-
thermore, the c.346-1G>4A splice variant reported in two 
Korean and two Japanese NOA patients (Choi et al. 2010; 
Nakamura et al. 2017) is rather common among the Finns 
(gnomAD database: minor allele frequency 1.5%). This is 
not consistent with the scenario of a truly pathogenic muta-
tion causing monogenic dominant form of NOA.

Other frequently claimed loci that still require further 
supportive evidence as monogenic NOA genes are DMRT1 
and Androgen Receptor (AR). DMRT1 encodes a testis-
specific transcriptional regulator for mammalian postnatal 
sex determination and testis differentiation (Kim et al. 2007; 
Macdonald et al. 2018; Raymond et al. 1998, 2000). Dmrt1 
null male mice undergo sex reversal after birth (Matson and 
Zarkower 2012) and human heterozygous microdeletions 
involving DMRT1 cause ambiguous genitalia and also sex 
reversal (Bennett et al. 1993; Tannour-Louet et al. 2010). 
Deletions encompassing DMRT1 have also been reported in 
five azoospermia cases from Utah and China in one study 
(Lopes et al. 2013), but the follow-up investigations have not 
reached clear conclusions about the monogenic causative 
link of DMRT1 mutations to NOA (Tewes et al. 2014). The 
X-linked AR gene encoding a nuclear transcription factor is 
the most frequently mutated gene in patients with various 
DSD symptoms (cryptorchidism, hypospadias, micropenis, 
ambiguous genitalia, 46,XY females) (Eggers et al. 2016). 
AR mutations cause androgen insensitivity—cellular inabil-
ity to respond to androgens, and their effect on the phenotype 
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and fertility status depends on the patient’s karyotype, vari-
ant type and penetrance (Gottlieb et al. 2012; O’Hara and 
Smith 2015). So far, confident literature evidence is missing 
that AR could also be classified as a gene causing monogenic 
NOA.

Taking together, there is a need for international coor-
dination to develop joint approaches and molecular diag-
nostic guidelines for the testing of NOA-linked genes and 
critical interpretation of the identified variants in the clinical 
context.

Approaches to detect and verify novel genetic 
causes of NOA

Current state-of-the art methodology in medical genetics 
discovery research is whole exome sequencing (WES) and 
with increasing applications, also whole genome sequenc-
ing (WGS). The strength of these methods is the detection 
of all genetic variants in a patient either in the coding region 
or across the genome. However, as NOA is a phenotype 
with a limited number of known causative genes, the analy-
sis and interpretation of patients’ WES or WGS data sets 
require smart approaches. Identification of the true causa-
tive relationship between the gene mutation and the pheno-
type is also dependent on the quality and depth of clinical 
evaluation.

The classical approach to perform a family-based seg-
regation analysis for the NOA phenotype has biological 
restrictions. For sporadic NOA cases, confirmation of the 
claimed genotype–phenotype link by an independent study 
is an absolute necessity. Recent years have slowly increased 
the list of confident loci for both isolated and syndromic 
NOA with back-to-back independent studies reporting novel 
genes such as TEX11 (in 2015), FANCM (2018), STAG3 
(2019), SETX (2019) (Table 2 and references therein). An 
attractive option to shortlist most relevant genetic variants 
observed in the patients’ WES/WGS data set is utilization of 
knowledge from relevant animal models. A recent study by 
Riera-Escamilla et al. 2019 targeting 175 genes representing 
the ‘mouse azoospermia’ panel identified two new candidate 
genes RNF212 and STAG3, and the latter was shortly con-
firmed by an independent study (van der Bijl et al. 2019). An 
additional option to narrow down the list of considered vari-
ants is a trio-based analysis incorporating parental genetic 
data that can pinpoint rare AD pathogenic variants inherited 
from the mother and confirm compound heterozygosity of 
AR mutations, as well as reveal de novo variants as candi-
dates for the sporadic condition.

Compared to the diversity of genes expressed in human 
testes or being critical to testicular function, the established 
NOA genes are restricted to a rather narrow spectrum of 
functions or include only a few genes from a particular bio-
logical pathway. It is highly likely that NOA could be caused 

by defective genes in biological pathways and protein fami-
lies that have not been considered so far. Targeted transcrip-
tome/proteome data sets mapping the genes implicated in 
spermatogenesis, testis development and function represent 
valuable resources to uncover the specific roles of novel can-
didate genes and their compatibility to human phenotypes 
(Chalmel et al. 2012; Darde et al. 2019; Lecluze et al. 2018).

Options to expand the view

A debated issue is whether the genetic causes behind NOA 
(and its clinical subtypes) are explicit or overlap with other 
phenotypes of quantitative or even qualitative spermatogenic 
failure. There is increasing support in the scientific litera-
ture to the latter scenario. For example, men with TEX14 
pathogenic variants have been reported to exhibit variable 
testicular histology, either sperm maturation arrest or SCOS 
(Fakhro et al. 2018; Gershoni et al. 2017). This could be 
explained by the fact that patients diagnosed with MA and 
SCOS carry TEX14 missense and LoF variants, respectively. 
It is generally known that protein truncating variants com-
pared to amino acid substitutions are more likely to cause 
a severe effect on the phenotype, e.g., missense mutations 
in CHD7 cause CHH, while LoFs lead to CHARGE syn-
drome (Marcos et al. 2014). Recently reported biallelic LoF 
mutations in the FANCM gene were detected in patients 
with either NOA caused by SCOS or oligoasthenospermia 
(Kasak et al. 2018; Yin et al. 2019). Also, mutations in the 
TDRD9 gene were identified not only in azoospermia, but 
also in a cryptozoospermia case (Arafat et al. 2017). Reces-
sive mutations in the TEX15, SETX, TAF4B, and LHB genes 
have been reported not only in NOA patients, but also in 
oligozoospermia cases (Ayhan et al. 2014; Becherel et al. 
2019; Okutman et al. 2015; Valdes-Socin et al. 2004). It 
has to be reminded that the sub-phenotyping and sampling 
are usually based on the records documented upon the first 
clinical visit and it is not possible to retrieve retrospective 
andrological data to properly assess the dynamics of sper-
matogenic impairment throughout the patient’s life course. 
In some occasions, also a continuum of phenotypes from 
the most extreme NOA cases to the milder forms of sper-
matogenic failure could be possibly explained by pathogenic 
variants with variable dosage effect within the same gene. 
For example, SPINK2 homozygosity was shown to cause 
NOA, whereas heterozygous mutation carriers exhibited 
oligozoospermia demonstrating an incomplete penetrance 
of spermatogenic failure (Kherraf et al. 2017). The pheno-
typic spectrum can also be modulated by the location of the 
pathogenic variant in the gene as defects in different func-
tional domains may have variable consequences (Roca et al. 
2018). These issues have also been recently highlighted and 
discussed in the context of other genetic disorders (Clark 
et al. 2019; Kasak et al. 2019a, b).
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A further horizon to explore in the genetic landscape to 
explain idiopathic NOA cases are di- or oligogenic causes 
that have been highlighted already for a number of genetic 
diseases, including andrological conditions (Schäffer 
2013). The phenotype resulting from digenic recessive 
mutations in functionally closely linked genes may mimic 
a typical biallelic monogenic defect (Papadimitriou et al. 
2019). Disease-enhancing modifier genes may modulate 
the penetrance of a major dominant mutation. Approxi-
mately 20% of hypogonadotropic hypogonadism cases 
have been estimated to be expressed due to the combined 
effect of two or more mutations in different genes (Boehm 
et al. 2015; Cassatella et al. 2018; Miraoui et al. 2013; Pit-
teloud et al. 2007; Sykiotis et al. 2010). Recently, several 
teams have also proposed that digenic/oligogenic effects 
may explain variable penetrance observed among carriers 
of mutations in DSD genes (Camats et al. 2018; Robevska 
et al. 2018; Wang et al. 2018). A systematic analysis in the 
budding yeast Saccharomyces cerevisiae has demonstrated 
that both, di- and trigenic interactions are enriched among 
genes annotated to the same biological process (Kuzmin 
et al. 2018). Several of the top-interacting gene catego-
ries in this lower eukaryotic species are also relevant in 
the context of NOA, e.g., mRNA and tRNA processing, 
mitosis and chromosome segregation, DNA replication 
and repair, transcription and chromatin organization. The 
protein–protein interaction network analysis of already 
reported NOA genes showed a highly significant enrich-
ment of active connections and complementary functions 
among loci implicated in NOA (Figs. 2, 3, 4, Supplemen-
tary Tables 4A–C). In perspective, a scenario of di-/oligo-
genic contribution to the NOA phenotype has to be poten-
tially considered and explored, especially for the genetic 
defects in spermatogenesis in isolated NOA cases.

Mouse knockout models have revealed 125 genes that 
are crucial for fertility regardless of the sex (Schimenti 
and Handel 2018), but not enough attention has been paid 
to the potential overlap between human male and female 
reproductive phenotypes. For genes with a conserved 
role in the gonadal development and gametogenesis in 
both sexes, pairing up with the knowledge on the genetic 
causes of female congenital reproductive disorders and 
infertility may provide further supportive evidence for 
the candidate NOA gene. Examples of ‘NOA-coupled’ 
phenotypes reported in female family members carry-
ing the disease mutations are primary ovarian insuffi-
ciency (POI) (FANCM, STAG3, MCM8, SYCE1, FANCA, 
DMC1, MEIOB, SETX), amenorrhea due to missing or late 
puberty (FSHB, LHB, KISS1R, GNRHR, GNRH1, FGFR1, 
TACR3, CHD7), and female genital anomalies (NR5A1, 
WT1, CHD7) (representative references in Supplementary 
Table 5).

Gradually changing and improving the clinical 
management

Determination of the precise cause for NOA is critical in 
the clinical management decisions, assessment of potential 
accompanying health-related issues of patients and coun-
seling about their options in family planning. The current 
knowledge indicates that genetic causes and their broader 
clinical implications behind isolated and syndromic NOA 
are different (Tables 2, 3 and 4, Fig. 2). Although some 
attempts have been made to establish a diagnostic gene panel 
including either all proposed genes implicated in male infer-
tility (including NOA genes) or selected candidate genes for 
NOA, the current yield of diagnostic mutation detection in 
the clinical practice is modest (Oud et al. 2017; Tüttelmann 
et al. 2018). All the accumulated evidence shows that there 
is no ‘recurrently’ mutated NOA gene that can be straight-
forwardly included into a widely applicable diagnostic gene 
panel and daily workup of andrology patients. As the major-
ity of idiopathic NOA cases are most probably explained by 
yet unknown congenital factors, the key molecular diagnos-
tics is still relying on time-consuming WES/WGS analysis. 
Due to high expected genetic heterogeneity, there is a need 
for systematic research and quality criteria for reporting 
novel NOA-related genes.

However, there are already signs for a ‘light at the end 
of the tunnel’. Current leadership in translating the findings 
of monogenic causes of congenital reproductive disorders 
for the immediate patient benefit concerns rare conditions 
affecting both sexes, DSD and CHH. For 46,XY subjects 
with CHH or DSD conditions, the yield of genetic testing is 
already over 50%. Personalized treatment and management 
schemes supported by the genetic finding are well estab-
lished and summarized in the European consensus state-
ments assembled by multidisciplinary expert groups (Boehm 
et al. 2015; Cools et al. 2018).

What would be the benefit of genetic testing for the rest 
(majority) of the NOA patients? At first glance, NOA is an 
extreme and mostly irreversible condition. Still, there is a 
clear added value in the determination of an exact genetic 
cause for each patient:

•	 Improved management of infertility and counseling about 
the health risks to the offspring

	   Genetic finding may assist in making the decision to 
consider (or not) an invasive and expensive procedure 
Testicular/Epididymal Sperm Extraction—IntraCyto-
plasmic Sperm Injection (TESE-ICSI). Recent large-
scale analysis of 714 NOA patients reported that only 
13.4% of men embarking for TESE eventually become 
a biological father, although 40.5% have successful 
sperm retrieval at their first TESE procedure (Vloe-
berghs et al. 2015). Genetic test result can be highly 
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predictive of the NOA sub-phenotype (e.g., SCOS, 
MA) and the probability to succeed in the extraction 
of immature sperm cells from the testis for the ICSI 
application. Another aspect is capacity of the immature 
sperm cells to fertilize the egg and give rise to a healthy 
offspring. This concerns especially congenital devel-
opmental defects with variable penetrance and genetic 
mutations affecting genome integrity, increasing the 
risk to childhood cancers (Hanson et al. 2018).

•	 Clinical management of the patient’s general health
	   All azoospermia patients exhibit increased risk to 

various cancers due to defects in biological pathways 
regulating genomic integrity (Chalmel et  al. 2007; 
Eisenberg et al. 2013; Hanson et al. 2018; Kasak et al. 
2018; Krausz et al. 2014; Nagirnaja et al. 2018; Yin 
et al. 2019). Clinical management of syndromic NOA 
cases has to be preferentially conducted in collabora-
tion with other medical specialties due to a possible 
overlap with other health issues, risk to chronic dis-
eases and comorbidities.

•	 Counseling the family members about potential con-
genital health-related issues

	   Even though NOA usually manifests as a sporadic case 
in the family, it is important that the family members are 
included into genetic testing. A special attention has to be 
paid to female relatives of NOA patients as nearly 50% of 
the established and novel proposed NOA genes (18/38) 
are also implicated in either POI, amenorrhea or female 
genital anomalies (Fig.  3, Supplementary Table  5). 
Whereas gonadal ambiguities are usually documented 
at birth and amenorrhea in puberty, POI can also mani-
fest with age and may not be present in a severe form in 
young women. Additional topic to be considered is the 
presence of asymptomatic carriers of pathogenic muta-
tions, for example dominant mutations with reduced pen-
etrance or female carriers of X-linked recessive diseases.

Finally, although monogenic causes of NOA are esti-
mated to represent up to 20% of azoospermia cases and 
only 2–4% of all male infertility patients, the knowledge 
of underlying genetic defects behind NOA is highly valu-
able to understand the etiology of spermatogenic failure. 
First, it could be utilized for the genetic research (and in 
perspective, in diagnostics) of oligozoospermia, a less 
severe form of quantitative sperm defects that concerns 
nearly 70% of cases diagnosed with male factor infertility. 
Today, 75% of oligozoospermia cases remain unexplained 
(Punab et al. 2017). Second, uncovering novel loci, pro-
tein families and biological pathways implicated in NOA 
may promote clinical research aiming to develop novel and 
preferentially non-invasive treatment targets and options 
for spermatogenic failure.
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