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Abstract
Although aging is a conserved phenomenon across evolutionary distant species, aspects of the aging process have been found 
to differ between males and females of the same species. Indeed, observations across mammalian studies have revealed the 
existence of longevity and health disparities between sexes, including in humans (i.e. with a female or male advantage). 
However, the underlying mechanisms for these sex differences in health and lifespan remain poorly understood, and it is 
unclear which aspects of this dimorphism stem from hormonal differences (i.e. predominance of estrogens vs. androgens) 
or from karyotypic differences (i.e. XX vs. XY sex chromosome complement). In this review, we discuss the state of the 
knowledge in terms of sex dimorphism in various aspects of aging and in human age-related diseases. Where the interplay 
between sex differences and age-related differences has not been explored fully, we present the state of the field to high-
light important future research directions. We also discuss various dietary, drug or genetic interventions that were shown 
to improve longevity in a sex-dimorphic fashion. Finally, emerging tools and models that can be leveraged to decipher the 
mechanisms underlying sex differences in aging are also briefly discussed.

Introduction

A large number of metazoans species have evolved with 
sexual reproduction. In most cases, these species have two 
sexes, which often differ in many biological aspects. At the 

most fundamental biological level, both genetic and hor-
monal mechanisms can underlie phenotypic sex differences 
(Regitz-Zagrosek et al. 2015). To note, the term “gender” 
is primarily used to refer to the social aspects of male to 
females differences, whereas the term “sex” refers to the 
genetic/biological determination level (Haig 2004). Thus, 
biological sex, which we will focus on in this review, is pri-
marily determined by sex chromosome karyotype (i.e. XY 
vs. XX in mammals), and secondarily by gonadal identity 
(i.e. testes vs. ovaries, leading to a predominance of estro-
gens or androgens) (Schurz et al. 2019). Although aging is 
thought to be very stereotypical, accumulating evidence has 
revealed strong sex dimorphism in aging and longevity phe-
notypes. For instance, female life expectancy always exceeds 
that of males in an analysis of 54 countries (Rochelle et al. 
2015). However, remarkably little is known about the bio-
logical pathways which underlie these robust differences.

Phenotypic sex differences can result from the funda-
mental differences in sex chromosome complement between 
females and males (Schurz et al. 2019). The mammalian X 
and Y chromosomes started their evolution from ordinary 
autosomes ~ 180 million years ago (Schurz et al. 2019). 
Because mammalian females usually carry two X chromo-
somes, dosage compensation mechanisms evolved, lead-
ing to one of Xs to become repressed early in development 
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through a mechanism called random X-chromosome inacti-
vation (XCI) (Brown et al. 1992; Cordaux and Batzer 2009). 
Though rare, sex chromosome aneuploidies exist and can 
lead to various human diseases, including Turner syndrome 
(i.e. X monosomy) or Klinefelter syndrome (i.e. XXY) 
(Skuse et al. 2018). The mechanisms by which these ane-
uploidies lead to diseases are thought to stem both from dos-
age imbalance arising from the small number of genes that 
can escape XCI, and from the downstream endocrine impact 
of sex chromosomes (Skuse et al. 2018). Conversely, the fact 
that X aneuploidies lead to disease supports the notion that 
both X chromosomes are required for mammalian female 
health and may contribute to sex-dimorphic phenotypes.

The other driver of phenotypic sex differences can be sex-
steroid signaling (Schurz et al. 2019). The most common 
estrogen species is 17-β-estradiol (commonly referred to as 
E2), and it can bind to classical estrogen receptors (ERs) 
ERα and ERβ. E2-bound ERs translocate to the nucleus, 
where these receptors are recruited to estrogen response ele-
ments (EREs), or indirectly bind to DNA via interaction 
with other transcription factors to regulate gene transcription 
(Menazza and Murphy 2016). Alternatively, E2 can bind to 
the membrane-bound forms of ERα and ERβ, or to the more 
recently discovered G protein-coupled estrogen receptor 1 
(GPER1), activating intracellular signaling cascades leading 
to altered gene expression (Medzikovic et al. 2019; Menazza 
and Murphy 2016). Accumulating evidence supports the 
complexity of E2/ER signaling, for instance because ERα 
and ERβ control gene expression in different ways (Menazza 
and Murphy 2016). Importantly, relative expression levels 
for ERα and ERβ differ among cell types, sex, and disease 
status (Medzikovic et al. 2019). In males, testosterone is syn-
thesized at high levels by Leydig cells in the testes (Hammes 
and Levin 2019) and performs most of its cellular effects 
through binding to the androgen receptor (AR). Similar to 
estrogen, androgens can signal through both nuclear and 
extranuclear compartments of different cell types and tis-
sues (Hammes and Levin 2019). Estrogens are thought to 
be protective against a wide variety of diseases, whereas 
testosterone seems to enhance the risk of disease progression 
(Clocchiatti et al. 2016; Ostan et al. 2016). Consistently, the 
risks of hypertension and developing Alzheimer’s disease 
(AD), two major causes of death in females, are remarkably 
inversely correlated with estrogen production (Ostan et al. 
2016; Pike 2017). Despite the overwhelming evidence of sex 
differences in health and aging, underlying mechanisms for 
this phenomenon remain a major knowledge gaps of modern 
aging research (Austad and Fischer 2016; Clocchiatti et al. 
2016; Ostan et al. 2016).

Here, we discuss the current knowledge of sex disparities 
in health, longevity, and longevity interventions, which will 
provide an important basis to frame new studies. Where the 
interplay between sex- and age-related differences has not 

yet been explored, we also present the current knowledge of 
each effect separately to delineate important gaps in knowl-
edge in the field. Finally, we also discuss emerging tools 
which are available to effectively address these questions 
experimentally in the laboratory.

Sex‑dimorphic outcomes in aging 
and longevity

Although numerous longevity and health-promoting inter-
ventions (e.g., genetic, dietary, drug) have been identified, 
much of the preclinical research supporting these interven-
tions have not systematically and thoroughly explored sex-
dimorphic effects (Miller et al. 2017). Indeed, most existing 
studies in the field have overwhelmingly favored the use of 
male samples. To address this fundamental gap, NIH guide-
lines now mandate the inclusion of sex as a biological vari-
able in experimental design. However, except in rare cases, 
sex is still often treated by the field as a confounding factor 
rather a variable of interest in its own rights.

Sex dimorphism in mammalian health and longevity

The cohort of human supercentenarians (i.e. individuals 
aged over 110) reveals a surprising predictor for achiev-
ing such exceptional longevity: being female. Indeed, out 
of recorded 34 currently living supercentenarians, 33 are 
women (Adams 2019). Moreover, despite overall life expec-
tancy increases for both women and men over the last few 
decades, human longevity has remained highly sex dimor-
phic, with the life expectancy of women systematically and 
robustly exceeding that of men (Austad and Fischer 2016). 
The increased life expectancy of women is likely to stem 
from the fact that they are less likely to succumb to most of 
the significant age-related causes of death: women die at a 
lower age-adjusted rate for 13 out of the 15 leading causes 
of death in the USA (Xu et al. 2016). In addition to humans, 
sex differences in lifespan have been observed across animal 
taxa, with mammalian females being generally longer lived 
than males (Austad and Fischer 2016; Bronikowski et al. 
2011; Clutton-Brock and Isvaran 2007; Finch 1990).

In most reported cases, female laboratory rats live longer 
than their male counterparts (Berg and Simms 1960; Carlson 
and Hoelzel 1946; McCay et al. 1935; Nolen 1972). The 
existence of a similar female advantage for lifespan in labo-
ratory mice is still hotly debated, especially for inbred strains 
(Austad 2011; Austad and Fischer 2016). However, in stand-
ardized husbandry conditions developed for the NIA Inter-
ventions Testing Program (ITP), female individuals con-
sistently outlive males at three independent sites (Harrison 
et al. 2014; Miller et al. 2011; Strong et al. 2008), suggesting 
that the human female advantage may be recapitulated in 
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laboratory mice, at least in controlled conditions. Intrigu-
ingly, a recent report using an elegant genetic model showed 
that both the presence of two chromosome X and, to a lesser 
extent, the presence of ovaries led to increased survival in 
mice (see below) (Davis et al. 2018).

Hormonal inputs in mammalian health 
and longevity

A key difference in male and female milieu is the presence 
and endocrine fluctuations of sex-steroid hormones (e.g., 
17-β-estradiol). Although these factors decline with age in 
both sexes, the rate of decline differs greatly between the 
sexes (Gubbels Bupp 2015). In addition, regular physi-
ological fluctuations in sex-steroid hormone levels are seen 
throughout the menstrual cycle in women of child-bearing 
age, with increased estrogen production during the follicular 
phase, and increased progesterone production in the luteal 
phase. Similar cyclic fluctuations of sex-steroid hormones 
are observed throughout mammals and are known as the 
‘estrus cycle’ in rodents (Hong and Choi 2018). Hormonal 
differences between sexes and natural fluctuations of hor-
monal levels are likely to broadly impact gene regulation, 
even in somatic cells, with both short and long-term effects. 
Indeed, as previously mentioned, estrogens and androgens 
can act through both (1) nuclear receptors (i.e. ER-α, ER-β, 
AR), which function like transcription factors, and (2) 
membrane-associated receptors (i.e. mER-α, mER-β, GPER) 
(Buskiewicz et al. 2016). The complex cross-talk between 
signaling from different receptors to the same hormone is 
still poorly understood (Buskiewicz et al. 2016) and may 
underlie the existence of context-dependent beneficial vs. 
pathogenic effects of the same hormone.

In addition to their role in sex determination and fertil-
ity, accumulating evidence suggests that sex steroids dif-
ferentially contribute to health and lifespan in females vs. 
males (Austad and Fischer 2016; Dulken and Brunet 2015). 
Indeed, supporting a key role for sex-steroid hormones in 
female aging, later age-at-menopause is a strong predictor of 
increased woman longevity (Hong et al. 2007; Ossewaarde 
et al. 2005; Shadyab et al. 2017), and post-menopausal 
women are more at risk for many age-related afflictions (e.g., 
osteoporosis, immune decline, neurodegeneration) (Gubbels 
Bupp 2015). Consistently, many health parameters differ 
between male and female mice with aging (Fischer et al. 
2016). In addition, several reports indicate that key adult 
stem cell populations (i.e. hematopoietic, neural and mus-
cle stem cells) display higher self-renewal, and regenerative 
capacity in female vs. males (Deasy et al. 2007; Nakada 
et al. 2014; Pawluski et al. 2009). Moreover, females gener-
ally exhibit increased wound healing ability (Deasy et al. 
2007; Gilliver et al. 2008; Yao et al. 2016) and liver regen-
eration (Tsukamoto and Kojo 1990).

Sex dimorphism in longevity phenotypes 
upon dietary or drug‑based interventions

Dietary restriction (DR), the limitation of total caloric intake 
or specific nutrients (i.e. amino-acids) without malnutrition, 
has been generally shown to improve health and longev-
ity outcomes across species (Fontana and Partridge 2015). 
However, when treating sex as a biological variable, clear 
differences emerge in the efficacy of DR as a health and lon-
gevity-extending intervention (Table 1). For instance, Hon-
joh and colleagues demonstrated sex-dimorphic responses 
to DR between hermaphrodites and males in the nematode 
C. elegans, with hermaphrodites displaying greater lifespan 
extension than males (Honjoh et al. 2017). The mechanism 
behind this DR response variation was proposed to involve 
the sex determination pathway and the worm steroid hor-
mone receptor DAF-12 (Honjoh et al. 2017). Similarly, in 
Drosophila melanogaster, two studies reported a greater 
extension of lifespan in females vs. males upon DR, which 
could result from sex differences in insulin/insulin-like path-
way signaling, nutrient-sensing pathways, and intestinal 
stem cell activity (Magwere et al. 2004; Regan et al. 2016). 
Although sex dimorphism has been observed in the mamma-
lian response to DR, the better-responding sex is not always 
the same across studies of laboratory mice (selected exam-
ples in Table 1). This may be partly due to slight genetic 
background differences between studies (Liao et al. 2010), 
which could interact with genetic sex or reflect more com-
plex interactions. Alternatively, these discrepancies in sex-
biases responses to DR may result from cryptic differences 
(e.g., exact nature of the diet, hormonal status of mice, stress 
levels). Thus, systematic and well-controlled studies will be 
needed to establish whether the direction of sex-dimorphic 
effects of DR is a broadly conserved phenomenon.

In addition to DR, drug-based pro-longevity interventions 
have also been reported to display sex-dimorphic responses 
(see Table 2). Rapamycin is one of the best documented 
examples of such a response (Fischer et al. 2015; Miller et al. 
2014). Rapamycin works as a DR mimetic by inhibiting 
mTOR, a kinase that regulates cell growth through cellular 
nutrient sensing (Wilkinson et al. 2012). Studies of rapa-
mycin supplementation have reported sex-dimorphic differ-
ences in both longevity and health parameters (Table 2). To 
note, these effects have been suggested to partially stem from 
sex-dependent rapamycin bioavailability (Fischer et al. 2015; 
Miller et al. 2014). Another DR mimetic, metformin, is a 
common anti-hyperglycemic drug that primarily functions 
by uncoupling the electron transport chain, thereby mimick-
ing a low-energy state (El-Mir et al. 2000). Sex-dimorphic 
differences in the response to neonatal exposure to met-
formin have been reported, with a greater lifespan exten-
sion observed in males compared to females (Anisimov et al. 
2015). Acarbose, a glucosidase inhibitor, was also proposed 
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to act as a DR mimetic to promote health and longevity 
(Harrison et al. 2014, 2019). Studies have shown that with 
age, postprandial glycemia becomes less tightly regulated 

(Frantz et al. 2005; Miyamura et al. 2010), and acarbose is 
thought to prevent this age-related defect by slowing car-
bohydrate digestion, thereby reducing postprandial glucose 

Table 1   Selected sex-dimorphic effects in dietary restriction as a health- and longevity-extending intervention in different laboratory models

Species Strain Type of DR Sex-dimorphic effect References

Caenorhabditis elegans N2 CR Greater lifespan in hermaphro-
dites than males

Honjoh et al. (2017)

Drosophila melanogaster – CR Greater lifespan in females than 
males

Magwere et al. (2004)

CR Greater lifespan in females than 
males

Reduced gut pathology in aged 
females vs. males

Regan et al. (2016)

Mus musculus C57BL/6 CR Differences in liver but not cae-
cal metabolites between sexes

Gibbs et al. (2018)

C57BL/6J Methionine deprivation Greater expression of fibroblast 
growth factor-21 and UCP1 in 
males vs. females

Greater energy expenditure in 
females vs. males

Greater alteration in lipid 
metabolism in females vs. 
males

Yu et al. (2018)

Growth hormone-releasing 
hormone KO (mixed C57BL/6 
and 129Sv)

CR Greater lifespan in females than 
males

Sun et al. (2013)

Growth hormone receptor KO CR Greater maximal lifespan in 
females than males

Bonkowski et al. (2006)

C57BL/6 CR (20% and 40%) C57BL/6 mice with 40% CR—
no difference and with 20% 
CR females lived longer than 
males

Mitchell et al. (2016) 

DBA/2J CR (20% and 40%) DBA/2J mice with 40% and 
20% CR did not show any 
sex-differences

Mitchell et al. (2016) 

ILSXISS recombinant inbred 
strains

CR Generally better outcomes in 
females, though strain specific

Liao et al. (2010)

Rattus norvegicus Wistar CR Liver mitochondrial oxidative 
capacity is unaffected by CR

Valle et al. (2007)

Table 2   Summary of sex-dimorphic effects in drug-based health- and longevity-extending interventions studies on Mus musculus 

Drug Mouse strain Sex-dimorphic effect References

Rapamycin UM-HET3 Greater lifespan in females than males Miller et al. (2014)
C57BL/6J Greater total body mass in young females than males

Greater percent fat in young females than in males
Greater resting metabolic rate in young females than in males

Fischer et al. (2015)

Metformin 129/Sv Greater lifespan in males than females Anisimov et al. (2015)
Acarbose UM-HET3 Greater lifespan in males than females

Improved metabolism (better glucose tolerance, mTOR signaling) in 
males than females

Reduced microglial activation in males than females

Garratt et al. (2017), Har-
rison et al. (2014, 2019) 
and Sadagurski et al. 
(2017)

17-α estradiol UM-HET3 Improved metabolism (better glucose tolerance, mTOR signaling) in 
males than females

Reduced microglial activation in males than females

Garratt et al. (2017), Har-
rison et al. (2014) and 
Sadagurski et al. (2017)
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spikes (Harrison et al. 2014). As part of the NIA ITP, acar-
bose has been well studied in male and female genetically 
heterogeneous UM-HET3 mice (Garratt et al. 2017; Har-
rison et al. 2014, 2019). In the context of this strain, male 
mice displayed substantially greater longevity and health 
compared to females (Garratt et al. 2017; Harrison et al. 
2019). These effects included improved metabolism (i.e. 
glucose tolerance, mTOR signaling) and reduced microglial 
activation (Garratt et al. 2017; Sadagurski et al. 2017).

Supplementation with 17-α estradiol was another ITP 
success with sex-dimorphic impact on aging (Garratt et al. 
2017; Harrison et al. 2014). This molecule was selected 
as a non-feminizing form of estrogen, which was thought 
to potentially engage estrogen-associated health insurance 
mechanisms without altering innate sexual characteristics 
(Garratt et al. 2017; Harrison et al. 2014). Intriguingly, 
despite not influencing sex characteristics, the longevity- and 
health-promoting effects of 17-α estradiol are sex dimor-
phic (Garratt et al. 2017; Harrison et al. 2014). Indeed, 17-α 
estradiol has been shown to lead to elevated mTORC2 activ-
ity in males, but not in females (Garratt et al. 2017). Simi-
lar to acarbose, 17-α estradiol also preferentially improved 
glucose clearance in males compared to females (Garratt 
et al. 2017).

Genetic longevity models with sex‑dimorphic health 
of longevity phenotypes

More surprisingly than in response to drug supplementa-
tion, genetic manipulations have also been shown to exert 
sex-dimorphic impact on lifespan, leading to either greater 
lifespan extension in females vs. males (e.g., Igf1r haploin-
sufficiency), or lifespan extension exclusively in males (e.g., 
Sirt6 overexpression) (Bokov et al. 2011; Enns et al. 2009; 
Holzenberger et al. 2003; Kanfi et al. 2012; Selman et al. 
2008, 2009; Xu et al. 2014; Yao et al. 2016).

The insulin signaling pathway has been extensively stud-
ied in the context of aging and longevity, and mouse knock-
out (KO) models have been generated for many genes in 
the pathway. Interestingly, most of the insulin pathway KO 
mice display some measure of sex dimorphism. For exam-
ple, Igf1r haploinsufficiency is thought to work by decreas-
ing the biological activity of insulin growth factor-1 (IGF-
1), which promotes anabolism and growth. Intriguingly, the 
scale of lifespan extension in this model differs significantly 
between males and females (Holzenberger et  al. 2003). 
Indeed, Igf1r+/− mice from the 129Sv strain were found to 
display a larger increased in lifespan in females compared 
to males (Holzenberger et al. 2003). Although the same sex 
dimorphism in lifespan extension was also observed on the 
C57BL/6J background (Bokov et al. 2011; Xu et al. 2014), 
the extent of the sex dimorphism on the 129Sv background 
is substantially higher on the C57BL/6J background (Xu 

et al. 2014). This discrepancy was suggested to stem from 
strain-specific differences in circulating IGF-1 (Xu et al. 
2014) and shows that sex-dimorphic phenotypes may be 
modified by autosomal genetic variation. Conversely, insulin 
receptor heterozygous knock-out models have been shown 
to lead to increased lifespan of male mice only (Nelson et al. 
2012). Downstream of the receptors, invalidation of the insu-
lin receptor substrate 1 null in mice (Irs1−/−) was found to 
lead to increased lifespan of female mice only (Selman et al. 
2008).

Sirtuins are highly conserved NAD-dependent deacety-
lases that have been shown to regulate lifespan across taxa. 
In mammals, overexpression of Sirt6 in mice was found to 
significantly increase lifespan in males only (Kanfi et al. 
2012). Analysis of the Sirt6 overexpression model revealed 
that the major components of insulin signaling were affected 
(Kanfi et al. 2012). Other genetic models that may mimic 
effective pro-longevity drug targets or dietary interventions 
are KO models of genes encoding protein kinase A RIIβ, 
and a subunit of the ribosomal S6 kinase (S6K) (Enns et al. 
2009; Lamming et al. 2012; Selman et al. 2009). Protein 
kinase A (PKA) has been shown to be important in yeast 
longevity (Longo 2003). Intriguingly, mice without the 
PKA regulatory isoform RIIβ displayed increased lifespan 
in males but not in females (Enns et al. 2009), and were 
protected from age-related fatty liver, insulin resistance, and 
cardiac dysfunction (Enns et al. 2009). Independent studies 
have shown that null and heterozygous S6K subunit gene 
KO lead to increased lifespan in female mice but not males 
(Lamming et al. 2012; Selman et al. 2009). The S6 Kinase is 
part of the mTOR signaling cascade, and the female advan-
tage on these genetic models is reminiscent of that observed 
upon rapamycin supplementation (Fischer et al. 2015; Miller 
et al. 2014).

Although most of the work in Ames dwarf mice has 
utilized exclusively male mice, a small study revealed that 
female Ames dwarf mice may live significantly longer than 
their male counterparts (Brown-Borg et al. 1996). Interest-
ingly, long-lived mice lacking growth hormone (GH) and 
growth hormone receptor KO (GHRKO) may have a larger 
effect on females than males (Gesing et al. 2013). Intrigu-
ingly, only females GHRKO benefit from DR-induced lifes-
pan extension (Bonkowski et al. 2006), whereas rapamycin 
treatment of GH mutant mice leads to a larger decrease in 
lifespan of male vs. females (12.5% vs. 6%) (Fang et al. 
2018). Because of their role in GH signaling, a recent study 
of mice carrying both the Ames dwarf and GHRKO alleles 
suggested that females may also display a longevity advan-
tage compared to males in this context (Gesing et al. 2017).

Thus, although differences in the bioavailability or 
metabolism of longevity-promoting compounds may be 
responsible for sex-dimorphic longevity effects of drug 
treatments, the existence of sex-dimorphic longevity effects 
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upon genetic manipulation suggests the existence of com-
plex mechanisms regulating sex-dimorphic phenotypes 
throughout life.

Widespread sex differences are observed 
in age‑related chronic diseases

Sex-steroid hormones, both androgens, and estrogens have 
been shown to exert a significant impact on energy metabo-
lism, body composition, vascular function, inflammatory 
responses, and neurogenesis (Gambineri and Pelusi 2019). 
While aging is associated with progressive metabolic decline 
and increased prevalence of chronic diseases in both sexes, 
the presentation and prevalence of these diseases are highly 
influenced by sex. Indeed, sex difference/dimorphism is 
increasingly evident in age-related metabolic disease [obe-
sity, type 2 diabetes mellitus (T2DM), and cardiovascular 
diseases (CVD)]. Understanding how sex differences in 
age-related diseases are established will be crucial to lever-
age these differences for the improvement of health in both 
sexes.

Sex dimorphism in age‑related metabolic 
dysfunction

Obesity and adiposity

Obesity is a growing public health concern and a key risk 
factor for many age-related diseases, such as T2DM and 
CVD. In recent years, the prevalence of elderly obesity has 
steadily increased (Jura and Kozak 2016). In addition to life-
style changes with retirement, a shift in sex hormone levels 
in the elderly may also lead to a chronic positive energy 
balance state (Masternak et al. 2012), leading to excess fat 
tissue accumulation. In turn, this increase in adiposity then 
potentiates the development of age-related diseases (Tchko-
nia and Morbeck 2010). In addition to increased adiposity, 
aging is also associated with fat redistribution from subcu-
taneous to abdominal areas (Kok et al. 2009). While aging 
is associated with increased adiposity across sexes, men and 
women exhibit different patterns of adipose storage through-
out life. Women typically present with ~ 10% higher total 
body fat than men throughout life and are generally more 
prone to obesity. Women tend to store more adipose tissue 
in the hips and thighs, while men have a more central fat 
distribution pattern. The pear-shaped female fat distribu-
tion may confer protection against metabolic diseases, such 
as T2DM and atherosclerosis (Manolopoulos et al. 2010) 
(see below). In women, visceral adiposity rises during the 
peri-menopausal transition, and adipose tissue redistrib-
utes toward abdominal area after menopause (Toth et al. 

2000; Kozakowski et al. 2017). Similarly, visceral adipos-
ity increases in men with age as testosterone levels decline 
(Allan et al. 2008).

Type 2 diabetes mellitus (T2DM)

In contrast to type 1 diabetes, an early onset insulin-depend-
ent autoimmune disorder, T2DM is non-insulin-dependent 
and becomes more common with increasing age (Arum et al. 
2014). Independent of sex differences in obesity and adi-
posity, the risks of T2DM in men and women are directly 
affected by sex hormones. Indeed, testosterone can influence 
T2DM pathogenesis. Based on cross-sectional studies, lower 
levels of testosterone in men and higher levels of testoster-
one in women are associated with increased T2DM risks 
(Gambineri and Pelusi 2019). Polycystic ovary syndrome 
(PCOS) is the most common hyperandrogenic disorder 
in women (Conway et al. 2014). Intriguingly, the odds of 
T2DM are four times as high for women with PCOS com-
pared to healthy women, even when matched for body mass 
index (BMI) (Gambineri and Pelusi 2019; Moran et al. 2010, 
Morgan et al. 2012). Thus, imbalance in sex hormones (e.g., 
PCOS) can directly impact the risk of developing T2DM. 
Conversely, low baseline testosterone levels in men are asso-
ciated with a dramatically higher risk of developing T2DM 
in men (Dhindsa et al. 2010). Thus, in addition to sex differ-
ences in body composition and fat deposition, sex hormones 
directly contribute to sex-dimorphic risk for diabetes.

Metabolic syndrome

Although metabolic syndrome affects men more often than 
women overall, women only seem to be protected before 
menopause (Regitz-Zagrosek et al. 2007). Indeed, the female 
risk of metabolic syndrome becomes roughly equivalent to 
that of male counterparts after the onset of menopause. Con-
sistent with human data, female mice showed fewer markers 
for Western diet-induced obesity despite having the same 
amount of energy intake than matched males (Kaliannan 
et al. 2018). Males appeared more obese than their female 
counterparts and had higher fat distribution, more evidence 
of glucose intolerance, non-alcoholic fatty liver disease, and 
dyslipidemia (Kaliannan et al. 2018). Thus, sex may also act 
as a modifier for the impact of metabolic imbalance.

Sex dimorphism in cardiovascular disease

Traditionally viewed as a man’s disease, cardiovascular 
disease (CVD) is substantially more common in men than 
women, even with age-standardized statistics. The major 
areas of age-related CVD include ischemic heart disease, 
heart failure, and hypertension.
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Ischemic heart disease, also known as coronary artery 
disease, occurs when plaque builds up inside blood ves-
sels, leading to an inadequate blood supply to the heart 
(Regitz-Zagrosek and Kararigas 2017). Men and women 
are prone to develop different types: occlusive coronary 
artery disease is more frequent in male patients, while 
non-obstructive coronary artery disease or microvascular 
dysfunction is more common in women (Regitz-Zagrosek 
et al. 2015). In addition, men develop coronary artery dis-
ease earlier and usually present with more severe athero-
sclerosis in their coronary arteries than women. Indeed, 
myocardial infarction, which is a manifestation of coro-
nary artery disease, occurs ~ 10 years earlier in men than 
women (Regitz-Zagrosek and Kararigas 2017). The reason 
for the relative protection of women may be due to the 
beneficial lipid profile and the role of estrogen signaling 
(Jiang and Tian 2017; Sudhir et al. 1997). Women with 
PCOS and men with a disruptive estrogen receptor muta-
tion have been shown to develop early coronary artery 
disease (Legro 2003; Sudhir et al. 1997). Heart failure is 
a typical clinical syndrome arising from different patho-
physiological conditions, affecting more than 10% of peo-
ple aged > 70 years in western societies (Regitz-Zagrosek 
and Kararigas 2017). Though heart failure affects more 
women than men in terms of raw case numbers (Ambrosy 
et  al. 2014), women have better odds of survival than 
men, and heart failure in women usually occurs at a later 
age (Regitz-Zagrosek and Kararigas 2017). In contrast 
to ischemic heart disease and heart failure, hyperten-
sion tends to affect more women in the elderly popula-
tion (Vigen et al. 2012). Indeed, the percentage of women 
with hypertension is about twice that of men, and pre-
menopausal women have lower rates of hypertension and 
lower lipid levels than age-matched men (Regitz-Zagrosek 
et al. 2015). Possible reasons for the shift in hypertension 
risk after the onset of menopause may be due to increased 
production of testosterone by the post-menopausal ovary 
(Maki and Henderson 2012). Consistently, women with 
PCOS have higher hypertension risk, indicating that 
higher testosterone levels are a risk factor for hyperten-
sion in women (Dworatzek et al. 2016).

Taken together, CVD shows a clear sex-dimorphic pres-
entation during aging. In addition to the role of hormone-
specific mechanism in men and women, sex-dimorphic 
CVD may also be explained by other mechanisms, such as 
sex-specific ion handling and rhythmicity in cardiovascu-
lar cells—women, in general, have faster resting heart rates 
and longer rate-corrected Q, T intervals, leading to higher 
susceptibility to drug-induced QT prolongation (Regitz-
Zagrosek et al. 2015). Understanding these sex differences 
and their underlying mechanisms will be crucial to tailor 
therapeutic strategies that target sex-specific cardiovascular 
disease mechanisms.

Sex dimorphism in age‑related eye disorders

Glaucoma

Glaucoma is a common age-related eye condition in which 
the optic nerve is damaged and can potentially lead to 
irreversible blindness. The maintenance of intraocular 
pressure is crucial to maintain clear vision (Pattabiraman 
and Toris 2016). Indeed, glaucoma is the leading cause 
of blindness in people aged > 60 years old, and is more 
common in women than men, suggesting sex dimorphism 
in glaucoma pathogenesis (Quigley and Broman 2006). 
Although the exact cause of this disparity remains poorly 
understood, anatomical differences, hormonal differences, 
lifestyle, and family history are thought to contribute to a 
significant amount (Brandt et al. 2001; Gordon et al. 2002; 
Høvding and Aasved 1986; Sommer and Tielsch 1996; 
Wilson et al. 1987). Several forms of glaucoma exist, the 
most common subtypes being angle-closure glaucoma 
(ACG) and open-angle glaucoma (OAG) (Lee et al. 2003; 
Pattabiraman and Toris 2016; Vajaranant and Pasquale 
2012). The higher prevalence of glaucoma in women has 
been suggested to stem from the use of oral contraceptives 
(Lee et al. 2003; Pasquale and Kang 2011; Vajaranant and 
Pasquale 2012). Indeed, the use of oral contraceptives for 
more than 5 years is associated with a 25% increased risk 
of OAG (Pasquale and Kang 2011; Wang et al. 2016). 
Glaucoma incidence is also influenced by menopausal sta-
tus (Hulsman et al. 2001; Newman-Casey et al. 2014), and 
post-menopausal hormonal replacement therapy (HRT) in 
women aged > 50 was associated with reduced prevalence 
of OAG (Newman-Casey et al. 2014). Conversely, preg-
nancy decreases intraocular pressure, which may reduce 
the chances of eventually developing glaucoma (Efe et al. 
2012; Phillips and Gore 1985). In the case of OAG, sex is 
not considered a risk factor per se, although females often 
have more significant progression (Drange et al. 2001).

Age‑related macular degeneration

The human eye has a macula lutea situated near the center 
of the retina. The macula region can be damaged as we 
age, which leads to a clinical condition called age-related 
macular degeneration (AMD) (Ambati et al. 2003; Elbay 
et al. 2019). AMD pathogenesis is multifactorial, with risk 
factors including heredity, obesity, hypertension, hyperme-
tropia, ethnicity, and smoking. However, late menopause 
may be associated with a reduced risk of AMD (Snow 
et  al. 2002). Additionally, increased risk in women is 
reported (Chakravarthy et al. 2010).
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Cataract

Cataract is characterized by clouding or opacification of the 
lens in the eye, which dull the vision and is often age-related 
(Kahn et al. 1977). Studies have shown a higher prevalence 
of cataract in women vs. men of age group 65–75 years 
(~ 25% vs. ~ 15%) (Klein et al. 1992; Lundström et al. 1999, 
2002; Mitchell et  al. 1997). However, pre-menopausal 
women and age-matched men show the same risk of develop-
ing cataract (Klein et al. 1992; Mitchell et al. 1997). Higher 
rates of cataract surgery were reported in women (Lund-
ström et al. 1999, 2002), which may result from declining 
estrogens after menopause. Interestingly, post-menopausal 
hormone replacement therapy may reduce the incidence of 
lens opacification (Freeman et al. 2001; Klein et al. 1992; 
Younan et al. 2002). The protective effects of estrogens may 
result from anti-oxidant properties since oxidative stress is 
a major pathway in the pathophysiology of cataract (Beebe 
et al. 2010). Moreover, in vitro treatment of lens epithelial 
cells with E2 was found to be protective against oxidative 
stress (Celojevic et al. 2011; Wang et al. 2003).

Sex dimorphism in age‑related neurodegeneration

Neurodegenerative age-related diseases have a particularly 
staggering sex-dimorphic prevalence pattern. For instance, 
Alzheimer’s disease tends to occur more commonly in 
females, while Parkinson’s disease is biased toward presen-
tation in males. All these major neurodegenerative diseases 
have associated genetic aspects and are incapable of being 
cured by treatment—current standard treatment practices 
can only hope to ameliorate symptoms. Thus, understand-
ing sex differences may provide new research avenues for 
effective therapeutics.

Alzheimer’s disease

Alzheimer’s disease (AD), the most common form of 
dementia, is characterized by senile plaque and neurofibril-
lary tangle buildup in the brain and central and peripheral 
nervous system that leads to profound degeneration of large 
portions of the brain. This form of dementia accounts for 
more than 50% of dementia cases worldwide (Bekris et al. 
2010). The degradation associated with AD appears to have 
a progression through the brain, beginning in medial tempo-
ral lobe structures before following temporal projections and 
causing degeneration in connected regions (e.g., subcorti-
cal structures, prefrontal structures, corpus callosum, and 
expansive cortex regions) (Smith 2002; Teipel et al. 2002). 
AD symptoms include hallmark progressive memory defi-
cits, as well as language disturbance, visuospatial impair-
ment, and higher executive function impairment (Schachter 
and Davis 2000). Additionally, many patients experience 

personality changes, judgment impairments, psychosis, 
mood disturbances, and sleep disturbances (Schachter and 
Davis 2000). Due to the extent of degeneration experienced 
by AD patients in specific regions, most patients develop a 
similar cluster of symptoms.

There is a distinctive pattern of AD presentation in males 
and females. AD is a disease that is most commonly pre-
sent in females, with higher AD occurrence levels in all 
age groups > 60 except for 65–69. Males face a ~ 6% risk of 
developing AD in their lifetime after age 65, while women 
face a ~ 12% chance of developing AD in the same time-
frame (Podcasy and Epperson 2016; Viña and Lloret 2010). 
Clinical presentation of AD also tends to be sex dimorphic, 
with symptoms and degeneration occurring more rapidly 
in women than in men (Laws et al. 2016; Lin et al. 2015), 
and men having a shorter lifespan after diagnosis (Kua 
et al. 2014). The skewed proportions of female to male 
AD patients may be linked to sex hormone effects. Indeed, 
estradiol has been illustrated to have neuroprotective effects 
(Maki and Henderson 2012), and women who experience 
menopause later in life tend to have a later age of AD onset 
(Lin et al. 2015). The significant decline in circulating estra-
diol after menopause can no longer fully exert neuroprotec-
tive effects in the brain, while age-matched males are still 
capable of aromatizing testosterone into estradiol and, there-
fore, still experience these neuroprotective effects (Podcasy 
and Epperson 2016). Along the same lines, although HRT 
in women has not been reported to have strong protective 
effects, long-term hormone self-administration is associated 
with reduced AD risk (Imtiaz et al. 2017).

Interestingly, the genotype of APOE, the most impactful 
genetic risk factor, is located on chromosome 19 and has 
been associated with increased risk of late-onset AD, par-
ticularly for the e4 genotype (Bekris et al. 2010; Corder et al. 
1993). The APOE gene may not directly be involved in the 
pathology of AD, although > 40% of individuals with AD 
have the e4 genotype, and ~ 40% of e4 carriers have senile 
plaques (Farrer et al. 1995; Kok et al. 2009). Interestingly, 
the APOE e4 allele risk factor appears to interact with sex, 
with males of APOE e3/e4 and APOE e3/e3 genotypes expe-
riencing AD risk level markedly less than the risk for APOE 
e4/e4 genotype, while females of APOE e3/e4 genotype are 
nearly twice as likely to develop AD than those of APOE e3/
e3 genotype (Poirier et al. 1993; Tsai et al. 1994).

Parkinson’s disease

Parkinson’s disease (PD) is characterized by a loss of dopa-
mine neurons in the substantia nigra pars compacta, a 
region of the basal ganglia (Deumens et al. 2002; Kalia and 
Lang 2015). The basal ganglia are a collection of neural 
structures responsible for the control of movement (Mink 
1996). Two pathways work together to allow movement by 
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enabling activity in a subgroup of neurons while preventing 
excessive movement (Calabresi et al. 2014). It is the sub-
stantia nigra pars compacta exerting a dopaminergic con-
nection upon the striatum that both excite the direct (i.e. 
movement-initiating) pathway and inhibit the indirect (i.e. 
movement-inhibiting) pathway (Freeze et al. 2013). PD 
symptoms include tremor at rest, involuntary movement, and 
rigidity, which are classified as positive motor symptoms, 
and poverty of movement (i.e. bradykinesia) and posture 
disruption, which are classified as negative motor symptoms 
(Deumens et al. 2002). Cognitive impairments, including 
pain, fatigue, psychiatric disorders, olfactory dysfunction 
(Kalia and Lang 2015), and other general cognitive impair-
ments are experienced by up to 50% of PD patients within 
3 years of diagnosis (Geurtsen et al. 2014). Dementia is 
also frequently experienced by PD patients (Kalia and Lang 
2015). Commonly, cognitive-motor impairments are seen 
in addition and include a severely impaired ability to make 
coarse and fine movement adjustments, as well as the transi-
tion between walking surfaces. The pathogenic mechanism 
for PD remains mostly unknown. While it is clear that PD 
involves dopamine neuron degeneration, there is no single 
underlying genetic indicator. Autosomal dominant forms of 
PD have been discovered [e.g., alpha-synuclein, parkin, leu-
cine-rich repeat kinase 2 (LRRK2)] (Klein and Westenberger 
2012; Wood-Kaczmar et al. 2006). Other genetic loci have 
been less conclusively associated with the disease (Klein and 
Westenberger 2012).

PD is a disease that is most commonly present in men, 
with reported proportions of disease occurrence that mostly 
range at 2:1 (Elbaz et al. 2002; Gillies et al. 2014). In addi-
tion, the clinical presentation of symptoms can have highly 
sex-dimorphic patterns, with females experiencing a later 
age-of-onset and milder PD phenotype than males (Alves 
et al. 2009; Haaxma et al. 2007; Miller and Cronin-Golomb 
2010; Shulman and Bhat 2006). Women are more likely to 
experience tremor, dyskinesia, nervousness, and depression 
in their PD pathology (Haaxma et al. 2007; Martinez-Martin 
et al. 2012), while men are more likely to experience rigid-
ity, rapid eye movement, and reduction in verbal fluency and 
facial expression recognition (Martinez-Martin et al. 2012). 
The sex-dimorphic pattern in both disease frequency and 
pathology cannot be entirely explained, but pre-existing 
sex-dimorphic patterns of structure, function, and hormone 
regulation are almost certainly involved (Gillies et al. 2014).

Sex dimorphism in the microbiome 
throughout life

Over the past decade, there has been increasing interest in 
the microbiome and its potential role in modulating over-
all human health and disease. From the ramifications of 

vaginal delivery vs. cesarean birth in the colonization of the 
newborn gastrointestinal tract and its effect on later health 
(Tanaka and Nakayama 2017), to cardiovascular disease and 
obesity, the human microbiome has now been shown to have 
a more significant role in maintaining health and homeo-
stasis than previously imagined. Although many different 
microenvironments have been gaining interest, we will focus 
here on the gut microbiome, the influence of host sex on the 
microbiota, and the impact of the aging microbiome on over-
all health. To note, very little is known about sex-dimorphic 
features of the aging microbiome, so we will highlight the 
current knowledge in the fields of (1) sex differences and 
hormonal interactions to the microbiome in young animals, 
and (2) age-related effects on the microbiome. Future work 
integrating both these aspects will be a crucial step in the 
field.

The gut microbiome and age‑related dysbiosis

The human gut microbiome is estimated to be composed of 
an estimated 1013 to 1014 micro-organisms (Bianconi et al. 
2013; Savage 1977; Sender et al. 2016a, b). The microbial 
community consists of bacteria, viruses, and fungi. Bacteria 
represent the largest proportion of the microbial commu-
nity with an estimated 500–1000 different bacterial species 
(Sender et al. 2016a). Relevant to aging, Elie Metchnikoff 
proposed in 1907 that age-related dysfunction was driven by 
chronic systemic inflammation, which occurred as a result 
of increased colon permeability (Metchnikoff 1907). The 
inflammation-driven hypothesis of aging is indeed now a 
leading hypothesis in the field, known as “inflamm-aging” 
(Franceschi and Campisi 2014). Although much remains to 
be studied, pioneering studies have started to map out the 
effect of aging on the gut microbiome (reviewed in (Nagpal 
et al. 2018)).

Interestingly, studies in D. melanogaster have revealed 
that age-related changes in the microbiome lead to increased 
intestinal permeability (Clark et al. 2015), which in turn 
promotes increased inflammation and mortality (Rera et al. 
2012). The impact of the gut microbiome on systemic 
inflammation in mammals is supported by the fact that the 
composition of gut microbiome is correlated with inflam-
matory circulating cytokines in the human elderly (Claes-
son et al. 2012) and in aged mice (Conley et al. 2016; The-
varanjan et al. 2017). Interestingly, a recent study showed 
that intestinal barrier function fails with aging in mice, with 
increased levels of bacteria products in the blood of aged 
mice (Thevaranjan et al. 2017). Leveraging comparisons 
between specific pathogen-free and germ-free mice, the 
authors further demonstrated that intestinal barrier failure 
is driven by remodeling of gut microbial communities and 
alters macrophage function, reducing bacteria killing ability 
and increasing production of pro-inflammatory cytokines 
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(Thevaranjan et al. 2017). Thus, age-related changes in the 
composition of the gut microbiome may represent a form of 
“microbial dysbiosis” (Thevaranjan et al. 2017). Although 
these studies did not explore how sex may interplay with 
age-related microbial dysbiosis, gut microbiota composition 
is tightly associated with diet in the elderly (Claesson et al. 
2012), suggesting that the effects of pro-longevity inter-
ventions may partially act through microbial community 
remodeling.

Dietary effects on the gut microbiome

Interestingly, high fat diet (HFD) has been shown to lead 
to reduced diversity in the gut microbes (Xiao et al. 2017), 
which itself is a form of “gut dysbiosis” (Turnbaugh et al. 
2006). This lack of diversity is thought to leave fewer com-
munity members available to process toxic metabolites, 
which leads to an inflammatory response. This inflamma-
tory response weakens cell–cell junctions and, therefore, 
increases permeability of the gastrointestinal tract and allows 
for bacterial translocation (Schwabe and Jobin 2013). Bacte-
rial lipopolysaccharide (LPS), one of the main components 
of Gram-negative bacterial cell walls (Moreira et al. 2012), 
has been identified as a triggering inflammatory factor which 
can cause the onset of insulin insensitivity, obesity and dia-
betes (Cani et al. 2007; Moreira et al. 2012). Indeed, an HFD 
increases the proportion of LPS-containing microbiota in 
the gut (Cani et al. 2007), thus promoting systemic inflam-
mation and metabolic endotoxemia. Interestingly, HFD-fed 
male mice over a 4-week period experienced similar weight 
gain and insulin resistance as mice that received a steady 
subcutaneous infusion of LPS (Cani et al. 2008). Since each 
microenvironment is affected by the diet and geographi-
cal environment the host organism is in (Yatsunenko et al. 
2012), it would stand to reason that the sex of the animal 
could also influence the composition of the microbiome as 
well.

Sex differences in the microbiota: what do we know?

Although this has not been systematically studied in humans, 
studies in mouse models show that the composition of gut 
microbiota is very similar between females and males before 
puberty (Markle et al. 2013; Steegenga et al. 2014). Indeed, 
the colonic microbial community of 2-week-old C57BL/6 
pups consists predominantly of bacteroidetes and firmicutes, 
with small amounts of actinobacteria and proteobacteria in 
both sexes (Steegenga et al. 2014). However, puberty may 
lead to shifts in the microbiome leading to the establishment 
of sex-dimorphic microbial communities. Indeed, although 
there were no differences in the gut microbiota before sexual 
maturation in the non-obese diabetic (NOD) mouse model 
for type 1 diabetes (Markle et al. 2013), sequencing of the 

16S ribosomal RNA repertoire from the gut microbiota of 
males and females at weaning (3 weeks), puberty (6 weeks), 
and adulthood (14 weeks) before diabetes onset revealed 
that differences in the gut microbiome emerged at puberty 
(6 weeks) and were strengthened in adults (Markle et al. 
2013). Thus, it seems that sex hormones may help shape 
the composition and function of the gut microbiota, thus 
potentially influencing disease pathogenesis in a sex-specific 
fashion.

Bidirectional dialog between gut microbiota 
and sex hormones

In 1978, Lombardi and colleagues showed that the gut 
microbiome may impact the concentration of circulating 
estrogens and androgens (Lombardi et al. 1978). Indeed, 
the human microbiota can hydrolyze estrogen sulfate and 
glucuronide conjugates, and rat intestinal flora can hydro-
lyze androgens and glucuronides (Lombardi et al. 1978). 
The rate of these hydrolytic reactions was proportional to 
the concentration of feces in the growth medium (Lombardi 
et al. 1978). The authors showed that with high fecal load, a 
reduction of the carbonyl group to a hydroxy group at posi-
tions 3 and 17 of androgens, and position 17 of estrogens 
could take place (Lombardi et al. 1978). These redox reac-
tions, mediated by the intestinal microbiota, were capable 
of producing a shift in local relative amounts of estrone, 
estradiol, testosterone, and androstenedione (Lombardi et al. 
1978). Importantly, subsequent reabsorption of these ster-
oids into the animal can result in effective changes in the 
circulating concentration of estrogens and androgens.

In addition to its role on the organism’s own cells, accu-
mulating evidence shows that estrogens can directly impact 
gut microbiome composition and have a role in maintain-
ing gut homeostasis. The terms “microgenderome” and 
“estrobolome” have been coined to describe this phenom-
enon, defined as “the gene repertoire of the microbiota of 
the gut capable of metabolizing estrogens” (Plottel Claudia 
and Blaser Martin 2011; Vemuri et al. 2019). In pre-men-
opausal females, estrogens are predominately secreted into 
the plasma by the ovaries and are immediately bound to 
sex hormone-binding globulin (SHBG), which is produced 
by the liver (Anderson 1974). More than 90% of systemic 
estrogen is bound to SHBG and thus biologically unavailable 
(Anderson 1974). Recent work has shown that the amount 
of biologically available estrogen is partially regulated by 
the gut microbiome in females (Vemuri et al. 2019). The 
gut microbiota in pre-menopausal women secretes beta-
glucuronidase, which deconjugates SHBG from circulating 
estrogen, thereby making it biologically available and active 
(Baker et al. 2017; Kwa et al. 2016; Laurent et al. 2016). 
This microbially mediated increase in circulating estrogens 
may confer a protective effect on the host. However, when 
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perturbations of the estrobolome arise, either via pathology 
(e.g., PCOS, metabolic syndrome) or aging (e.g., meno-
pause), many of these benefits can be lost (Vemuri et al. 
2019).

Beyond a mere correlation, hormonal inputs may directly 
shape the composition of microbial communities. Indeed, 
oral supplementation of 17-β estradiol suppressed the 
development of Western diet-induced obesity in both males 
and in ovariectomized (OVX) females, and that there were 
no significant differences in metabolic syndrome param-
eters between intact females and E2 supplemented males 
(Kaliannan et al. 2018). Importantly, the microbiota of each 
experimental group clustered as a function of hormonal 
profiles: the OVX female and untreated male microbiota 
clustered together apart from that of male E2-treated and 
intact females (Kaliannan et al. 2018). Once the influence 
of estrogen on the gut microbiome was lost, the protective 
benefit was lost. This loss of protection was also demon-
strated in intact mice, given antibiotics to deplete the micro-
biome (Kaliannan et al. 2018). Their serum estrogen levels 
decreased, and their metabolic syndrome markers resembled 
those of their male counterparts.

Although clear impact of age and sex have been inde-
pendently observed in the gut microbiome, the interplay 
between these inputs is till mostly unexplored and will 
deserve future study in the field. Thus, the microbiome may 
be an important component to integrate in studies of sex 
dimorphism in mammalian age-related phenotypes.

Sex‑dimorphic gene regulation in youth 
and during aging

In multi-cellular organisms, the precise control of gene 
expression patterns is key not only for development, but 
also for cell/tissue homeostasis in adults, and deregulation of 
such patterns is associated with aging (Benayoun et al. 2015; 
Lai et al. 2019; Stegeman and Weake 2017). A complemen-
tary layer of the study of gene regulation mechanisms lies 
at the level of chromatin. Indeed, cellular chromatin states 
(i.e. the ‘epigenome’) can regulate transcriptional profiles 
and are governed in part by post-translational modifications 
of histones (Dong et al. 2012; Dunham et al. 2012; Hoffman 
et al. 2013; Jenuwein and Allis 2001; Parker et al. 2013; 
Whyte et al. 2013). Thus, in line with the prevalence of 
transcriptional alterations with aging, accumulating observa-
tions have noted that the general structure of chromatin and 
specific patterns of chromatin marks are altered with aging 
across cell types and species (Benayoun et al. 2015 #410; 
Ucar and Benayoun 2018 #1605; Pal and Tyler 2016 #813). 
In addition, perturbations in chromatin-modifying enzymes 
can impact the lifespan of invertebrates, and even age-related 
cognitive decline in mice (Benayoun et al. 2015 #410; Ucar 

and Benayoun 2018 #1605; Pal and Tyler 2016 #813), which 
supports the status of ‘epigenetic alterations’ as a ‘hallmark 
of aging’ (López-Otín et al. 2013). Although accumulating 
studies have started to map genomic remodeling with age, 
these studies have mainly focused on male individuals, or on 
pooled male/female samples, thus ignoring potentially sex-
dimorphic responses. Indeed, in 70 transcriptomic studies 
of mouse longevity models (compiled from public reposito-
ries), we identified 51 studies including only male samples 
(~ 73%), 12 including only female samples (~ 17%), and 7 
including both sexes (~ 10%). Thus, we will highlight the 
current knowledge of sex dimorphism in gene expression 
regulation, and discuss how these differences may drive 
aspects of sex differences in aging.

Transcriptional signatures of aging across sexes

Thousands of genes can be regulated in a sex-dimorphic 
manner across a range of youthful, healthy somatic tissues 
(e.g., brain, liver, heart, muscle) from various mammalian 
species (Berchtold et al. 2008; Isensee et al. 2008; Naqvi 
et al. 2019; Qureshi and Mehler 2010; Yang et al. 2006). 
Genes expressed in a sex-dimorphic manner are located 
on autosomes as well as on sex chromosomes (Berchtold 
et al. 2008; Isensee et al. 2008; Qureshi and Mehler 2010; 
Yang et al. 2006), and many of these genes are not directly 
targeted by sex hormones (Mayne et al. 2016). Functional 
enrichment analyses of sex-dimorphic gene regulation have 
identified differentially enriched pathways between male and 
female tissue transcriptomes, including immune response, 
oxidoreductase activity, and lipid metabolism (Yang et al. 
2006). The existence of large transcriptional differences 
between male and female cells holds true in pure cell popu-
lations, with evidence that microglia purified from female 
vs. male brains of young mice show widespread gene expres-
sion and functional differences (Guneykaya et al. 2018; Villa 
et al. 2018). Although these studies only investigated such 
differences in young adults, since these functional processes 
are related to “hallmarks of aging” (López-Otín et al. 2013), 
sex-dimorphic regulation of gene expression could thus have 
an important impact on the aging process.

Studies in flies have revealed that the sex dimorphism in 
the expression of the mitochondrial Lon protease mediates 
sex- and age-specific adaptation to oxidative stress and the 
sex-dimorphic expression of this protease may be conserved 
in mice (Pomatto et al. 2017). In landmark studies, high sex 
dimorphism in the transcriptomic response to dietary restric-
tion (Mitchell et al. 2016) and short-term fasting (Della 
Torre et al. 2018) were observed in mouse liver. Moreo-
ver, DR has been reported to feminize the gene expression 
profiles of male livers (Estep et al. 2009). Finally, genes 
expressed in a sex-dimorphic manner in the human brain 
were proposed to act as mediators of stress susceptibility 
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and depressive symptoms (Labonte et al. 2017), consist-
ent with the idea that sex-dimorphic gene expression can 
broadly impact human health and physiology. These obser-
vations raise the intriguing possibility that sex-dimorphic 
gene expression may play a key role in aging and response to 
longevity interventions. Thus, systematically understanding 
the transcriptional underpinnings of sex differences in aging 
and longevity would provide crucial molecular handles to 
develop therapeutic strategies to slow down age-related 
functional decline and diseases.

Sex dimorphism in aging: a role for chromatin 
regulation?

Complementary to pure transcriptional regulation, regula-
tion of chromatin states (i.e. the ‘epigenome’), which are 
governed in part by histone post-translational modifications, 
can help tune transcriptional programs (Dong et al. 2012; 
Dunham et al. 2012; Hoffman et al. 2013; Jenuwein and 
Allis 2001; Parker et al. 2013; Whyte et al. 2013).

The impact of X chromosome inactivation in XX 
mammalian cells

The most obvious epigenetic impact of sexual differentiation 
is the inactivation via heterochromatinization of additional X 
chromosomes into a “Barr body” in cells carrying more than 
one X chromosome. Although X chromosome inactivation 
(XCI) has evolved to compensate for a differential dosage of 
X chromosome genes in XX cells, evidence shows that many 
X-linked genes can be expressed in a bi-allelic fashion in XX 
cells: on average ~ 15% of X-linked genes in human and ~ 3% 
in mice (Berletch et al. 2011). Indeed, a number of genes 
which are known to “escape” XCI are chromatin remodel-
ers, including histone demethylases UTX, KDM5C, methyl-
CpG-binding protein MeCP2, and chromatin remodeler 
ATRX (Chow and Heard 2009; Qureshi and Mehler 2010). 
The degree of expression of these escape genes varies by 
tissue, between 5 and 80% in others relative to the active X 
chromosome (Chow and Heard 2009). Numerous studies 
have looked at dysregulation of XCI in diseases, including 
cancers, Alzheimer’s disease, and physiological aging.

Sex dimorphism in chromatin modifications throughout life

In line with the prevalence of transcriptional alterations with 
aging, accumulating evidence suggests that the chromatin 
landscape may be altered with aging across cell types and 
species. In addition, perturbations in chromatin-modifying 
enzymes can impact the lifespan of invertebrates, or even 
age-related cognitive decline in mice (reviewed in details in 
Benayoun et al. 2015 #410; Ucar and Benayoun 2018 #1605; 
Pal and Tyler 2016 #813), which supports the status of 

‘epigenetic alterations’ as a ‘hallmark of aging’ (López-Otín 
et al. 2013). Recent studies comparing male and female epi-
genomic profiles across tissues and cell types have revealed 
robust sex-dimorphic chromatin features, specifically for 
chromatin accessibility in human T cells (Qu et al. 2015) 
and histone modifications across human tissues (Yen and 
Kellis 2015). Though these differences could result from dif-
ferential sex chromosome ploidy, a number of the observed 
differences were identified on autosomes, suggesting that 
chromatin can indeed be differentially regulated in male vs. 
female cells (Hadad et al. 2016; Qu et al. 2015; Yen and Kel-
lis 2015). These observations may be explained in part by 
the presence of genes encoding chromatin regulators on sex 
chromosomes (e.g., methyl-CpG-binding protein MeCP2, 
H3K27 demethylases UTX and UTY, H3K4 demethylase 
KDM5C, etc.) (Qureshi and Mehler 2010).

Sex‑specific differences in DNA methylation profiles 
throughout life

In one of the few studies to examine aging as well as sex dif-
ferences in epigenetic regulation, Agba et al. (2017) revealed 
a complex, tissue and sex-specific changes with age at 2 
loci, the Nr3c1 promoter and the Igf2/H19 imprinting con-
trol region. Interestingly, in several tissues (hippocampus, 
hypothalamus, skin and liver) the most considerable differ-
ence was seen at the intermediate age (9 months) as female 
rats increased methylation at the Igf2/H19 ICR with the 
methylation levels becoming most similar at the oldest age 
(24 months) (Agba et al. 2017). At multiple sites in different 
tissues, the direction of methylation change with age was 
opposite between sexes. Few studies have looked at genome-
wide, sex-specific DNA methylation divergences with age. 
In one of these studies, while there no overall change was 
observed in the level of DNA methylation in male or female 
mouse hippocampi between 3 and 24 months of age, there 
was a large amount of change in the methylation of specific 
CpG and CpH sites (Masser et al. 2017). Importantly, these 
changes were predominantly sexually divergent (> 90%), 
with age-related change in methylation going in opposite 
directions in male and female tissues (Masser et al. 2017). 
Additionally, many sites were found to maintain sex speci-
ficity throughout age (either higher in males than females at 
both young and old age or vice versa). In contrast, another 
study of mice hippocampi found more subtle changes in 
DNA cytosine methylation and hydroxymethylation on auto-
somal chromosomes and large differences in X-chromosomal 
methylation and hydroxymethylation (Hadad et al. 2016). 
Finally, a recent study using the DNA methylation epigenetic 
clock found an association between age of menopause and 
“biological” aging, as measured by the DNA methylation 
profile (Levine et al. 2016).
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The extent to which these epigenomic changes are sim-
ply mediating hormonal signaling or represent a distinct—
if overlapping—mechanism of sex dimorphism remains 
to be fully elucidated. Further, much of the research done 
to-date on the epigenetics of sex dimorphism has, with 
reason, centered on the brain or germ cells, where differ-
ences were extremely likely to occur. Whether other tis-
sues demonstrate equivalent divergences with sex and age 
will be an important future research avenue for the field.

Sex dimorphism in transposable 
element‑driven genomic instability in youth 
and during aging

Transposable elements (TEs), sometimes called “jump-
ing genes,” are a type of repetitive DNA with the ability 
to move within host genomes (McClintock 1953). Two 
main classes have been described: (1) class I transpo-
sons, or RNA-mediated transposons, act through a “copy 
and paste” mechanism, and (2) class II transposons, or 
DNA-mediated transposons, act through a “cut and paste” 
mechanism (Chénais et al. 2012). More specifically, RNA-
mediated transposons have enzymes to reverse transcribe 
their transcripts and to integrate the resulting complemen-
tary DNA (cDNA) into host genomes. DNA-mediated 
transposons, similarly, have transposases that recognize, 
cleave, and re-integrate TE DNA (Chénais et al. 2012). In 
humans, the two most common TE families—long inter-
spersed nuclear elements (LINEs) and short interspersed 
nuclear elements (SINEs)—compose about 33% of the 
genome (Lander et al. 2001). Mechanistically, TEs can 
disrupt protein-coding sequences or alter gene expression 
through insertion into regulatory sequences (Kidwell and 
Lisch 1997). Accumulating evidence supports the notion 
that TEs are progressively de-repressed with organismal 
aging across several organisms (Benayoun et al. 2019; De 
Cecco et al. 2013; Dennis et al. 2012; Li et al. 2013; Wood 
et al. 2016). The excessive mobilization of TEs is believed 
to contribute to age-related genomic instability (De Cecco 
et al. 2013; Li et al. 2013; Maxwell et al. 2011; Wood 
et al. 2016). Intriguingly, recent evidence suggests that 
LINE-1 reactivation may contribute to chronic age-related 
inflammation by promoting inflammatory cytokine secre-
tion (De Cecco et al. 2019; Simon et al. 2019). Although it 
is now established that TEs may contribute to age-related 
phenotypes, whether sex may influence their activation 
and impact on cell health remains largely unknown. Here, 
we discuss the current knowledge related to the impact of 
circulating sex hormones and of sex chromosomes on TE 
activity levels.

A potential role for hormonal regulation 
in sex‑specific TE activation?

As highlighted in previous sections, differences in hormone 
levels may directly contribute to differences between male 
and female individuals, partially mediated by sex-steroid 
signaling (Paterni et al. 2014). Evidence suggests that a 
tight interaction exists between estrogen receptors and TEs, 
which may implicate TEs in estrogen-influenced processes, 
including aging. Specifically, an analysis of chromatin 
immunoprecipitation (ChIP) data for ER-α in the MCF-7 
breast cancer cell line found that a large proportion (~ 20%) 
of ERα-binding sites overlapped mammalian-wide inter-
spersed repeat (MIR) sequences, a type of SINE element 
(Bourque et al. 2008). Similarly, Mason et al. (2010) con-
ducted a broad characterization of estrogen response ele-
ment (ERE) sequences in MCF-7 cells using ChIP-on-chip. 
They estimated that 19–36% of EREs reside in repetitive 
(repeat-masked) genomic elements. Though the most com-
mon elements belonged to the Alu family, EREs were also 
detected in non-Alu SINE elements, LINEs, long terminal 
repeat (LTR) retrotransposons, non-LTR retrotransposons, 
microsatellites, and DNA transposable elements. Mason 
et  al. (2010) also observed binding of ERα-containing 
complexes to 2 MIR-b elements in vitro by electrophoretic 
mobility-shift assay (EMSA) and noted that mutagenesis of 
either MIR or Alu-EREs reduced readout in their luciferase 
assays, indicative of their role in modulating transcription 
of nearby genes. A third study analyzed MCF-7 ChIP-seq 
datasets corresponding to two modes of estrogen treatment: 
one where cells were exposed to chronic, low levels of estro-
gen, and one where cells were treated with an acute higher 
dose of estrogens (Testori et al. 2012). Consistent with 
prior studies, they identified an enrichment of ERα at DNA 
sequences corresponding to a variety of TEs (Testori et al. 
2012). Noteworthy, some of these TE-ERα interactions were 
unique to each dosage scheme, and within TEs that interact 
with ERα, they identify enrichment of binding sequences 
corresponding to transcription factors and known cofactors 
of ERα (Testori et al. 2012). Finally, they note that MIR-like 
and endogenous retrovirus (ERV)-like elements that interact 
with ERα are frequently located close to the transcription 
start site of regulated genes (Testori et al. 2012).

Interactions between TEs and androgen signaling have 
also been found. A putative androgen response element 
(ARE) was identified within the promoter of a LINE-1 ele-
ment family (L1Hs) (Morales et al. 2003). They further 
demonstrated that this promoter could alter the activity of 
their LacZ reporter gene in the presence of testosterone in 
the JEG-3 human choriocarcinoma cancer cell line (Morales 
et al. 2003), suggesting the potential for androgens to alter 
the expression of genes downstream of ARE-containing TE 
regulatory elements. Interestingly, LINE-1 ORF1-p, one of 
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the proteins produced by LINE-1 elements, was found to 
act as an androgen receptor co-activator with the ability to 
promote the growth of human prostate carcinoma cells (Lu 
et al. 2013). Thus, sex-steroid hormones may be directly 
regulating TE activity in responsive cells.

To add to the complexity, researchers have also sought to 
characterize TE methylation levels with respect to age, sex, 
and hormone levels (El-Maarri et al. 2011; Lu et al. 2018). 
An analysis of peripheral blood mononuclear cells found 
marginally higher LINE-1 methylation in males compared to 
females (El-Maarri et al. 2011). However, they did not detect 
any significant effect on LINE-1 methylation across ages or 
throughout different stages of the menstrual cycle (El-Maarri 
et al. 2011). An inverse relationship between methylation 
levels and age of menopausal onset, however, has been noted 
(Lu et al. 2018). Thus, the ability of hormones to enhance 
or initiate gene expression combined with the apparent lack 
of correlation with TE methylation suggests that their TE-
mediated effect may predominantly act at the transcriptional 
rather than epigenetic level.

Together, these results suggest that the interaction 
between TEs and sex-steroid hormone signaling can elicit 
sex-specific regulation of TE levels. On the one hand, TEs 
may provide the means for enhanced or possibly diminished, 
expression of neighboring genes, depending on circulating 
hormone levels and receptor activation. On the other hand, 
TEs such as LINE-1 and Alu, respectively, contain internal 
Pol II and Pol III promoters (Elder et al. 1981; Fuhrman 
et al. 1981; Lavie et al. 2004), and the presence of ERE/
ARE motifs within these elements raises the possibility 
that their transcription may also be influenced by hormonal 
status. Differences in sex hormone levels are thus likely to 
drive transcriptional differences through both mechanisms. 
Moreover, these differences are very likely to be dynamic 
across time, and especially so within females, as (1) the 
hormonal cycle is characterized by repeated cyclic fluctua-
tions of circulating estrogens and progesterone (Reed and 
Carr 2000), and (2) estrogen and testosterone levels tend 
to decrease throughout life in humans (Ferrini and Barrett-
Connor 1998; Harman et al. 2001; Horstman et al. 2012), 
albeit more dramatically in females. Thus, whether sex-ster-
oid hormone receptors differentially modulate TE transcrip-
tion/integration or TE-influenced gene expression in males 
vs. females throughout life deserves further investigation, as 
it may reveal underlying mechanisms to sex dimorphism in 
organismal phenotypes.

The contribution sex chromosomes to sex‑specific 
TE regulation

As highlighted in previous sections, sex chromosomes are 
responsible for determining the gender of an organism, 
which may impact differences observed between the sexes 

in organisms with XX/XY sex-determination system (Hodg-
kin 1992). In the process of understanding the evolution 
and contents of the Y chromosome in mammals, the field 
has unraveled many exciting features of this chromosome, 
including the existence of a large portion of euchromatin 
in the center, in contrast to its largely heterochromatic ends 
(Quintana-Murci and Fellous 2001). Indeed, the human Y 
chromosome, and the Y chromosome in general, is known 
to be highly repetitive (Hughes and Rozen 2012; Skaletsky 
et al. 2003; Smith et al. 1987). Research in the field of epi-
genetics has unraveled the loss of heterochromatin marks 
with age (Pal and Tyler 2016). Thus, the highly repetitive 
nature of the Y chromosome, coupled to a prevalent loss of 
heterochromatin with age, may lead to a sex-specific de-
repression of Y-linked TEs (Marais et al. 2018). Indeed, in 
flies, the Y chromosome was reported to broadly influence 
the chromatin states of autosomes (Lemos et al. 2010). With 
age, the Y chromatin becomes de-repressed, and TEs tend 
to activate, which could further promote age-related pheno-
types (Brown and Bachtrog 2017). Intriguingly, studies of 
longevity in XY, XO, XYY males and XX, XXY females 
showed that the presence of a Y chromosome accelerates 
aging in flies (Brown and Bachtrog 2017), which was pro-
posed to be the result of its particularly high TE content 
(Brown and Bachtrog 2017; Marais et al. 2018).

Thus, although there is still limited information about the 
link between sex chromosome karyotype, TEs and aging, 
it is likely that this would be a productive future research 
avenue.

Current and emerging experimental models 
for the study of sex‑dimorphic mechanisms

The most prevalent genetic model for understanding the rela-
tive role of sex chromosome complement (i.e. XX vs. XY) 
and gonadal sex (i.e. ovary vs. testes) in mammalian phe-
notypes is the “four core genotype” (FCG) model (Arnold 
2009; Arnold and Chen 2009). Thanks to the combination 
of a null mutation of the Y chromosome testis-determin-
ing gene Sry, and the insertion of an Sry transgene in an 
unmapped autosomal location, sex chromosome comple-
ment (XX vs. XY) is effectively decoupled from the ani-
mal’s gonadal sex in this model (Arnold 2009; Arnold 
and Chen 2009). This model has been used to study vari-
ous aspects of karyotype vs. hormonal effects (Arnold and 
Chen 2009). Importantly, FCG mice were recently used 
to demonstrate that the presence of two X chromosomes 
(and, to a lesser extent, of ovaries) can lead to increased 
longevity (Davis et al. 2018). Known caveats of the FCG 
model include potentially incomplete gonadal reprogram-
ming in some genetic backgrounds, and premature gonadal 
exhaustion has been reported on the C57BL/6 background, 
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the most common background in aging research (Burgoyne 
and Arnold 2016). To note, FCG leads to gonadal sex 
reversal during the initial determination of the bipotential 
gonad, thus decoupling karyotypic and gonadal sex from the 
beginning of gonadal development (Arnold 2009; Arnold 
and Chen 2009). This timeline means that the FCG cannot 
disentangle the organizational effects of gonadal hormones 
(i.e. impact on the development of distal somatic sites), from 
their activational effects (i.e. effects on mature tissues after 
the end of development, and throughout life) (Arnold and 
Breedlove 1985).

To address the relative importance of endocrine vs. 
genetic mechanisms in sex-dimorphic phenotypes, it may 
become useful to leverage a previously described mouse 
model of adult somatic sex reprogramming: the adult 
inducible knock-out (KO) of Foxl2 (Uhlenhaut et al. 2009). 
Remarkably, deletion of Foxl2 in adult mice leads to upreg-
ulation of testis-specific genes in the gonad, and within 
3 weeks of Foxl2 loss, somatic ovary to testis transdiffer-
entiation occurs (Uhlenhaut et al. 2009). Further, induced 
Foxl2 knock-out mice acquire circulating testosterone lev-
els comparable to those of ‘normal’ XY male littermates 
(Uhlenhaut et al. 2009). This genetic model could provide a 
unique opportunity to study the impact of a female vs. male 
hormonal milieu in adult genetically female XX individuals, 
thus allowing to study the non-organizational effect of sex-
steroids on aging. This model could thus open a window on 
the post-developmental effects of gonadal hormones regard-
less of karyotypic sex. To note, the adult Foxl2 KO model 
has never been evaluated with aging, and its use could open 
interesting new research avenues in the field.

Generally, leveraging the power of the FCG and the Foxl2 
inducible KO mice should help dissect the adult contribu-
tion of gonadal hormones vs. sex chromosomes karyotype 
in age-related sex-dimorphic phenotypes.

Conclusion and final remarks

In this review, we discussed recent advances in the research 
of sex differences in aging and longevity. Although differ-
ences between women and men aging have been known for 
decades, the mechanism by which these disparities among 
the sexes remains poorly understood. Increasing evidence 
supports the impact of sex hormones on lifespan. However, 
the molecular dissections of genetic vs. hormonal contribu-
tions to these differences are only starting to be touched 
upon by researchers. To further understand these differences 
and the molecular pathways that underlie them, it will be 
crucial to leverage genetic and surgical models that can 
decouple specific aspects linked to sex differences, includ-
ing genetic/hormonal sex swaps (e.g., Four Core Genotype, 
Foxl2 somatic sex reprogramming), hormonal signaling 

disruptions (e.g., inducible or tissue-specific knock-outs for 
estrogen receptor or androgen receptor genes), or surgical 
gonadectomy. Information from these various sources will 
finally help understand the molecular regulation of sex dif-
ferences in health and lifespan. Moving forward, leverag-
ing these tools to understand the bases of sex differences in 
responses to pro-longevity interventions and in the preva-
lence of age-related diseases will be crucial. In this light, 
tailoring interventions based on sex will be the first (small) 
step for aging research toward personalized medicine.
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