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Abstract
In recent years, genome-wide association study (GWAS) sample sizes have become larger, the statistical power has improved 
and thousands of trait-associated variants have been uncovered, offering new insights into the genetic etiology of complex 
human traits and disorders. However, a large fraction of the polygenic architecture underlying most complex phenotypes 
still remains undetected. We here review the conditional false discovery rate (condFDR) method, a model-free strategy for 
analysis of GWAS summary data, which has improved yield of existing GWAS and provided novel findings of genetic overlap 
between a wide range of complex human phenotypes, including psychiatric, cardiovascular, and neurological disorders, as 
well as psychological and cognitive traits. The condFDR method was inspired by Empirical Bayes approaches and leverages 
auxiliary genetic information to improve statistical power for discovery of single-nucleotide polymorphisms (SNPs). The 
cross-trait condFDR strategy analyses separate GWAS data, and leverages overlapping SNP associations, i.e., cross-trait 
enrichment, to increase discovery of trait-associated SNPs. The extension of the condFDR approach to conjunctional FDR 
(conjFDR) identifies shared genomic loci between two phenotypes. The conjFDR approach allows for detection of shared 
genomic associations irrespective of the genetic correlation between the phenotypes, often revealing a mixture of antago-
nistic and agonistic directional effects among the shared loci. This review provides a methodological comparison between 
condFDR and other relevant cross-trait analytical tools and demonstrates how condFDR analysis may provide novel insights 
into the genetic relationship between complex phenotypes.

Introduction

Most human traits and disorders have a complex etiol-
ogy, which is influenced by multiple environmental and 
genetic factors. While some phenotypes follow simple pat-
terns of Mendelian inheritance, large-scale genome-wide 
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association studies (GWAS) conducted during the last 
decade have shown that most phenotypes have a complex 
polygenic architecture, in which genetic risk is accounted 
for by a large number of genetic variants, each with small 
effect (Visscher et al. 2017). Accumulating evidence from 
GWAS demonstrates that many genetic variants influence 
more than one phenotype, i.e., they exhibit allelic plei-
otropy (Sivakumaran et al. 2011; Solovieff et al. 2013). 
Identification of shared genetic influences between human 
traits and disorders can be highly valuable to inform dis-
ease nosology, epidemiological associations, and diagnos-
tic classification systems, improve treatment strategies, 
provide biological insights and uncover shared biological 
underpinnings (Sivakumaran et al. 2011; Solovieff et al. 
2013; Visscher et al. 2017). For example, it is now evi-
dent that psychiatric disorders share a large proportion of 
their genetic architecture (Brainstorm et al. 2018; Cross-
Disorder Group of the Psychiatric Genomics C et al. 2013), 
suggesting that their etiologies are not fully distinct and 
hence challenging existing diagnostic guidelines (Smoller 
et al. 2018).

GWAS typically consist of genome-wide scans of mil-
lions of common genetic variants (tag single-nucleotide 
polymorphisms [SNPs]), estimating the strength of their 
association with the phenotype of interest in massively 
univariate regression analyses. Given the large numbers 
of SNPs tested, a GWAS must correct for multiple test-
ing and applies a genome-wide significance threshold of 
p < 5 × 10−8 to avoid false positive findings. The conse-
quence is that only a subset of all involved genetic vari-
ants is revealed (i.e., many false negative findings) with 
a large fraction of the polygenic architecture remaining to 
be uncovered. This phenomenon was previously labeled 
“the missing heritability” (Manolio et al. 2009). With 
increasing GWAS sample sizes, statistical power has 
improved and more genetic variants have been uncovered 
(Visscher et al. 2017). However, despite the assembly of 
very large GWAS samples, often involving hundreds of 
thousands of participants, most of the polygenic architec-
ture underlying complex human phenotypes remain unde-
tected (Holland et al. 2019). The number of participants 
needed for a GWAS to fully uncover all genetic variants 
influencing a given phenotype depends on the unique 
polygenic architecture underlying that phenotype, which 
is determined by the number of causal variants involved 
and the distribution of effect sizes (Holland et al. 2019). 
For example, it has been estimated that to uncover most 
of the genetic variants influencing the complex disorders 
schizophrenia and bipolar disorder, genotypes from more 
than one million individuals are required (Holland et al. 
2019).

Improved discovery of shared loci using 
conditional false discovery rate

Although the successive incremental increases in GWAS 
sample sizes have effectively improved the discovery of 
trait-associated loci, an alternative and more cost-efficient 
approach is to apply statistical tools that improve the yield 
of existing GWAS. The conditional false discovery rate 
(condFDR) is such an approach, which boosts GWAS 
discovery by leveraging auxiliary genetic information to 
re-adjust the GWAS test statistics in a primary pheno-
type (Andreassen et al. 2013b; Schork et al. 2016). The 
condFDR method is a model-free strategy for analysis 
of GWAS summary statistics inspired by the Empirical 
Bayes statistical framework, which is designed for situ-
ations with dense elements, such as the large number of 
small genetic effects seen in polygenic traits and disorders. 
Most commonly, the condFDR method has been applied 
for cross-trait analysis, by leveraging overlapping SNP 
associations (i.e., cross-trait enrichment) between separate 
GWAS to re-rank the test statistics in a primary phenotype 
conditional on the associations in a secondary phenotype 
(Andreassen et al. 2013b; Schork et al. 2016). Other aux-
iliary enrichment sources, such as genomic annotations 
(Schork et al. 2013), can also be leveraged using condFDR 
(Lo et al. 2017; Wang et al. 2016b). Since its introduction 
in 2013 (Andreassen et al. 2013a), the condFDR method 
has increased genetic discovery in a wide spectrum of 
complex human traits and disorders, including psychi-
atric, cardiovascular and neurological disorders, as well 
as metabolic, psychological and cognitive traits, among 
others (see Table 1 for a selection of cross-trait condFDR 
studies) (Andreassen et al. 2013a, c, 2014a, b, c; Broce 
et al. 2018, 2019; Desikan et al. 2015; Drange et al. 2019; 
Ferrari et al. 2017; Hu et al. 2018; Karch et al. 2018; Le 
Hellard et al. 2017; LeBlanc et al. 2015; Liu et al. 2013; 
Lv et al. 2017; McLaughlin et al. 2017; Mufford et al. 
2019; Shadrin et al. 2018; Smeland et al. 2017a, b, 2018; 
2019; van der Meer et al. 2018; Wang et al. 2016a; Win-
svold et al. 2017; Witoelar et al. 2017; Yokoyama et al. 
2016, 2017; Zuber et al. 2018).

The present review focuses on the cross-trait cond-
FDR approach, which returns a condFDR value for each 
SNP, defined as the probability that a SNP is null in the 
first phenotype (i.e., that it has no association with the 
phenotype) given that the p values in the first and second 
phenotypes are as small as or smaller than the observed 
ones. The condFDR estimates are obtained for each nomi-
nal SNP p value in the primary phenotype after comput-
ing the stratified empirical cumulative distribution func-
tions (cdfs) of the nominal p values (Sun et al. 2006; Yoo 
et al. 2009). The separate strata are determined by the 
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relative enrichment of SNP associations as a function of 
increased nominal SNP p values in a secondary phenotype. 
The standard FDR framework derives from a model that 
assumes that the distribution of test statistics in a GWAS 
can be formulated as a mixture of null and non-null effects, 
with true associations (non-null effects) having more 
extreme test statistics than false associations (null effects) 
on average. Given a statistical genetic relationship between 
two phenotypes, stratification of the test statistics in a pri-
mary phenotype based on the genetic associations with a 
secondary phenotype will result in a reduction in the FDR 
at a given nominal p value relative to the FDR computed 
from the unstratified distribution of the primary phenotype 
p values alone, and thus, re-rank the test statistics.

The first step in the condFDR procedure is to construct 
conditional quantile–quantile (Q–Q) plots, which extends 
the standard Q–Q plots commonly applied in GWAS. Stand-
ard Q–Q plots visualize the enrichment of statistical associa-
tion relative to that expected under the global null hypoth-
esis by plotting the nominal − log10 p values of the single 
SNP association statistics versus their empirical distribu-
tion. Conditional Q–Q plots help visualize the cross-trait 
enrichment between two phenotypes and are constructed 
by creating subsets of SNPs based on the level of associa-
tion with the secondary phenotype. Under the global null 
hypothesis, the nominal p values will form a straight line 
plotted as a function of their empirical distribution. Under 

polygenic association, standard Q–Q plots will be deflected 
leftwards, while cross-trait enrichment can be seen as suc-
cessive leftward deflections in conditional Q–Q plots as 
levels of SNP associations with the secondary phenotype 
increase. Figure 1a presents a conditional Q–Q plot demon-
strating SNP enrichment for the psychiatric disorder bipo-
lar disorder (n = 51,710) (Stahl et al. 2019) as a function 
of the association with intelligence (n = 269,867) (Savage 
et al. 2018), adapted from Smeland et al. (2019). A com-
plementary way to assess for cross-trait enrichment is to 
construct fold-enrichment plots, which provide a more direct 
visualization of the polygenic enrichment (Fig. 1b). The fold 
enrichment is calculated as the ratio between the -log10(p) 
cumulative distribution for a given stratum and the cumu-
lative distribution for all SNPs. Figure 1b shows that for 
SNPs with p values below 0.001 in intelligence, there was 
up to 60-fold enrichment of stronger SNP associations with 
bipolar disorder in comparison to all SNPs. The enrichment 
seen in conditional Q–Q plots and fold-enrichment plots 
reflects increased tail probabilities in the distribution of test 
statistics and an overabundance of low p values compared to 
that expected by chance, which can be directly interpreted in 
terms of a Bayesian interpretation of the true discovery rate 
(TDR = 1 − FDR; see Box 1 for mathematical framework) 
(Efron 2010). This is illustrated in Fig. 1c.

To control for spurious (i.e., non-generalizable) enrich-
ment due to population stratification or cryptic relatedness 

Table 1  Selected cross-trait conditional false discovery rate studies

Primary phenotype Secondary phenotype Novel loci for primary phenotype Citation

Schizophrenia Cardiovascular-disease risk factors 14 at condFDR < 0.01 Andreassen et al. (2013a)
Primary sclerosing cholangitis Autoimmune diseases 33 at condFDR < 0.001 Liu et al. (2013)
Bipolar disorder Schizophrenia 2 at condFDR < 0.01 Andreassen et al. (2013c)
Schizophrenia Multiple sclerosis 5 at condFDR < 0.01 Andreassen et al. (2014a)
Systolic blood pressure Comorbid traits and diseases 42 at condFDR < 0.01 Andreassen et al. (2014b)
Alzheimer disease C-reactive protein, plasma lipids 55 at condFDR < 0.05 Desikan et al. (2015)
Coronary artery disease Cardiovascular-disease risk factors 67 at condFDR < 0.01 LeBlanc et al. (2015)
Alzheimer disease Autoimmune diseases Not available Yokoyama et al. (2016)
Amyotrophic lateral sclerosis Schizophrenia 5 at condFDR < 0.01 McLaughlin et al. (2017)
Schizophrenia Educational attainment 23 at condFDR < 0.01 Le Hellard et al. (2017)
Sporadic frontotemporal dementia Alzheimer disease, Parkinson disease 13 at condFDR < 0.05 Ferrari et al. (2017)
Schizophrenia Cognitive traits 13 at conjFDR < 0.05 Smeland et al. (2017a)
Corticobasal degeneration Progressive supranuclear palsy, fron-

totemporal dementia
3 at conjFDR < 0.05 Yokoyama et al. (2017)

Amyotrophic lateral sclerosis Neurodegenerative disorders 22 at condFDR < 0.05 Karch et al. (2018)
Frontotemporal dementia Autoimmune diseases 5 at conjFDR < 0.05 Broce et al. (2018)
Schizophrenia Subcortical brain volumes 3 at conjFDR < 0.05 Smeland et al. (2018)
Attention-deficit/hyperactivity 

disorder
Educational attainment 4 at condFDR < 0.01, 1 at con-

jFDR < 0.05
Shadrin et al. (2018)

Alzheimer disease Cardiovascular-disease risk factors 4 at conjFDR < 0.05 Broce et al. (2019)
Schizophrenia, bipolar disorder Intelligence 20 schizophrenia loci and 4 bipolar 

disorder loci at conjFDR < 0.01
Smeland et al. (2019)
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(Devlin and Roeder 1999), all test statistics are corrected 
using a genomic inflation control procedure leveraging inter-
genic SNPs, which are relatively depleted for true associa-
tions (Schork et al. 2013). Conditional Q–Q plots and the 
condFDR computation are conducted after random prun-
ing to approximate independence, by selecting one random 
SNP per LD block (defined by an r2 > 0.1) averaged over at 
least 100 iterations (Andreassen et al. 2013b; Schork et al. 
2016). Similar to previously described stratified FDR pro-
cedures (Sun et al. 2006; Yoo et al. 2009), the condFDR 
value is then determined for each SNP by constructing a 

two-dimensional FDR look-up table where the FDR for 
SNP associations with the primary phenotype is computed 
conditionally on the nominal p values for SNP associations 
with the secondary phenotype (Box 1). Figure 2a presents 
the respective condFDR look-up table for bipolar disorder 
conditional on intelligence, corresponding to the cross-trait 
enrichment observed in Fig. 1.

The conjunctional FDR (conjFDR) is an extension of the 
condFDR, which allows for discovery of SNPs significantly 
associated with two phenotypes simultaneously (Andreassen 
et al. 2013a; Schork et al. 2016). The conjFDR is determined 

Fig. 1  Cross-trait enrichment between bipolar disorder (BD; 
n = 51,710) (Stahl et  al. 2019) and intelligence (n = 269,867) (Sav-
age et  al. 2018), adapted from Smeland et  al. (2019). a Conditional 
Q–Q plot displaying the nominal −log10 p values of the single SNP 
association statistics versus their empirical distribution in BD below 
the standard GWAS threshold of p < 5×10−8 as a function of signifi-
cance of association with intelligence at the level of p ≤ 0.1, p ≤ 0.01, 
p ≤ 0.001, respectively. The blue line indicates all SNPs. The dashed 
line indicates the null hypothesis. b Fold-enrichment plot of enrich-

ment versus nominal −log10 p values in BD as a function of associa-
tion with intelligence. c Conditional true discovery rate (TDR) plot 
illustrating the increase in TDR associated with increased enrich-
ment in BD conditioned on intelligence. The test statistics were cor-
rected for genomic inflation, SNPs were randomly pruned across 500 
iterations using a linkage disequilibrium r2 threshold of 0.1, and the 
extended major histocompatibility complex region and chromosomal 
region 8p.23.1 were excluded (Smeland et al. 2019)

Fig. 2  a Conditional false discovery rate (condFDR) 2D look-up table 
for SNP associations with bipolar disorder (BD) conditional on SNP 
associations with intelligence, corresponding to the cross-trait enrich-
ment observed in Fig. 1. The FDR in BD SNPs are computed condi-
tionally on the nominal intelligence p values. b condFDR 2D look-up 

table for SNP associations with intelligence conditional on SNP asso-
ciations with BD. c Corresponding conjunctional FDR (conjFDR) 2D 
look-up table for SNP associations shared between BD and intelli-
gence. The color refers to the FDR values
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after inverting the roles of the primary and secondary pheno-
types and repeating the condFDR procedure. Based on pre-
vious conjunction tests for p value statistics (Nichols et al. 
2005), the conjFDR is defined as the maximum of the two 
condFDR values, providing a conservative estimate of the 
FDR for an SNP association with both phenotypes jointly 
(Fig. 2c). Thus, in combination, the condFDR/conjFDR 
approaches both improve SNP discovery rates (condFDR) 
and enable detection of shared genomic loci (conjFDR), 
respectively. Since the condFDR/conjFDR estimates are 
based on nominal p values only, these methods are agnostic 
to the effect directions of the individual SNPs, and can detect 
overlapping SNP associations irrespective of the genome-
wide genetic correlation between phenotypes. However, 
after detecting likely overlapping SNPs, the directional SNP 
effects in the loci can be determined post hoc by compar-
ing the effect sizes (z scores or odds ratios) between the 
phenotypes.

The condFDR/conjFDR approaches have some limita-
tions. Although all SNPs are randomly pruned using an 
LD r2 threshold of 0.1, complex correlations among the 
test statistics may bias the condFDR estimates (Schwartz-
man and Lin 2011). Hence, given strong SNP associations 
within long-range LD regions, such as the extended major 
histocompatibility complex (MHC) region, chromosomal 
region 8p.23.1, the microtubule-associated tau protein 
(MAPT) region or the APOE region (Price et al. 2008), 
these regions should be excluded to avoid artificially inflated 
genetic enrichment. The condFDR/conjFDR procedures are 
agnostic about the specific causal variants underlying the 
overlapping genomic associations, which could arise from 
both shared and separate causal variants, or “mediated 
pleiotropy”, where one phenotype is causative of the other 
(Solovieff et al. 2013). Given that the cross-trait enrich-
ment both reflects the extent of polygenic overlap between 
the phenotypes and the power of the two GWAS analyzed, 
cross-trait enrichment will be harder to detect if one or both 
investigated GWAS are inadequately powered. Another 
important limitation of the condFDR method is that a large 
fraction of overlapping participants between the investigated 
GWAS may inflate the cross-trait enrichment, and shared 
participants should, therefore, be reduced to a minimum. An 
extension of condFDR, allowing shared controls, has been 
proposed (Liley and Wallace 2015).

Comparison to other cross‑trait analytical 
tools

A large number of tools for cross-trait analysis using GWAS 
data have been developed in recent years, which have been 
reviewed in detail elsewhere (Gratten and Visscher 2016; 
Hackinger and Zeggini 2017; Pasaniuc and Price 2017; 

Schork et  al. 2016). In short, the methods differentiate 
in terms of the data analyzed (summary statistics versus 
individual genotype data), the underlying mathematical 
framework and assumptions, whether they are bivariate or 
multivariate in nature, and whether they measure overlap at 
the genome-wide level or across individual SNPs or loci/
regions. Here, we compare the condFDR/conjFDR approach 
to a selection of relevant cross-trait analytical tools.

The most common approaches for evaluating genetic 
overlap at the genome-wide level include tools such as 
polygenic risk scores (Purcell et al. 2009), mixed-model 
approaches (Cross-Disorder Group of the Psychiatric 
Genomics C et al. 2013; Lee et al. 2012) and LD score 
regression (Bulik-Sullivan et al. 2015a), which return a 
single estimate of shared genetic risk between phenotypes. 
Polygenic risk scores are per-individual risk profiles based 
on the sum of alleles associated with a phenotype weighted 
by their effect sizes (Purcell et al. 2009). The polygenic risk 
score approach uses summary statistics as training data and 
requires individual genotype data in an independent target 
sample to test how well the polygenic risk score explains 
phenotypic variation in the target phenotype. Another tra-
ditional measure that estimates the degree of pleiotropy 
is the genetic correlation, which is defined as the correla-
tion between the genetic influences for a pair of traits, thus 
indicating the proportion of variance that the two traits 
share due to genetic causes. Mixed-model approaches (Lee 
et al. 2012), originally implemented in the Genome-wide 
Complex Trait Analysis software (GCTA), obtained unbi-
ased estimates of the genetic correlation using individual 
genotype data, relaxing several limitations of traditional 
studies based on pedigree data. Estimates of genetic cor-
relation can also be quantified from GWAS summary statis-
tics, using cross-trait LD score regression (Bulik-Sullivan 
et al. 2015a) and its multivariate extension Genomic SEM 
(Grotzinger et al. 2019). LD score regression aims to dis-
tinguish confounding from polygenicity by regressing the 
association statistics of SNPs on their ‘LD scores’, which 
is a measure of the amount of genetic variation the SNP 
represents (Bulik-Sullivan et al. 2015b). Application of LD 
score regression to the bivariate framework estimates the 
co-variance in the SNP heritability between two phenotypes, 
allowing sample overlap (Bulik-Sullivan et al. 2015a). An 
alternative approach estimating local genetic correlations 
based on the fixed effects model is also available (Shi et al. 
2017). The condFDR approach is fundamentally different to 
these tools by aiming for discovery of specific genomic loci. 
However, the condFDR approach similarly focuses on the 
polygenic fraction that did not reach genome-wide signifi-
cance to uncover cross-trait enrichment. To fully disentangle 
the genetic relationship between complex phenotypes, it is 
necessary to complement measures of genetic overlap at the 
genome-wide level with cross-trait analytical tools allowing 
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detection of individual shared loci regardless of their direc-
tional effects. For instance, a recent condFDR study dem-
onstrated substantial cross-trait enrichment between bipolar 
disorder (Stahl et al. 2019) and intelligence (Savage et al. 
2018) (Fig. 1) and uncovered a balanced pattern of concord-
ant and discordant directional effects among 79 shared loci 
identified at conjFDR < 0.05 (Fig. 3) (Smeland et al. 2019). 
These findings extend and comply with prior genetic stud-
ies reporting no significant genome-wide genetic correla-
tion between the phenotypes (Brainstorm et al. 2018; Davies 
et al. 2018; Hill et al. 2016; Lencz et al. 2014; Savage et al. 
2018; Sniekers et al. 2017; Stahl et al. 2019).

There is a large class of cross-trait methods aiming to 
discover specific genomic loci unique or shared between 
phenotypes inspired by the meta-analysis technique (Willer 
et al. 2010) and its extensions dealing with sample overlap 
(Han et al. 2016; Lin and Sullivan 2009). For example, the 
COMBINE approach (Ellinghaus et al. 2012) consists of two 
separate runs of a same-effect and opposite-effect meta-anal-
ysis, both using the inverse variance-weighted procedure. 
In the opposite-effect meta-analysis, the minor and major 
alleles are flipped in the second dataset to capture bi-allelic 
SNPs with opposite-effect directions in the two phenotypes 
investigated. This method was later refined and extended to 
multiple heterogeneous traits using restricted and weighted 
subset search (ASSET) (Bhattacharjee et al. 2012), which 
exhaustively explore subsets of studies to achieve the best 

possible trade-off between specificity and sample size. Its 
successor, compare-and-contrast meta-analysis (CCMA) 
(Baurecht et al. 2015), further improved the power to dis-
cover associations by combining the subset search approach 
with trans-ethnic meta-analysis (MANTRA) (Morris 2011). 
Several alternative approaches explore additional informa-
tion, including individual-level genotypes (MultiPhen) 
(O’Reilly et al. 2012), phenotypic correlations (TATES) 
(van der Sluis et al. 2013) or estimated genetic correlations 
(MTAG) (Turley et al. 2018). A common feature of all tech-
niques based on a meta-analysis framework is that the analy-
sis is performed independently for each SNP, thus requiring 
a follow-up mechanism to control for multiple testing, such 
as Bonferroni correction, to avoid false positive findings. 
The condFDR analysis, on the other hand, directly works 
with the entire original set of p values from the two GWAS 
and intrinsically incorporates multiple testing via the FDR 
framework (Efron 2010).

Another class of methods aims at disentangling LD 
structure to reveal underlying causal genetic mecha-
nisms. Mendelian randomization aims to distinguish true 
pleiotropy from mediated pleiotropy by investigating 
whether one phenotype is causative to the other (Hernan 
and Robins 2006; Lawlor et al. 2008; Smith and Ebrahim 
2003; Zhu et al. 2018). Mendelian randomization assigns 
genetic variants, which are expected to be independ-
ent of confounding factors, as instrumental variables to 

Fig. 3  Common genetic variants jointly associated with bipolar dis-
order (BD; n = 51,710) and intelligence (n = 269,867) at conjunc-
tional false discovery rate (conjFDR) < 0.05, adapted from Smeland 
et  al. (2019). Manhattan plot showing the –  log10 transformed con-
jFDR values for each SNP on the y-axis and chromosomal positions 

along the x-axis. The dotted horizontal line represents the thresh-
old for significant shared associations (conjFDR < 0.05, i.e., –log10 
(conjFDR) > 1.3). Independent lead SNPs are encircled in black. For 
details, see Supplementary Table 9 in Smeland et al. (2019)
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test for causality. Several available Bayesian approaches 
(Giambartolomei et al. 2014; Pickrell et al. 2016) explore 
whether two association signals in the same genomic 
region obtained from two different GWAS share a single 
causal variant or multiple causal variants. Frei and col-
leagues performed a similar analysis at the genome-wide 
level, estimating the proportion of phenotype-specific 
causal variants and shared variants between complex 
phenotypes using GWAS summary data, while control-
ling for shared participants (Frei et al. 2019). The analysis 
demonstrates how the shared polygenic component may 
constitute a large fraction of the genetic architecture of 
one phenotype, while constituting a smaller fraction of 
the architecture of a phenotype with larger polygenicity. 
While the condFDR/conjFDR approach is agnostic about 
the causal variants underlying the identified associations, 
it complements these methods by improving the discovery 
of genomic loci, which can be used to prioritize down-
stream analysis.

Conclusion

Accumulating evidence has shown that genetic pleiotropy 
is pervasive among complex human traits and disorders, 
providing important insights into etiological relationships. 
Since its introduction in 2013, application of the cond-
FDR/conjFDR approach has increased yield of existing 
GWAS and aided the discovery of overlapping genomic 
loci between polygenic phenotypes. Given that large frac-
tions of the polygenic architecture underlying most complex 
phenotypes still remain undetected, the condFDR/conjFDR 
approach represents a cost-effective powerful strategy useful 
for improving GWAS discovery and help elucidating shared 
genetic etiologies.

Acknowledgements National Institutes of Health (NS057198; 
EB00790); National Institutes of Health NIDA/NCI: U24DA041123; 
the Research Council of Norway (229129; 213837; 248778; 223273; 
249711); the South-East Norway Regional Health Authority (2017-
112); KG Jebsen Stiftelsen (SKGJ-2011-36).

Compliance with ethical standards 

Conflict of interest OA.A. has received speaker’s honorarium from 
Lundbeck and is a consultant for Healthlytix. C.C.F. is under employ-
ment of Multimodal Imaging Service, dba Healthlytix, in addition to 
his research appointment at the University of California, San Diego. 
A.M.D. is a founder of and holds equity interest in CorTechs Labs 
and serves on its scientific advisory board. He is also a member of 
the Scientific Advisory Board of Healthlytix and receives research 
funding from General Electric Healthcare (GEHC). The terms of these 
arrangements have been reviewed and approved by the University of 
California, San Diego in accordance with its conflict of interest poli-
cies. Remaining authors have no conflicts of interest to declare.

Box 1: Conditional and conjunctional false 
discovery rate

The ‘enrichment’ seen in the conditional Q–Q plots can be 
directly interpreted in terms of a Bayesian interpretation 
of the true discovery rate (TDR = 1 – false discovery rate 
(FDR)) (Efron 2010). More specifically, for a given p value, 
under a simple two-group (null and non-null) model, Bayes 
rule gives the posterior probability of being null as:

where π0 is the proportion of null SNPs, F0 is the cumula-
tive distribution function (cdf) of the null SNPs, and F is the 
cdf of all SNPs, both null and non-null (Efron 2007). Here, 
we assume the SNP p values are a priori independent and 
identically distributed. Under the null hypothesis, F0 is the 
cdf of the uniform distribution on the unit interval [0,1], so 
that Eq. (1) reduces to:

F can be estimated by the empirical cdf q = Np/Ν, where Np 
is the number of SNPs with p values less than or equal to 
p, and N is the total number of SNPs. Replacing F by q in 
Eq. (2), we get:

which is biased upwards as an estimate of the FDR (Efron 
and Tibshirani 2002). Replacing π0 in Eq. (3) with unity 
gives an estimated FDR that is further biased upward:

If π0 is close to one, the increase in bias going from Eqs. 
(3–4) is minimal. The quantity 1 – p/q is, therefore, biased 
downward, and hence a conservative estimate of the TDR. 
Referring to the Q–Q plots, we see that q* is equivalent to 
the nominal p value divided by the empirical quantile, as 
defined earlier. We can thus read the FDR estimate directly 
off the Q–Q plot as:

i.e., the horizontal shift of the curves in the Q–Q plots from 
the expected line x = y, with a larger shift corresponding to 
a smaller FDR. To estimate the conditional FDR of a given 
SNP, we repeat the above procedure for a subset of SNPs 
with p values in the secondary GWAS equal to or lower than 
that observed for the given SNP. Formally, this is given by:

where p1 is the p value for the first phenotype, p2 is the p 
value for the second, and F(p1 | p2) is the conditional cdf 
and π0 (p2) the conditional proportion of null SNPs for the 
first phenotype, given that p values for the second pheno-
type are p2 or smaller. The condFDR framework is closely 
related to the stratified FDR method developed by Sun et al. 

(1)FDR(p) = �0F0(p)∕F(p),

(2)FDR(p) = �0p∕F(p).

(3)Estimated FDR(p) = �0p∕q,

(4)q∗ = p∕q.

(5)−log10(q
∗) = log10(q)−log10(p),

(6)FDR
(
p1|p2

)
= �0

(
p2
)
p1∕F

(
p1|p2

)
,
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(2006). Whereas they propose computing FDR separately 
conditional on membership in pre-defined discrete strata of 
p values, here, we condition the estimated FDR on a con-
tinuous random variable, the SNP p values with respect to 
a second phenotype.

To identify SNPs jointly associated with two phenotypes 
using conjunctional FDR, the conditional FDR procedure is 
repeated after inverting the roles of the primary and secondary 
phenotypes. Similar to previous conjunction tests for p value 
statistics (Nichols et al. 2005), the conjunctional FDR estimate 
is defined as the maximum of both conditional FDR values, 
which minimizes the effect of a single phenotype driving the 
common association signal. Formally, the conjunctional FDR 
is given by:

where π0 is the a priori proportion of SNPs null for both phe-
notypes simultaneously and F0(p1, p2) is the joint null cdf, 
π1 is the a priori proportion of SNPs non-null for the first 
phenotype and null for the second with F1(p1, p2) the joint 
cdf of these SNPs, and π2 is the a priori proportion of SNPs 
non-null for the second phenotype and null for the first, with 
joint cdf F2(p1, p2). F(p1, p2) is the joint overall mixture cdf 
for all phenotype 1 and 2 SNPs.

Conditional empirical cdfs provide a model-free method to 
obtain conservative estimates of Eq. (7). This can be seen as 
follows: estimate the conjunction FDR by:

where Estimated  FDRPhenotype1|Phenotype2 and Estimated 
 FDRPhenotype2|Phenotype1 are conservative (upwardly biased) 
estimates of Eq. (6). Thus, Eq. (8) is a conservative estimate 
of max {p1/F(p1| p2), p2/F(p2|p1)} = max{p1F2(p2)/F(p1, p2), 
p2F1(p1)/F(p1, p2)}, with F1(p1) and F2(p2) the marginal non-
null cdfs of SNPs for phenotypes 1 and 2, respectively. For 
enriched samples, p values will tend to be smaller than pre-
dicted from the uniform distribution, so that F1(p1) ≥ p1 and 
F2(p2) ≥ p2. Then, max {p1F2(p2)/F(p1, p2), p2F1(p1)/F(p1, 
p2)} ≥ [π0 + π1 + π2] max{p1F2(p2)/F(p1, p2), p2F1(p1)/F(p1, 
p2)} ≥ [π0p1p2 + π1p2F1(p1) + π2p1F2(p2)]/F(p1, p2).

Under the assumption that SNPs are independent if one or 
both are null, reasonable for disjoint samples, this last quan-
tity is precisely the conjunctional FDR given in Eq. (7). Thus, 

(7)

FDRPhenotype1&Phenotype2

(
p1, p2

)

= �0F0

(
p1, p2

)
∕F

(
p1, p2

)

+ �1F1

(
p1, p2

)
∕F

(
p1, p2

)

+ �2F2

(
p1, p2

)
∕F

(
p1, p2

)
,

(8)

Estimated FDRPhenotype1&Phenotype2

= max
{
Estimated FDRPhenotype1|Phenotype2,

Estimated FDRPhenotype2|Phenotype1
}
,

Eq. (8) is a conservative model-free estimate of the conjunc-
tional FDR.
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