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Abstract
While the importance of tight junctions in hearing is well established, the role of Claudin- 9 (CLDN9), a tight junction 
protein, in human hearing and deafness has not been explored. Through whole-genome sequencing, we identified a one base 
pair deletion (c.86delT) in CLDN9 in a consanguineous family from Turkey with autosomal recessive nonsyndromic hearing 
loss. Three affected members of the family had sensorineural hearing loss (SNHL) ranging from moderate to profound in 
severity. The variant is predicted to cause a frameshift and produce a truncated protein (p.Leu29ArgfsTer4) in this single-
exon gene. It is absent in public databases as well as in over 1000 Turkish individuals, and co-segregates with SNHL in the 
family. Our in vitro studies demonstrate that the mutant protein does not localize to cell membrane as demonstrated for the 
wild-type protein. Mice-lacking Cldn9 have been shown to develop SNHL. We conclude that CLDN9 is essential for proper 
audition in humans and its disruption leads to SNHL in humans.

Introduction

Hearing loss (HL) is the most common sensory deficit, 
affecting approximately 1 in 650 newborns (Mehl and 
Thomson 2002). Genetic factors account for at least half 
of congenital and prelingual-onset HL (Morton and Nance 
2006). Hearing loss may be classified as syndromic, which 
presents additional clinical features, or nonsyndromic, in 

which there are no other clinical findings. Nonsyndromic 
HL comprises about 70–80% of genetic deafness (Nance 
2003). To date, 115 nonsyndromic HL genes have been iden-
tified (Van Camp and Smith 2019). However, comprehensive 
genetic screening that includes all known deafness genes 
still leaves over 50% of cases unsolved (Shearer and Smith 
2015).

Tight junctions are composed of transmembrane and 
membrane-associated proteins that serve as selective barriers 
to modulate paracellular transport. The permeability of tight 
junctions is determined by the presence of claudins, which 
are tetraspan integral proteins with two extracellular loops 
(Van Itallie and Anderson 2004). Mutations in CLDN14 
(MIM 605608) encoding claudin-14 were shown to cause 
autosomal recessive nonsyndromic HL in humans (Wilcox 
et al. 2001). While claudin-9 was shown to be essential for 
hearing in mice (Nakano et al. 2009), CLDN9 mutations are 
not known to cause HL in humans.

Here, we present CLDN9 (MIM 615799) as a previously 
unrecognized gene associated with autosomal recessive non-
syndromic HL in humans. Via whole-genome sequencing 
(WGS), we identified a frameshift variant in CLDN9 in a 
family with nonsyndromic HL. We subsequently showed that 
the mutation disrupts subcellular organization of CLDN9, 
suggesting that this protein plays a crucial role in human 
hearing.
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Materials and methods

Human subjects

This study was approved by the Ethics Committee of Ankara 
University (Turkey) and the Institutional Review Board at 
the University of Miami (USA). Informed consent was 
obtained from each participant or, in the case of a minor, 
from the parents.

We evaluated a Turkish family with parental consanguin-
ity (Fig. 1a). The diagnosis of sensorineural HL (SNHL) 
was established following standard audiometric testing in 
a soundproofed room in accordance with current clinical 
standards. We calculated the pure-tone average over 0.5, 1, 
2, and 4 kHz to determine severity of HL, applied to the 
better hearing ear: mild = 20–40 dB; moderate = 41–70 dB; 
severe = 71–95 dB; profound > 95 dB (Mazzoli et al. 2003). 
The clinical evaluation included a thorough physical exami-
nation and otoscopy in all cases. DNA was extracted from 
blood adhering to the standard procedures.

Sequencing and bioinformatics

We performed WGS in the proband (II:2) using the 
BGISEQ-500 paired-end 100 bp (PE100) (Huang et al. 2017; 
Bademci et al. 2018). Burrows–Wheeler Aligner was used to 
align reads to the human reference genome (GRCh37/hg19) 
(Li and Durbin 2010). We used Genome Analysis Toolkit 
for variant calling, BreakDancer for detecting structural 

variants, and CNVnator for copy number variants (McKenna 
et al. 2010; Chen et al. 2009; Abyzov et al. 2011).

We used Genome Aggregation Database (gnomAD), The 
Single Nucleotide Polymorphism (dbSNP) database, and our 
internal database that contains > 8500 exomes from different 
ethnicities, including > 1000 Turkish individuals, and > 200 
genomes (Karczewski et al. 2019; Sherry et al. 2001). We 
used cutoffs of 0.005 and 0.0005 for recessive and dominant 
variants, respectively, for minor allele frequency thresholds. 
We also filtered variants using these combination criteria: 
CADD score > 20, GERP score > 2, and both PolyPhen-2 
and SIFT as “damaging” (Rentzsch et al. 2018; Davydov 
et al. 2010; Adzhubei et al. 2010; Kumar et al. 2009). We 
utilized the Enlis Genome Research software to identify 
regions of homozygosity from WGS data (Enlis, Berkeley, 
CA). During the search for novel deafness genes, we focused 
on autozygous regions that are longer than 1 Mb. ACMG 
guidelines and the ClinGen Hearing Loss Gene Curation 
Expert Panel were followed for interpreting sequence vari-
ants (Richards et al. 2015; DiStefano et al. 2019).

We used Sanger sequencing to confirm and evaluate 
co-segregation of the candidate variant (Supplementary 
Table S1).

In vitro studies

To assess functionality, CLDN9 was cloned and expressed 
using a NT-GFP Fusion TOPO TA Expression Kit (cat. 
no. K4810-01, Invitrogen, Carlsbad, CA). Briefly, primers 
(Supplementary Table S1) were used to amplify the single 

Fig. 1  Characteristics of the 
family and the CLDN9 muta-
tion. a Turkish family with 
SNHL, HL (black symbols) and 
genotypes at CLDN9 c.86delT. 
Double lines indicate consan-
guinity. b Hearing thresholds 
obtained from pure-tone audio-
grams of the family. Affected 
individuals show moderate to 
profound HL. c Electrophero-
grams showing the CLDN9 
variant. WT wild type, Hom 
homozygous mutant, Het het-
erozygous mutant. d Frameshift 
occurs in extracellular loop 1 
(ECL1)
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coding exon of the gene from the human blood sample II:2 
CLDN9delT (CLDN9 NM_020982.3:c.86delT) and a wild-
type control. To isolate the plasmid DNA, a QIAprep Spin 
Miniprep Kit (cat. no. 27106, Qiagen, Hilden, Germany) 
was carried out according to manufacturer’s instructions. 
Purified DNA underwent Sanger sequencing again to choose 
correct orientation of the plasmid and ensure that no muta-
tions were introduced.

Wild- type and mutant DNA samples were transfected 
into HEK293 cells using Lipofectamine LTX (cat no. 
1533810, Invitrogen, Carlsbad, CA). After 48 h of incuba-
tion, cells were fixed in 4% PFA in PBS for 40 min at RT, 
permeabilized in 0.5% Triton X-100 in PBS for 10 min, and 
co-stained with Hoechst 33342 (cat. no. H3570, Invitrogen, 
Carlsbad, CA) and phalloidin CF633 conjugate (cat. no. 
00046, Biotium, Fremont, CA). Cells were imaged at 40× 
magnification with a Zeiss LSM710 confocal microscope 
(Zeiss, Oberkochen, Germany).

Statistical analysis

Two-tailed t tests were calculated to determine statistical 
significance by measuring peaks of GFP signal intensity 
with the ZEN software (Zeiss, Oberkochen, Germany) (Sup-
plementary Figure S1). The sample sizes (n), averages, and 
SEM are listed in each figure legend.

Results

A frameshift variant in CLDN9 is associated 
with nonsyndromic sensorineural hearing loss 
in a Turkish family

 In a consanguineous family of Turkish origin, three affected 
individuals had SNHL (Fig. 1a). All three affected members 
of the family were diagnosed after age 10 years, while age of 
onset was not clearly delineated. Audiograms showed normal 
hearing in the father (I:1) and bilateral symmetric profound 
SNHL in the mother (I:2), moderate SNHL in the proband 
(II:2), and severe SNHL in an affected elder sister (II:1) 
(Fig. 1b). Hearing thresholds show a normal hearing level at 
500 Hz and a steep decline after 1000 Hz in both sisters. In 
the 46-year-old mother, both 500 and 1000 Hz hearing levels 
show significant HL, suggesting that HL has progressed in 
the mother. Audiograms taken 3 years later for the sisters (II:1 
and II:2) show the same hearing levels and suggest that there 
was not a rapid progression in HL. High-resolution computed 
tomography scan of the temporal bone did not show inner ear 
anomalies in the proband. Gross motor development was nor-
mal with no history of balance problems, vertigo, dizziness, 
or nystagmus. Tandem walking was normal, and the Romberg 

test was negative. There were no other findings affecting sys-
tems other than hearing.

Average read depth for WGS was 47.51× with at least 
4× coverage for 98.87% of the genome. After filtering and 
excluding variants in all known deafness genes, only one 
variant remained mapping to an autozygous region: CLDN9 
NM_020982.3:c.86delT (p.Leu29ArgfsTer4). The list of 
autozygous regions is provided in Supplementary Table S2. 
The CLDN9 variant is located in a 5.5 Mb autozygous run on 
chromosome 16, which is the longest of six runs over 1 Mb. 
The variant was not previously identified in dbSNP or gno-
mAD and has a CADD score of 26.5 which suggests a deleteri-
ous effect (Supplementary Table S3).

Sanger sequencing of all four family members showed co-
segregation of the variant with the phenotype as an autoso-
mal recessive trait in the family (Fig. 1a, c). The variant is 
located within codon Leu29, which is at the beginning of the 
first extracellular loop of CLDN9 (Fig. 1d). We predicted that 
this mutation causes a frameshift that results in a premature 
stop codon and a truncated protein. As CLDN9 is a single-
exon gene, it is unlikely that a premature stop codon triggers 
nonsense-mediated decay.

Detected variant impairs CLDN9 subcellular 
localization

To study the cellular function, we specifically used a clon-
ing kit that included a GFP tag at the N-terminal (Nt). The 
c.86delT variant occurs downstream of the Nt. We hypoth-
esized that wild-type CLDN9 would be located in the plasma 
membrane, where it function as integral membrane proteins, 
and that the mutant CLDN9 would result in a truncated pro-
tein. As hypothesized, in the wild- type, the GFP is primar-
ily localized in the plasma membrane (Fig. 2a). Strikingly, 
the GFP is localized to the cytosol only in the mutant protein 
(Fig. 2b). Moreover, the GFP signal is decreased in the mutant 
compared to the wild- type.

We measured the intensity of the GFP signal in the plasma 
membrane-like structure and protoplasm for both the CLDN9 
control (Fig. 2c) and mutant (Fig. 2d) (Supplementary Figure 
S1). The CLDN9 mutant had a decreased signal in the plasma 
membrane compared to the wild- type (Fig. 2e). Instead, the 
CLDN9 is primarily found within the cytosol. However, there 
was no difference in intensity within the protoplasm between 
the two groups. This suggests that the variant disrupts the 
migration of CLDN9 to the plasma membrane.

Discussion

We present CLDN9 as a novel gene for autosomal reces-
sive nonsyndromic HL. Evidence comes from a consan-
guineous family with a truncating mutation. To support 
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our conclusion, our in vitro studies show that the truncated 
CLDN9 is confined to the cytosol, whereas in the wild- type, 
it is located in the plasma membrane. CLDN9 is a membrane 
protein and thus cannot function properly within the cytosol. 
This highlights that the c.86delT variant disrupts the func-
tion of CLDN9 and results in SNHL as a consequence.

Nakano et  al. (2009) previously reported a claudin-
9-deficient mouse strain, nfm329, which was generated 
using ENU-induced mutagenesis. After evaluating startle 
responses and measuring auditory brainstem responses 
(ABR), the team concluded that nmf329/nmf329 mice 
had severe HL at P16, which is indicative of early onset, 
given that the onset of hearing in wild-type mice is at P15. 
Wild- type and nmf329/+ mice had no difference in hearing 
thresholds. Similarly, the heterozygous father in our study 
has normal hearing. No other abnormalities were detected 
in the nmf329/nmf329 mice, following balance tests and 
histopathological experiments. Likewise, in our family, the 
affected individuals had no additional clinical findings in 
the physical examination. This draws parallels between the 
CLDN9 mutation homozygous individuals and the nmf329/
nmf329 mice, in which genetic variations both result in 
recessively inherited nonsyndromic HL.

Audiograms obtained from the family have an unusual 
configuration. Low frequencies remain normal, while 
frequencies over 1000 Hz steeply decline. Studies on the 
nmf329 mouse line conducted by Nakano et al. (2009) fur-
ther corroborate our findings. In the nmf329/nmf329 cochlea 
at P28, the organ of Corti was collapsed at the basal turn, 
lacking paracellular spaces and one of the three rows of outer 
hair cells (OHCs). However, the organ of Corti appeared 
intact at the apical turn with three rows of OHCs in nmf329 
homozygotes. Similar to the results of the ABR experiment, 
wild- type and nmf329/+ mice were morphologically normal 

along the entire length of the cochlea. To better understand 
the progression of hair cell degeneration, Nakano et al. 
performed histological experiments at different stages of 
development. In nmf329/nmf329 mice at P8, both inner 
hair cells (IHCs) and OHCs were present and intact, but 
most of the OHCs at the basal turn had degenerated by P14. 
Interestingly, the effect was less pronounced at the coch-
lear apex. It is important to note the missing paracellular 
spaces in nmf329 homozygotes. Since CLDN9 is involved in 
paracellular permeability, this deformity is likely to impair 
functionality. Cochleae taken from nmf329/nmf329 mice at 
P80 show that the rapid degeneration that occurred in early 
development abated with a few OHCs remaining at the basal 
turn. This slow progression of HL is also observed in our 
family: the proband (younger sister) has moderate HL, the 
older sister has severe HL, and the mother is profoundly 
deaf. It suggests that the degeneration of hair cells is acceler-
ated during adolescence and into adulthood and then decel-
erates later in life. We, therefore, conclude that CLDN9 is 
essential for the hair cells in the base of cochlea from early 
on and that c.86delT variant results in steeply sloping high 
frequency moderate to profound SNHL.

The findings we present here are clinically significant, 
because the importance of CLDN9 in human hearing was 
unexplored. Until this study, CLND9 was not known to be 
associated with HL in humans. Identifying this variant is 
one step closer to mapping the complete genetic landscape 
of deafness in humans.
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Fig. 2  Representation of wild- type and mutant CLDN9 protein 
in HEK293 cells. a, c Wild-type CLDN9 transfected HEK293 cells 
show the protein expressed in both the plasma membrane and proto-
plasm. b, d Mutant CLDN9-transfected HEK293 cells are showing 
the mutant protein is limited to the cytosol. GFP-tagged wild- type 
or mutant CLDN9 (green), nucleus (blue), and actin (red) (scale 

bar: 10  μm). e Quantification of mutation on subcellular localiza-
tion of CLDN9-transfected HEK293 cells. The plasma membrane-
like organelle and protoplasm were measured for wild- type (n = 15) 
and mutant (n = 8) CLDN9. Bars represent the mean + SEM of aver-
age CLDN9-GFP fluorescence intensity in arbitrary units (AU), 
*p = 6.8 × 10−6, ns not significant
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