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Abstract
The study of Mendelian diseases and the identification of their causative genes are of great significance in the field of genetics. 
The evaluation of the pathogenicity of genes and the total number of Mendelian disease genes are both important questions 
worth studying. However, very few studies have addressed these issues to date, so we attempt to answer them in this study. 
We calculated the gene pathogenicity prediction (GPP) score by a machine learning approach (random forest algorithm) 
to evaluate the pathogenicity of genes. When we applied the GPP score to the testing gene set, we obtained an accuracy of 
80%, recall of 93% and area under the curve of 0.87. Our results estimated that a total of 10,384 protein-coding genes were 
Mendelian disease genes. Furthermore, we found the GPP score was positively correlated with the severity of disease. Our 
results indicate that GPP score may provide a robust and reliable guideline to predict the pathogenicity of protein-coding 
genes. To our knowledge, this is the first trial to estimate the total number of Mendelian disease genes.

Introduction

Mendelian diseases (MD), also called as single-gene dis-
orders, refer to the phenotypes caused by a mutation (or 
mutations) in a single gene (Bamshad et al. 2011). In recent 
years, the identification of pathogenic genes for MD devel-
ops rapidly. Wenger et al. indicated that on average 266 

OMIM phenotypes with known molecular bases and 241 
gene–disease associations for MD have been reported annu-
ally (Wenger et al. 2017). Currently, 5316 single-gene dis-
orders have been reported and 3666 genes are responsible 
for them (from OMIM, updated March 8th, 2019, http://
omim.org/stati stics /geneM ap). Two of the key points in MD 
research are how to efficiently evaluate the pathogenicity of 
each gene and how many genes among the ~ 20,000 protein-
coding genes may cause MD.

Variant-level prediction methods are widely used in the 
identification of MD genes. There are dozens of tools for 
performing variant-level prediction, such as SIFT (Ng and 
Henikoff 2003), Polyphen (Adzhubei et al. 2010), GERP++ 
(Davydov et al. 2010), MutationTaster (Schwarz et al. 2014), 
CADD (Kircher et al. 2014) and REVEL (Ioannidis et al. 
2016). In contrast to the numerous variant prediction tools, 
only a few tools focus on gene-level prediction, such as 
RVIS (Petrovski et al. 2013), DNE (Samocha et al. 2014), 
EvoTol (Rackham et al. 2015) and GDI (Itan et al. 2015), 
which may play an irreplaceable supplementary role in MD 
gene identification. These existing gene-level prediction 
tools mainly rely on a single characteristic of genes, i.e., 
the intolerance to functional variants, to make predictions. 
Although the intolerance values produced by these tools may 
reflect the pathogenicity of genes, they did not give a cutoff 
for deeming them pathogenic.
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The pathogenicity of genes is decided by more than one 
kind of factor. If we combine multiple characteristics instead 
of just one to do the prediction, we may get a better result. 
Machine learning is an efficient method for classification 
and prediction. It may combine many features from the 
studied objects to provide a comprehensive judgment for 
new objects. The evaluation of variant-level prediction tools 
indicates that the ones using machine learning tend to show 
better performance. The random forest algorithm is a well-
developed machine learning model that can handle multiple 
features and tolerate samples with missing features, which 
is very suitable for predicting the pathogenicity of genes.

In this study, we applied a machine learning approach 
(random forest algorithm) that combined 201 gene-level 
characteristics to produce the gene pathogenicity prediction 
(GPP) score. The GPP score showed better performance than 
residual variation intolerance score (RVIS) and gene dam-
age index (GDI) in distinguishing MD genes. Our results 
estimated that a total of 10,384 protein-coding genes are MD 
genes. The characteristics of GPP score were also analyzed. 
Gene dominance prediction (GDP) score and gene reces-
siveness prediction (GRP) score were calculated by the same 
method to evaluate the inheritance model of MD genes. The 
three kinds of scores were integrated into a list called the 
gene catalog of Mendelian diseases (GCMD). Our results 
may be applied to MD research, especially for the identifica-
tion of pathogenic genes. This is the first trial to provide a 
clear cutoff for judging MD genes and to estimate the total 
number of them.

Methods

Data collection and gene standardization

Gene sets data were extracted from ClinVar (Landrum et al. 
2018), OMIM (http://omim.org/), MalaCards (Rappaport 
et al. 2017), the “super hero project” (Chen et al. 2016) 
and our internal database. Variants data were extracted 
from 1000 Genomes Project (KG) (Sudmant et al. 2015) 
and Genome Aggregation Database (containing whole-
genome data (GAD) and whole-exome data (ExAC)) (Lek 
et al. 2016). Gene-level characteristics were extracted from 
Refgene, STRING (Szklarczyk et al. 2017), HomoloGene, 
GTEx, ANNOVAR (Wang et al. 2010), DOMINO (Quino-
doz et al. 2017) and our internal data. The annotation results 
of variants and genes were involved as well. Data from dif-
ferent sources may have inconsistent gene names, which may 
lead to some confusion. In our study, all the gene names 
from different data sets were standardized according to the 
HUGO Gene Nomenclature Committee (HGNC) (see Sup-
plementary methods). The data used in our study and their 
download links are listed in Supplementary Table 1.

Gene sets selection and gene‑level characteristics 
filtration

To explore a comprehensive method to predict the patho-
genicity of genes, we applied a machine learning approach. 
The gene sets and gene-level characteristics used in 
machine learning were produced as follows.

Gene sets selection: The loss-of-function (LOF) vari-
ant tolerant genes were obtained from the KG, GAD and 
ExAC databases, among which 630 high-quality genes 
were used as the training set of negative genes, and the 
remaining 850 genes were used as the testing set of 
negative genes. To ensure a balance between the num-
ber of positive and negative genes used in our model, we 
extracted and selected 630 and 850 MD genes as the train-
ing and testing sets of positive genes, respectively.

Gene-level characteristic filtration: We extracted many 
gene-level characteristics from ANNOVAR, STRING, 
Refgene, HomoloGene, GTEx and DOMINO, as well as 
several characteristics calculated by ourselves, includ-
ing the gene intolerance scores, variant damaging scores, 
conservation scores, expression data and etc. In total, we 
enrolled 405 characteristics. We excluded genes with miss-
ing values for more than 50% of all characteristics. If any 
gene missed value for a characteristic, we used the median 
value of other genes on this characteristic to fill it. Then, 
we performed some filtration and finally kept 201 charac-
teristics (Supplementary Table 2).

The details are provided in the Supplementary methods.

Gene pathogenicity prediction score produced 
by random forest algorithm

After the gene sets and gene-level characteristics were 
obtained, we built a model of random forest algorithm and 
adjusted the parameters (ntree and mtry) with the train-
ing gene sets and gene-level characteristics. We applied 
the model to the testing gene set to evaluate its effect and 
analyzed the 10 most important characteristics of the 
model. Then, the GPP score of all protein-coding genes 
were calculated by the model, and the number of predicted 
pathogenic and non-pathogenic genes (Np and Nn) of MD 
was obtained according to their scores (the default cutoff 
of the score was 0.5). Considering the positive predicted 
value (PPV) and negative predicted value (NPV), the real 
number of MD genes (Nm) was calculated by the formula: 
Nm = Np × PPV + Nn × (1 − NPV) . Furthermore, we col-
lected several disease gene sets and analyzed the predic-
tion accuracy and score distribution of them. The detailed 
information of gene sets and the gene selection method are 
listed in Supplementary Table 3.

http://omim.org/
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Prediction of dominant and recessive models 
of Mendelian disease genes

To distinguish dominant genes and recessive genes, we 
applied the same algorithm to calculate the GDP and GRP 
scores, respectively. Briefly, we collected genes from the 
autosome that showed dominant, recessive and both inherit-
ance patterns. In our model, 1243 positive genes and 1584 
negative genes were used for calculating GDP score, while 
1985 positive genes and 842 negative genes were used for 
calculating GRP score. After the filtration, 183 gene-level 
characteristics were kept for the calculation of both scores. 
We did not divide the genes into a training and a testing set, 
and we applied 4 × cross-testing to do the calculation (see 
Supplementary methods).

The two scores (GDP and GRP) and GPP score are inte-
grated in Supplementary Table 4.

Results

The performance of GPP score produced 
by the random forest algorithm

We applied a machine learning approach (random forest 
algorithm) to calculate gene pathogenicity prediction (GPP) 
score. After the adjustment of parameters, 201 gene-level 
characteristics were used, and we found ntree = 500 and 
mtry = 46 to be suitable parameters. When we applied the 
GPP score produced by this model to the testing gene set, we 
obtained an accuracy of 80%, recall of 93%, FPR of 34% and 
FNR of 7% (the default cutoff 0.5 was used). The receiver 
operating characteristic (ROC) curve showed an area under 
the curve (AUC) of 0.87. We compared the performance of 
the GPP score with that of RVIS and GDI on the testing gene 
set and found that the GPP score performed significantly bet-
ter than the other two tools (Fig. 1a). The ten most important 
characteristics determined by the mean decrease in the Gini 
coefficient of the model mainly belonged to two categories 
(gene intolerance scores and variant damage prediction 
results) (Fig. 1b). Then, we evaluated the performance of the 
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Fig. 1  The ROC curve of GPP score and the ten most important char-
acteristics of the model. a The ROC curve on the testing gene set. 
The AUCs of the GPP score and two similar tools, RVIS and GDI, 
are 0.87, 0.72 and 0.61, respectively. b The ten most important char-
acteristics identified by the mean decrease in the Gini coefficient, 
ranked by their values. GPD_ave belonged to gene potential dam-
age score, s4_exac_splice, s4_exac_non, s4_exac_fs and s4_gad_fs 

belonged to gene intolerance score, exac_mis_MKL_ave, exac_mis_
phastCons_ave, exac_mis_MetaSVM_ave and exac_mis_CADD_
raw_max belonged to variant damage prediction result, string_score_
max belonged to gene interaction score. c The ROC curve on the 
testing gene set. The AUCs of the ten most important characteristics 
and 2 other tools (GDI and RVIS) are listed on the right, ranked by 
their values
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ten characteristics on the testing gene set, respectively. The 
ROC curves showed that the AUC ranged from 0.5 to 0.76 
(Fig. 1c), which was much lower than that of the GPP score.

We collected reported MD genes and susceptible genes 
from OMIM, LOF variants intolerant genes from ExAC and 
known pathogenic genes from several resources to evalu-
ate the prediction accuracy of the GPP score. The genes 
without GPP score were excluded. The cutoff to distinguish 
pathogenic and non-pathogenic genes of MD was set as 0.5. 
MD genes showed higher accuracy (92.8%) than susceptible 
genes (74.5%), LOF variants intolerant genes showed even 
higher accuracy (96.7%) and pathogenic genes showed a bit 
lower accuracy (87.4%) (Table 1). It was comprehensible 
that susceptible genes showed lower prediction accuracy 
because a part of them were not MD genes. The accuracy 
of pathogenic gene set was not that high because a part of 
pathogenic genes of non-Mendelian diseases were involved. 
LOF intolerance genes showed the highest prediction accu-
racy because gene intolerance scores were most important 
characteristics used in our model. The results indicated that 
LOF variants intolerant genes in ExAC may contain massive 
potential MD genes waiting to be confirmed.

The estimation for the number of Mendelian disease 
genes and the GO analysis

Among 18,226 high-quality protein-coding genes involved 
in our model, 13,401 genes were predicted to be pathogenic 
(the default cutoff 0.5 was used) (Supplementary Table 4). 
Considering the PPV and NPV of our model, we estimated 
that approximately 10,384 genes were MD genes.

We extracted 2984 reported MD genes (reported_M) from 
OMIM, 13,401 predicted MD genes (predicted_M) and 4825 
predicted non-MD genes (predicted_NM) from our predic-
tion result, then we performed gene ontology (GO) analysis 
of them. The number of genes with at least one GO entry of 
these gene sets was 2974, 13,154 and 4377, respectively. The 
average numbers of GO entries per gene of the three gene 
sets were 22.9, 17.2 and 8.5, respectively.

In general, the reported_M and the predicted_M sets 
showed little difference, while the predicted_NM set 
showed larger difference compared to them (Supplemen-
tary Fig.  1). We found that the predicted_M and pre-
dicted_NM sets showed little difference compared to the 
reported_M set in some GO pathways, such as membrane 
part (GO:0044425), extracellular region (GO:0005576) 
and immune system process (GO:0002376). In particular, 
the predicted_NM set showed higher percentage of enrich-
ment compared to the other two sets in two pathways, 
which were molecular transducer activity (GO:0060089) 
and cell killing (GO:0001906).

GPP score is positively correlated with the severity 
of disease

Two peaks were observed in the GPP score distribution 
(Fig. 2a). The proportion of overlap between the genes 
with different GPP scores and reported MD genes was 
analyzed. We found that genes with higher scores showed 
a higher proportion of overlap with reported MD genes, 
and the proportion ranged from 4.4% (GPP scores under 
0.5) to 30.8% (GPP scores above 0.9) (Fig. 2b). We also 
examined the distribution of predicted and reported MD 
genes on each chromosome, but we did not find obvious 
hot or cold spots (Supplementary Fig. 2).

The distribution of the GPP score for several kinds of 
pathogenic gene set was observed. We found that genes 
with known inheritance models showed significantly 
higher scores than susceptibility genes (Fig.  3a). We 
found the scores of LOF genes were higher than those of 
gain-of-function (GOF) genes (Wilcoxon rank sum test, 
p ≤ 0.001) (Fig. 3b). To determine whether the GPP score 
could reflect the age of onset or severity of the disease, 
we examined the score distribution of several pathogenic 
gene sets accordingly. Among several kinds of neurologi-
cal disease, intellectual disability (ID) and autism spec-
trum disorder (ASD) tended to show an early age of onset, 
the onset of schizophrenia (SCZ) mainly occurred in late 
adolescence, Alzheimer’s disease (AD) often occurred in 
the elderly and epilepsy (EP) occurred in a wide range of 
age. The scores of these gene sets showed little difference 
(Fig. 3c). The pathogenic genes of diseases with severe 
phenotypes (neuromuscular disease, metabolic disease, 
congenital heart disease and hereditary tumors) showed 
higher scores, while the genes of diseases with mild phe-
notypes (skin diseases such as psoriasis and ichthyosis) 
showed lower scores. These results indicated GPP score 
was positively correlated with the severity of disease. 
Genes of complex diseases (hypertension, obesity and dia-
betes) and male infertility showed scores between those of 
severe and mild diseases (Fig. 3d).

Table 1  Prediction accuracy of GPP score for several kinds of patho-
genic gene sets

Gene set Gene number Percent of genes 
in training set 
(%)

Prediction 
accuracy (%)

LOF intolerance 
genes

3183 4.5 96.7

Mendelian disease 
genes in OMIM

2946 20.4 92.8

Pathogenic genes 4893 12.7 87.4
Susceptible genes 98 0 74.5
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The dominant and recessive patterns for pathogenic 
genes

We applied the same machine learning approach to calculate 
GDP score and GRP score to predict dominant and reces-
sive genes. After adjustment of the parameters, we obtained 
accuracy of 75%, recall of 64% and AUC of 0.81 for the 
GDP score and accuracy of 81%, recall of 97% and AUC of 
0.81 for the GRP score. We also checked the score distri-
bution of all MD genes and found that more genes tended 
to follow the recessive model (Supplementary Fig. 3). Our 
prediction results showed that there were 4942 autosomal 
dominant genes and 10,041 autosomal recessive genes. Con-
sidering the PPV and NPV, we estimated that the numbers 
of real dominant and recessive genes were 5756 and 8502, 
respectively.

Discussion

Our results estimate that 10,384 genes are MD genes, which 
is much more than the currently reported number. As far as 
we know, this is the first time to estimate the total number 
of MD genes. We further tried different cutoffs of GPP score 
to calculate the FPR and FNR of our model by the test-
ing gene sets. When we chose 0.65 as cutoff, we obtained 

the lowest summation of false positive rate and false neg-
ative rate, and in this situation the number of MD genes 
was 10,173. We found that the number of MD genes was 
relatively stable (from 9155 to 10,479) under different cut-
offs (Supplementary Table 5), which may indicate that the 
real number of MD genes is around 10,000. The estimated 
number may indicate that there are many pathogenic genes 
(or lethal genes) of MD waiting to be discovered. Lethal 
genes are those with important function and the dysfunc-
tion of them will lead to death before birth, which makes 
them rarely identified in case-dependent disease research. 
We extracted some lethal genes from the Mouse Genome 
Informatics (MGI) database. The quartile value of them was 
0.888, which may suggest a cutoff of lethal genes.

Analysis of the score distributions of different gene sets 
showed that the GPP score was positively correlated with 
disease severity. Infertility is a special kind of disease, which 
may have a strong influence on the next generation but little 
influence on the patients themselves. We also analyzed the 
diseases with different ages of onset and found no signifi-
cant difference between the scores of these gene sets. These 
results indicate that the GPP score may reflect disease sever-
ity, where severity means the degree of threat to the health 
or survival of the individuals themselves but not the next 
generation. The gene sets we used may contain some non-
Mendelian disease genes that influence the results. So, we 

Fig. 2  Distribution of the 
GPP score and proportion of 
reported Mendelian disease 
genes for different scores. a The 
distribution of the GPP score of 
all protein-coding genes shows 
two peaks, and the majority of 
genes are predicted to be MD 
genes. The X-axis represents 
the GPP score, while the Y-axis 
represents the number of genes. 
b Genes are divided into six 
sets by the GPP score. Each bar 
consists of two parts. The blue 
part shows reported MD genes, 
and the red part shows non-
reported ones. The proportion 
of reported genes is listed at the 
top of each bar
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excluded genes not in the reported MD gene pool and do the 
analysis again, and similar results are obtained.

In this study, we ultimately calculated three kinds of 
gene-level score to evaluate the pathogenicity of all protein-
coding genes and to assign the dominant or recessive model 
to each MD gene. The GPP score may help to identify MD 
genes, while the GDP and GRP scores may help to iden-
tify which genes follow dominant or recessive models. To 
explore a broader application of our scores, we applied the 
GPP score to some genes related to schizophrenia identified 
by GWAS (Li et al. 2017), and a high proportion (87.3%) 
of the genes were predicted to be pathogenic. Some dis-
eases are highly related to copy number variations (CNVs), 
but there may be several genes involved when a responsible 
CNV is identified. We find the GPP score can significantly 

distinguish core genes from background genes of CNV, 
which may help us identify the core genes so that we can 
obtain accurate targets for later research.

There are some deficiencies in our study. When select-
ing non-pathogenic genes of MD (negative gene sets), we 
used the existing variants in public databases to select LOF 
variants tolerant genes. We did not find “reported non-
pathogenic genes” because it’s hard to deem a gene to be 
non-pathogenic. This might result in some errors, although 
our analysis verified that the selected genes were generally 
accurate. When we applied the GPP score to analyze gene 
sets of different diseases, we selected only a limited number 
of diseases and genes. If more diseases and genes had been 
involved, we might have obtained more convincing results. 
We also tried to perform the GOF and LOF prediction by 
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function, loss-of-function and both G and L genes. c The distribution 
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of some early-onset severe Mendelian diseases, severe diseases con-
tain genes of diseases with severe phenotype (neuromuscular disease, 
metabolic disease, congenital heart disease and hereditary tumors), 
medium diseases contain genes of some diseases with medium phe-
notype (ophthalmic diseases and hearing disorders), mild diseases 
contains genes of some diseases with mild phenotype (skin diseases 
such as psoriasis and ichthyosis), complex diseases contain genes of 
some complex diseases (hypertension, obesity and diabetes) and male 
infertility contain genes of male infertility
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the same method, but we did not collect enough GOF genes. 
We may finish this effort to complement our study when 
we obtain more GOF genes. Furthermore, we think there is 
heterogeneity for different kinds of disease, so distinguishing 
the pathogenic genes for specific diseases, for example, oph-
thalmic diseases, neurological disease and developmental 
diseases, may be a new research direction.

In conclusion, our study estimates the total number of 
MD genes. We introduce the gene pathogenicity predic-
tion (GPP) score, which may provide robust and reliable 
guidance for the identification of pathogenic genes in MD 
research. We also provide two additional gene-level scores 
that may suggest the dominant or recessive inheritance 
model of genes. In addition, our results may promote the 
understanding of MD genes.
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