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Abstract
Predicting phenotypes from DNA has recently become extensively studied field in forensic research and is referred to as 
Forensic DNA Phenotyping. Systems based on single nucleotide polymorphisms for accurate prediction of iris, hair and 
skin color in global population, independent of bio-geographical ancestry, have recently been introduced. Here, we analyzed 
14 SNPs for distinct skin pigmentation traits in a homogeneous cohort of 222 Polish subjects. We compared three different 
algorithms: General Linear Model based on logistic regression, Random Forest and Neural Network in 18 developed predic-
tion models. We demonstrate Random Forest to be the most accurate algorithm for 3- and 4-category estimations (total of 
58.3% correct calls for skin color prediction, 47.2% for tanning prediction, 50% for freckling prediction). Binomial Logistic 
Regression was the best approach in 2-category estimations (total of 69.4% correct calls, AUC = 0.673 for tanning predic-
tion; total of 52.8% correct calls, AUC = 0.537 for freckling prediction). Our study confirms the association of rs12913832 
(HERC2) with all three skin pigmentation traits, but also variants associated solely with certain pigmentation traits, namely 
rs6058017 and rs4911414 (ASIP) with skin sensitivity to sun and tanning abilities, rs12203592 (IRF4) with freckling and 
rs4778241 and rs4778138 (OCA2) with skin color and tanning. Finally, we assessed significant differences in allele fre-
quencies in comparison with CEU data and our study provides a starting point for the development of prediction models for 
homogeneous populations with less internal differentiation than in the global predictive testing.

Introduction

DNA phenotyping is recently one of the most relevant study 
areas in the forensic field. Predictions of human externally 
visible characteristics (EVCs) are possible through geno-
typing of single nucleotide polymorphisms (SNPs). Most 
of the EVCs, e.g., human pigmentation or hair and facial 
morphology, are complex polygenic and multifactorial traits, 
yet they are highly heritable and can be classified into eas-
ily described categories (Pulker et al. 2007; Kastelic and 

Drobnič 2012; Walsh et al. 2013; Liu et al. 2012). Though 
EVC prediction of a human phenotype’s characteristics from 
DNA markers requires a probabilistic method, it provides an 
important and very useful tool in both criminal network as 
well as in archeological anthropology studies and it refers to 
as “DNA intelligence” (Kayser and Schneider 2009; Dario 
et al. 2015). There is an increasing knowledge on genetic 
factors that explain differences in human morphological 
traits and SNPs are considered to affect human phenotypic 
variation the most (Kayser and de Kniff 2011; Wei et al. 
2014).

Pigmentation is one of the most differentiated human 
phenotypic traits, especially among Europeans (Bouakaze 
et al. 2009; Walsh et al. 2012). So far, the best informative 
pigmentation SNPs have been described for the iris color 
(six SNPs) and hair color (24 SNPs). These SNP markers 
display prediction accuracy of over 90% for blue and brown 
eye color as well as 70–87.5% for hair color and are termed 
as IrisPlex (Walsh et al. 2013) and HIrisPlex (Walsh et al. 
2011). But, still, little is known about the other EVC traits. 
Skin color is considered as an adaptive trait and melanin 
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synthesis is a complex process, since multiple genes as well 
as other factors, such as age, diseases, drugs and environ-
mental factors can contribute to the final outcome (Spiche-
nok et al. 2011; Srettabunjong et al. 2016). Several candidate 
gene loci have been identified to be presumably associated 
with skin pigmentation traits in people of European ancestry 
as well as to differ among geographical populations. Only 
recently, a profound and much broader discussion on the 
genetic background of human pigmentation diversity has 
emerged (Quillen et al. 2019).

Based on a special emphasis that has been given to dis-
tinct variants with presumable greatest relevance for skin 
pigmentation traits in Europeans, especially those of Cen-
tral/Eastern Europe, on previous studies, here, we have 
chosen 14 SNPs in nine genes for testing the association 
with skin color, skin susceptibility to sunburns and freckling 
features in the homogeneous Polish population in a total of 
18 primary prediction models based on three distinct math-
ematical approaches.

Materials and methods

Sample collection and DNA extraction

A total of 222 (90 males and 132 females) unrelated indi-
viduals from Poland, aged 20–63 (mean 26, σ = 9.8) were 
recruited for our study in 2016. Oral swabs [FloqSwabs 
hDNA Free (COPAN)] were collected and genomic DNA 
was extracted using ExtractMe DNA Swab & Semen Kit 
(Blirt S.A.) according to the manufacturer’s instruction.

Study design

All individuals gave informed consent prior to sample 
donation. They were asked to fill in the questionnaire that 
included the basic information, such as gender, age and eth-
nic origin, as well as particular phenotypic features (indi-
viduals aged > 30 years were asked about the phenotypic 
features at their mid-20s) (Srettabunjong et al. 2016), such 
as the iris and hair color, skin color and tone, susceptibil-
ity to sunburns and the presence of freckles (described as 
solar lentigines and ephelides). These traits were graded 
into the following categories: for iris color: brown/blue (or 
gray)/intermediate (including green), for hair color: black/
brown/red/blonde, for skin color: dark (olive)/medium/light 
(pale), for tanning/skin sensitivity to sun: high susceptibil-
ity to sunburns/initial sunburns (but turning brown)/mod-
erate tanning (without sunburns)/quick tanning, for freck-
ling: severe freckling/moderate freckling/non-freckled skin. 
Severe freckling referred to an abundant freckling present 
on the face and arms/shoulders (also accompanied by the 
presence of freckles on other body areas with limited or 

no exposure to sun during any season), while moderate 
freckling referred to a mild freckling pattern found on the 
face and arms but not on other areas of the body. Skin color 
referred to the inner part of upper arm, according to the 
regime recommended by Stokowski et al. (2007). Since we 
evaluated skin pigmentation traits in this study, the iris and 
hair color was additional information and was not included 
in the prediction modeling. The entire experimental group 
was divided into two subgroups named training and testing. 
Training group consisted of 150 individuals (75 males, 75 
females) randomly selected from 222 individuals enrolled in 
this study, whereas testing group comprised the remaining 
72 individuals (15 males, 57 females).

SNP selection and genotyping

14 autosomal SNPs affecting the general pigmentation 
were chosen for genotyping in our study. They were: (a) 
rs12913832 in hect domain and RCC1-like domain 2 
(HERC2) gene, (b) rs1800407, (c) rs7495174, (d) rs4778241 
and (e) rs4778138 in the oculocutaneous albinism II (OCA2) 
gene, (f) rs12896399 in solute carrier family 24, member 4 
(SLC24A4) gene, (g) rs16891982 in solute carrier family 
45, member 2 (SLC45A2) gene, (h) rs12203592 in interferon 
regulatory factor 4 (IRF4) gene, (i) rs1393350 in tyrosinase 
(TYR​) gene, (j) rs731236 in vitamin D receptor (VDR) gene, 
(k) rs6058017, (l) rs1015362 and (m) rs4911414 in Agouti 
signaling protein (ASIP) gene, (n) rs1805007 in melano-
cortin 1 receptor (MC1R) gene. We chose the SNPs based 
on their documented association with pigmentation traits 
within Europe and not the ones that have been reported as an 
Ancestry Informative Markers (AIM) that correlated more 
with an ethnic descent rather than with a visible trait, e.g., 
rs1426654 in SLC24A5 (Dario et al. 2015; Bouakaze et al. 
2009; Lao et al. 2007). All marker details including primer 
sequences and concentrations can be found in Supplemen-
tary Table 1. Of those 14 SNPs, 6 make up the IrisPlex (a, 
b, f, g, h, i) and 1 is included in the HIrisPlex (n) and they 
were genotyped according to Walsh et  al. (2011, 2013, 
respectively). The remaining seven SNPs were genotyped 
in a single multiplex two step PCR. The free web-based 
software BatchPrimer3 v1.0 was used to design PCR and 
single base extension (sbe) reaction primers using param-
eters according to others (Kaderali et al. 2003; van Oven 
et al. 2011). To ensure the minimal interaction between the 
primers in the multiplex, they were checked in OligoAna-
lyzer v3.1 using parameters according to Vallone and Butler 
(2004). The protocol encompassed a single multiplex PCR 
in a 10-μl reaction mixture containing 1 ng genomic DNA, 
1U FastStart Taq Polymerase (Roche), 1xPCR buffer with 
1.5 mM MgCl2, 1 × GC-rich buffer, 200 μM of each dNTP 
and adequate concentration of forward and reverse prim-
ers. Thermocycling conditions were: 95 °C for 10 min for 1 
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cycle, and 95 °C for 30 s, 59 °C for 30 s, 72 °C for 30 s for 
33 cycles, followed by 72 °C for 15 min. The PCR product 
was cleaned using ExoI/rSAP and SmartCut buffer (New 
England Biolabs). This was followed by the multiplex sbe 
reaction using 1 μl cleaned product, 1 μl SNaPshot reac-
tion mix (Applied Biosystems) and a desired concentration 
of sbe primers in a total volume of 5 μl. Thermocycling 
conditions were: 96 °C for 2 min, 25 cycles of 96 °C for 
10 s, 50 °C for 5 s, 60 °C for 30 s. The SNaPshot reaction 
product was cleaned using rSAP and SmartCut buffer (New 
England Biolabs). Finally, all products were run on an ABI 
3130 Genetic Analyzer (Applied Biosystems) with POP-7 
on a 36 cm capillary length array and run parameters were 
optimized to increase sensitivity, i.e. the injection voltage of 
2.5 kV for 10 s and run time of 600 s at 60 °C. GeneMapper 
v4.0 (Applied Biosystems) was used for allele calling.

Statistical analysis

Population analysis

Haploview v4.2 was used to assess the linkage disequilibrium 
(LD) values for tested SNPs as well as to estimate whether 
the distribution of genotypes in the training group was con-
sistent with Hardy–Weinberg equilibrium (HWE). The fre-
quencies of alleles and genotypes for subjects, for phenotypes 
and for comparison with 1000 Genomes data of European 
Americans (CEU, Utah residents with Northern and West-
ern European ancestry) (Genomes Project Consortium 2015) 
were assessed using the Fisher’s exact test with 95% CI. 
The calculations were performed both for 2-category level 

(binomial estimation) as well as 3- and 4-category levels 
(multinomial estimation). For the purpose of binomial esti-
mation, the phenotype categories were adjusted as follows: 
for skin color: dark vs. non-dark (comprising moderate and 
light/pale), for tanning: sunburns (comprising high suscep-
tibility and initial sunburns) vs. non-sunburns (comprising 
moderate and quick tanning) and for freckling: freckled skin 
(comprising severe and moderate freckling) vs. non-freckled 
skin. Correlation of three pigmentation traits was performed 
using Cramér’s V test where the result varied from 0 (corre-
sponding to no association between the variables) to 1 (cor-
responding to complete association). All analyses were made 
using the R language v3.5.0 and RStudio IDE v1.1.383.

Prediction modeling

Prediction modeling was performed on 150 individuals of the 
training group using machine learning (ML) approach. We 
compared three different algorithms: general linear model 
(GLM), random forest (RF) and neural network (NN). To 
avoid false-positive results and over-fitting of the model, all 
ML algorithms, analogically to the study group, used two data 
sets, namely training (to train the developed model) and test-
ing (to evaluate how well the model recognized previously 
unknown data). Each algorithm uses a different approach, 
which is vividly shown in Fig. 1. Briefly, GLM (Fig. 1a) is 
based on mathematical estimation of curve that fits best to the 
data. For our categorical type of data, we used a subfamily 
of GLM called binomial logistic regression (BLR) for 2-cat-
egory estimation and multinomial logistic regression (MLR) 
for 3- and more-category estimation. The final prediction was 

Fig. 1   Machine learning algorithms used in this study. a General linear model, b random forest, c neural network, d one-hot encoding; descrip-
tions in “Materials and methods” section in the text
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characterized by the sensitivity, specificity, total number of 
correct calls, LogLoss and AUC values, and the importance of 
single predictor’s contribution to the model was described as 
coefficient β in function equation describing best-fitted curve. 
Next, RF uses a tree-like graph and gathers information from 
a given number of decision trees (Fig. 1b). Each tree further 
splits random data to get information about its structure to 
choose the best-fitting model. For categorical data, we used 
classification model and mode-type of results. The advantage 
of RF is that it does not over-fit the model. At last, NN mimics 
the function of brain neurons. Neural networks are represented 
as directed graphs, where each node (neuron) has a given num-
ber of input and output edges (Fig. 1c). Each edge is associ-
ated with weight, i.e., the number that can be tuned during an 
algorithm process. After each sample flow, which is processed 
by the H2O library, the weights are corrected to minimize the 
error rate. The optimization (starting point and self-learning) 
is performed in hidden layers of NN. For categorical variables, 
the model requires one neuron per each category level. Both 
RF and NN were defined by the sensitivity, total number of 
correct calls and LogLoss values, with percentage number 
of single SNP importance in each model. In addition, H2O 

package translated our input categorical data using one-hot 
encoding method (Fig. 1d). To find the best setup, each algo-
rithm was tested in terms of several parameters called hyper-
parameters. The process of assessing ones is called grid search 
and is performed prior to prediction modeling. As grid search 
tasks are time-consuming, they were conducted on the super-
computer at PSNC (Poznan Supercomputing and Networking 
Center). All analyses were made using the R language v3.5.0 
and RStudio IDE v1.1.383, with the following packages: H2O 
v3.20.0.8 (implementation of AI (Artificial Intelligence) meth-
ods), Dplyr v0.78 (implementation of the method used in data 
manipulation) and Readr v1.3.1 (support for the import of 
*.xls/xlsx files to R session).

Results

Phenotype and genotype characteristics

The frequencies of phenotypic traits are shown in Table 1. 
When compared with 1000 Genomes data of European Amer-
icans, there were significant differences in allele distribution 

Table 1   Distribution of skin 
pigmentation phenotypes 
among study participants in the 
training group

Association was made using the Fisher’s exact test
Underline mimics a fraction bar; one should add up numbers above the bar to get a total number of indi-
viduals within a given category
Statistically significant * when p ≤ 0.05, ** when p ≤ 0.01, *** p ≤ 0.001

Phenotype No. (%) of individuals with phenotype p value

Males Females All

Skin color
 Dark/olive 13 (17.3) 10 (13.3) 23 (15.3) 0.4977
 Medium 38 (50.7) 33 (44) 71 (47.3) 0.4139
 Light/pale 24 (32) 32 (42.7) 56 (37.4) 0.178
 Dark 13 (17.3) 10 (13.3) 23 (15.3)
 Non-dark 62 (82.7) 65 (86.7) 127 (84.7) 0.4977
 Total 75 (100) 75 (100) 150 (100)

Tanning
 High susceptibility to sunburns 6 (8) 14 (18.7) 20 (13.3) 0.0613
 Initial sunburns (but turning brown) 33 (44) 30 (40) 63 (42) 0.6198
 Moderate 23 (30.7) 24 (32) 47 (31.4) 0.8603
 Quick tanning 13 (17.3) 7 (9.3) 20 (13.3) 0.1553
 Sunburns 39 (52) 44 (58.7) 83 (55.3)
 Non-sunburns 36 (48) 31 (41.3) 67 (44.7) 0.4119
 Total 75 (100) 75 (100) 150 (100)

Freckling
 Severe freckling 2 (2.7) 11 (14.7) 13 (8.8) 0.0197*
 Moderate freckling 22 (29.3) 27 (36) 49 (32.6) 0.3847
 Non-freckled skin 51 (68) 37 (49.3) 88 (58.6) 0.0212*
 Freckled skin 24 (32) 38 (50.7) 62 (41.3)
 Non-freckled skin 51 (68) 37 (49.3) 88 (58.6) 0.0212*
 Total 75 (100) 75 (100) 150 (100)
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for six SNP markers: rs4778241 (p = 0.0498), rs4778138 
(p = 0.0337), rs731236 (p = 0.0097), rs12203592 (p = 0.0056), 
rs12896399 (p = 0.0010), rs1805007 (p = 0.0018) (data not 
shown). One SNP, rs7495174, turned out to have a heterozy-
gote status in all training individuals and for that reason, it 
was excluded from further analyses. When genotype and 
allele frequencies were considered, we found significant dif-
ference between males and females for two OCA2 variants, 
rs4778241 and rs4778138. The OR values and correspond-
ing p values for 13 SNPs calculated for males and females in 
the training group can be found in Supplementary Table 2. 
When we analyzed the association of allele and genotype 
frequencies with the phenotype, we found significant results 
for 8 SNPs (rs12913832, rs4778241, rs4778138, rs16891982, 
rs12203592, rs6058017, rs4911414, rs1805007) for both 
binomial and multinomial estimations. All OR and corre-
sponding p values with allele and genotype distribution in 
distinct phenotypes of skin pigmentation traits analyzed in 
this study can be found in Supplementary Table 3.

The pairwise measures of LD for 14 SNPs associated 
with pigmentation traits displayed by the heat plots using 
Gabriel et al. algorithm (Gabriel 2002) are shown in Fig. 2. 
LD was considered significant when the value of the correla-
tion coefficient R2 > 0.8 (Barrett et al. 2005). The values of 
pairwise correlation between pigmentation traits are shown 
in Table 2. The highest value was observed for correlation 
between skin color and tanning (0.481); however, none of 
the results were significant.

Prediction modeling

In total, 18 prediction models were developed, namely 6 sep-
arate models for binomial and multinomial estimations for 
each algorithm tested. To specify the best-fitting model, we 
conducted a grid search over distinct hyperparameters that 
were specific to each algorithm. They were: for RF—number 
of trees, maximum depth of trees, minimal rows of features 
in each tree, sample rate and column sample rate per tree, 

and for NN—activation function, number of hidden layers 
as well as neurons in each layer, number of epochs (number 
of times algorithm must pass forward and backward on the 
entire data set), regularization level and model scoring inter-
val. MLR was iterated over regularization of alpha parameter 
and that approach was supported by the a priori knowledge 
about the distribution family, i.e., multinomial for MLR, and 
the type of data, which in this case reduced the number of 
tested hyperparameters. The ultimate hyperparameters’ val-
ues that were applied to prediction modeling were different 
for each model and detailed summary of the results is shown 
in Supplementary Table 4. The parameters of prediction are 
shown in Table 3. All models were tested using tenfold cross 
validation. Additionally, we illustrated the importance of 
each SNP in developed prediction models in the form of pie 
charts. Figures 3 and 4 demonstrate the assembly of charts 
for RF and NN, respectively. The contribution of SNPs to 
BLR prediction of tested traits is demonstrated in Table 4. 
The coefficient β values for MLR prediction were negligibly 
small (LogLoss value < 0.0001) and did not contribute any 
[valuable] information gain from the model.

Discussion

Three types of prediction models were applied and com-
pared for best performance. The highest value of total cor-
rect calls for most predictions tested on both a 3- and 4-cat-
egory levels was obtained with Random Forest and, slightly 

Fig. 2   Heat plot showing pair-
wise measures of LD for all 14 
SNPs tested for association with 
pigmentation trait in the train-
ing group. LD was considered 
significant when the value of the 
correlation coefficient R2 > 0.8

Table 2   Cramér’s V test values of correlation between pairwise anal-
yses for the three pigmentation traits tested in the study

Skin color Tanning Freckling

Skin color – 0.481 0.287
Tanning 0.481 – 0.247
Freckling 0.287 0.247 –
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Table 3   Performance of the developed prediction models for three different algorithms (GLM, RF, NN) for 2-category estimation (binomial) and 
for 3- and 4-category estimations (multinomial) assessed for pigmentation traits

Bold values indicate the model with the best predictive performance
a Train refers to the respective training group of subjects
b Test refers to the respective testing group of subjects

Parameters of prediction Prediction model type

Binary logistic regression Random forest Neural network

Traina Testb Train Test Train Test

Binomial prediction (2-category estimation level)
 Non-dark skin prediction sensitivity % 100% (127/127) 100% (69/69) 99.2% (126/127) 100% (69/69) 95.3% (121/127) 100% (69/69)
 Non-dark skin prediction specificity % 39.1% (9/23) 0% (0/3) 78.3% (18/23) 0% (0/3) 52.2% (12/23) 0% (0/3)
 Total number of correct calls % 90.7% (136/150) 96% (69/72) 96% (144/150) 96% (69/72) 88.7% (133/150) 96% (69/72)
 AUC​ 0.921 0.611 0.984 0.519 0.903 0.587
 LogLoss 0.226 0.842 0.229 0.255 0.324 0.457
 Tanning prediction sensitivity % 85.5% (71/83) 83.3% (30/36) 94% (78/83) 80.5% (29/36) 83.1% (69/83) 88.9% (32/36)
 Tanning prediction specificity % 71.6% (48/67) 55.6% (20/36) 74.6% (50/67) 47.2% (17/36) 59.7% (40/67) 33.3% (12/36)
 Total number of correct calls % 79.3% (119/150) 69.4% (50/72) 86.7% (130/150) 63.9% (46/72) 72.7% (109/150) 61.1% (44/72)
 AUC​ 0.846 0.673 0.914 0.621 0.791 0.593
 LogLoss 0.467 0.757 0.509 0.682 0.637 0.894
 Freckling prediction sensitivity % 74.2% (46/62) 100% (38/38) 83.9% (52/62) 100% (38/38) 64.5% (40/62) 97.4% (37/38)
 Freckling prediction specificity % 81.8% (72/88) 0% (0/34) 96.6% (85/88) 0% (0/34) 81.8% (72/88) 17.6% (6/34)
 Total number of correct calls % 78.7% (118/150) 52.8% (38/72) 91.3% (137/150) 52.8% (38/72) 74.7% (112/150) 60% (43/72)
 AUC​ 0.818 0.537 0.956 0.575 0.773 0.565
 LogLoss 0.51 1.023 0.416 0.741 1.184 1.95

Parameters of prediction Prediction model type

Multinomial logistic regression Random forest Neural network

Train Test Train Test Train Test

Multinomial prediction (3- and 4-category estimation level)
 Light/pale skin color prediction sensi-

tivity %
0% (0/56) 0% (0/26) 71.43% (40/56) 30.8% (8/26) 37.5% (21/56) 15.4% (4/26)

 Moderate skin color prediction sensitiv-
ity %

100% (71/71) 100% (43/43) 97.2% (69/71) 79.1% (34/43) 93% (66/71) 76.7% (33/43)

 Dark/olive skin color prediction sensi-
tivity %

0% (0/23) 0% (0/3) 60.87% (14/23) 0% (0/3) 34.8% (8/23) 33.3% (1/3)

 Total number of correct calls % 47% (71/150) 60% (43/72) 82% (123/150) 58.3% (42/72) 63.3% (95/150) 52.8% (38/72)
 LogLoss 1.009 0.881 0.646 0.868 0.846 0.937
 High susceptibility to sunburn predic-

tion sensitivity %
0% (0/20) 0% (0/5) 45% (9/20) 0% (0/5) 25% (5/20) 0% (0/5)

 Initial sunburns prediction sensitivity % 100% (63/63) 100% (31/31) 98.4% (62/63) 83.9% (26/31) 41.3% (26/63) 29% (9/31)
 Moderate tanning prediction sensitiv-

ity %
0% (0/47) 0% (0/27) 83% (39/47) 29.6% (8/27) 93.6% (44/47) 81.5% (22/27)

 Quick tanning prediction sensitivity % 0% (0/20) 0% (0/9) 60% (12/20) 0% (0/9) 5% (1/20) 0% (0/9)
 Total number of correct calls % 42% (63/150) 43% (31/72) 81.3% (122/150) 47.2% (34/72) 50.7% (76/150) 43% (31/72)
 LogLoss 1.265 1.2 0.792 1.188 1.151 1.372
 Severe freckling prediction sensitivity % 0% (0/13) 0% (0/8) 15.4% (2/13) 0% (0/8) 30.8% (4/13) 12.5% (1/8)
 Moderate freckling prediction sensitiv-

ity %
0% (0/49) 0% (0/30) 59.2% (29/49) 13.3% (4/30) 77.6% (38/49) 50% (15/30)

 Non-freckled skin prediction sensitiv-
ity %

100% (88/88) 100% (34/34) 98.9% (87/88) 94.1% (32/34) 61.4% (54/88) 53% (18/34)

 Total number of correct calls % 59% (88/150) 47.2% (34/72) 83.3% (125/150) 50% (36/72) 64% (96/150) 47.2% (34/72)
 LogLoss 0.89 0.99 0.542 1.025 0.771 1.126
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lower, with Neural Network, while GLM turned out to give 
the lowest predictive values. The latter produced 100% pre-
dictive values; however, it was due to the fact that all query 
phenotypes were classified as one phenotype in test predic-
tion. On the other hand, GLM gave the best prediction values 
on a 2-category level, while RF and NN gave lower values, 
comparable with each other (Table 3).

For multinomial estimations, the prediction rates for 
skin color, tanning and freckling sensitivity were, respec-
tively, 58.3%, 47.2% and 50% in RF, and were slightly 
higher than those obtained in NN. Nevertheless, both 
methods indicated rs12913832 to explain the most vari-
ation of the skin color phenotype. Next in order, in RF, 
there were rs12896399 and rs4911414 for skin color, 
rs731236, rs12896399 and rs4911414 (above 10% 
each) for tanning and rs12203592 (14.3%) followed by 
rs1015362, rs12896399, rs4911414 and rs731236 (above 
9% each) for freckling (Fig. 3). For 2-category estimations, 

BLR prediction rates with the corresponding AUC values 
for tanning and freckling phenotypes were, respectively, 
69.4% (AUC = 0.673) and 52.8% (AUC = 0.537). The 
low rate of skin color prediction success can be partially 
explained by small sample size for individuals with dark 
skin (n = 3) in test predictions. Nevertheless, the signifi-
cantly predictive variants were rs12913832 for all three 
pigmentation traits, accompanied with rs16891982 for skin 
color and tanning, rs1015362 and rs4911414 for tanning 
and rs4911414 and rs12203592 for freckling (Table 4).

HERC2 together with OCA2 are found to be the most 
involved in human pigmentation, especially in the iris and 
hair color (Walsh et al. 2012; Donnelly et al. 2012). In par-
ticular, an intronic variant rs12913832 in HERC2 acts as a 
functional enhancer for OCA2 promoter, therefore, facilitat-
ing melanin production (Visser et al. 2012). This variant 
not only explains the most blue and brown iris color varia-
tion but also isconsidered to be associated with skin color 

Fig. 3   Representation of the percentage importance of SNPs geno-
typed in Random Forest prediction models. RF was performed on 13 
SNPs tested for association with pigmentation traits for binomial (a–

c) and multinomial (d–f) estimations. Rs7495174 is not present due 
to 100% heterozygous samples
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showing a strong geographical pattern in genotype distribu-
tion across Europe (Bouakaze et al. 2009; Walsh et al. 2012; 
Duffy et al. 2007; Pośpiech et al. 2014; Lao et al. 2007).

In our study, rs12913832 turned out to explain the most 
of the variance of skin color and tanning in 2- as well as 
in 3- and 4-category estimation models. The major lighter 
color-associated rs12913832-C variant was observed signifi-
cantly more often in individuals with pale skin than in those 
with moderate or dark but also in individuals with moderate 
skin color when compared to those with dark skin shade. 
The OR values for C and CC variants were even higher for 
individuals that tanned poorly in comparison with moderate 
and quick tanning ones (between 3 and 16.7). 90% of sub-
jects with severe sunburns and 66.7% of those with initial 
sunburns had rs12913832-CC. The association was milder 
for the freckling phenotype; however, the results were still 
significant. Our results are similar to those of other authors 
who demonstrated rs12913832 as one of the strongest and 
directly associated with melanin production in skin (Walsh 

et al. 2013; Bouakaze et al. 2009; Lao et al. 2007; Valen-
zuela et al. 2010; Pneuman et al. 2012; Liu et al. 2015).

The second strongest eye color predictor rs1800407 in 
OCA2 is a missense variant that exerts an epistatic effect 
on rs12913832 (Pośpiech et al. 2014; Frudakis et al. 2003; 
Crawford et al. 2017). Interestingly, that SNP was one of 
the least important variants in most models in our study and 
there were no significant differences in allele or genotype 
frequencies between distinct phenotypes. One possible rea-
son could be the fact that the minor A allele was only pre-
sent as the AG heterozygote in the training group in small 
number of individuals (10%) and the major GG homozygote 
was a dominant genotype for all phenotypes in this study.

Three SNPs showed strong association with selected 
skin pigmentation predictions and these were: rs6058017 
and rs4911414 in ASIP and rs12203592 in IRF4. Several 
SNPs in ASIP have been reported to influence skin sen-
sitivity to sun and freckling, namely rs6058017 and two 
others comprising the ASIP 2-SNP haplotype tagged by 

Fig. 4   Representation of the percentage importance of SNPs geno-
typed in Neural Network prediction models. NN was performed on 
13 SNPs tested for association with pigmentation traits for binomial 

(a–c) and multinomial (d–f) estimations. Rs7495174 is not present 
due to 100% heterozygous samples
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rs1015362-C and rs4911414-T (Pośpiech et al. 2014; Eriks-
son et al. 2010; Sulem et al. 2008). Other authors reported 
the rs1015362 major C variant to be associated with red hair, 
severe freckling and high susceptibility to sunburns (Sulem 
et al. 2008); however, in our training group, the CC homozy-
gote was equally distributed among distinct pigmentation 
phenotypes and the results were insignificant. On the other 
hand, rs4911414 seemed to be more involved in skin pig-
mentation than rs1015362 alone. There were no rs1015362-
CC + rs4911414-TT genotypes in the training group and 
the LD value for the two variants was insignificant, though 
noticeable (LD = 65; Fig. 2). Rs4911414 explained most of 
the tanning phenotypes in BLR and the overall importance 
of rs4911414 alone was around 8% for NN and between 9% 
and 10.6% for RF. Indeed, there was a noticeable tendency 
for rs4911414-TT to be more frequent in individuals with 
lighter skin shades, poorer tanning and freckling. According 
to other authors, rs4911414-T indeed seemed to be associ-
ated with sunburns, freckling and red hair, even to a greater 
extent than rs6058017 alone (Pośpiech et al. 2014; Eriksson 
et al. 2010; Sulem et al. 2008). In our study, the importance 

of rs6058017 and rs4911414 was comparable in the models. 
However, rs6058017 gave much higher OR results showing 
strong significant association with the tanning phenotypes, 
which makes it presumable risk variant only for suscepti-
bility to sunburns prediction. Analogically, rs12203592 in 
IRF4 showed a great association exclusively with freckling. 
It was the first most important variant in RF, NN and BLR. 
We observed over 20-fold higher prevalence of the minor 
T allele in severely freckled subjects than in those without 
freckles, and almost fivefold higher for binomial comparison 
in favor of general freckling. In this study, there was only one 
rs12203592-TT subject who was severely freckled, had pale 
skin shade, initial sunburns and light blue eyes. Although the 
presence of such an outlier might be affecting the robustness 
of the model, it may still enrich the model as a representative 
of genetically and phenotypically rare individual observed in 
the analyzed population. Likewise, Eriksson et al. observed 
a strong association between the rs12203592-T variant and 
freckling trait in northern Europeans (Eriksson et al. 2010), 
while Duffy et al. (2010) showed that rs12203592-T carri-
ers of Australia were prone to develop a great number of 

Table 4   Contribution of 13 SNPs selected for skin pigmentation prediction in terms of β coefficient and p value, within 2-category prediction 
models developed using BLR approach

β is calculated for the given phenotype. Bold values indicate statistically significant results

SNP variant_genotype Gene Dark (β) Dark (p value) Non-sunburns (β) Non-
sunburns (p 
value)

Non-freckled skin (β) Non-freckled 
skin (p value)

rs4778241_GT OCA2 − 0.6038 0.5930 0.6745 0.3779 0.9779 0.1621
rs4778241_TT 24.9966 0.9519 1.7221 0.3945 − 11.7311 0.9528
rs4778138_CT OCA2 − 12.4321 0.9575 − 1.0554 0.4993 1.9582 0.1902
rs4778138_TT − 11.9705 0.9590 0.1724 0.9166 1.4411 0.3613
rs731236_AG VDR − 0.7766 0.3281 0.1879 0.6936 0.1867 0.6772
rs731236_GG 1.2076 0.4743 0.6686 0.3993 − 1.4646 0.0660
rs6058017_CT ASIP 2.6165 0.9972 8.7797 0.9691 1.1557 0.5329
rs6058017_TT 2.5758 0.9972 10.5765 0.9628 2.0560 0.2712
rs1015362_CT ASIP − 1.3628 0.2179 − 1.2989 0.1067 − 0.6505 0.3471
rs1015362_TT − 0.8790 0.5272 − 4.6451 0.0047 − 1.4580 0.1237
rs4911414_GT ASIP 0.9741 0.3922 1.0922 0.1898 0.7492 0.2937
rs4911414_TT 1.2569 0.4521 4.8503 0.0066 2.1952 0.0333
rs12203592_CT IRF4 − 0.5487 0.5990 1.0790 0.1090 2.2296 0.0005
rs12203592_TT 12.4492 0.9901 12.8093 0.9862 10.8671 0.9811
rs12913832_CT HERC2 − 2.2462 0.0109 − 1.0537 0.0462 − 1.1494 0.0267
rs12913832_TT − 15.2281 0.9479 − 2.1469 0.2054 − 0.5567 0.6399
rs1393350_CT TYR​ 1.1068 0.2110 − 0.0639 0.8887 0.3682 0.4262
rs1393350_TT 12.7193 0.9749 20.6200 0.9427 1.5342 0.1786
rs12896399_GT SLC24A4 1.3403 0.1319 0.1430 0.7939 0.4738 0.3344
rs12896399_TT 0.0962 0.9145 0.3720 0.5227 − 0.5365 0.3487
rs1805007_CT MC1R 15.5136 0.9431 1.9599 0.0583 0.0449 0.9555
rs1805007_TT 12.4962 0.9900 11.5078 0.9876 10.7929 0.9812
rs16891982_GG SLC45A2 5.4121 0.0018 2.3170 0.0262 0.9051 0.3123
rs1800407_GG OCA2 − 13.6272 0.9534 − 0.4466 0.6049 − 0.0152 0.9860
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nevi. The same authors stated that the minor T allele was 
most common in European individuals in comparison with 
those of African and East Asian descent. The association of 
rs12203592 with lighter skin and iris color and red hair has 
also been shown by other authors; however, the freckling 
trait was not considered as a separate feature (Walsh et al. 
2012, 2017; Han et al. 2008). Therefore, rs12203592 might 
be one of the strongest predictors of the freckling feature, 
exclusively, in the Polish population.

A three-SNP haplotype (rs7495174-T, rs4778241-G, 
rs4778138-T) within the intron 1 of OCA2 has been pre-
viously found to be in linkage with blue eye color, lighter 
hair and skin tones, skin sensitivity to sun exposure and 
freckling (Duffy et al. 2007; Caliebe et al. 2016; Sulem 
et al. 2007; Frudakis et al. 2007). In our study, rs7495174 
turned out to have a heterozygous status in all individuals. 
Therefore, we examined the two remaining SNPs and the 
pattern of association with lighter pigmentation phenotypes 
was comparable with that of other authors. We observed 
significantly high OR values especially for skin color and 
tanning estimations (Supplementary Table 3), although the 
LD between the two markers was insignificant (LD = 58; 
Fig. 2) and they explained the average of the pigmentation 
traits in RF and NN. Interestingly, both rs4778241-T and 
rs4778138-C variants were more frequent in females than in 
males in our study; however, females showed higher count of 
lighter pigmentation phenotypes (Table 1). Although Pulker 
et al. (2007) demonstrated that females were generally paler 
than males, it has not been confirmed by any other author. 
According to Shriver et al. (2003), pigmentation in adults is 
a stable trait that is independent of environmental factors. 
However, in our opinion, it is worth taking into account that 
females are highly influenced by the hormonal factors that 
can affect the final pigmentation phenotype throughout life.

Five SNPs seemed ambiguous in pigmentation prediction 
and these were: rs12896399 in SLC24A, rs731236 in VDR, 
rs1805007 in MC1R, rs16891982 in SLC45A2, rs1393350 
in TYR​. In the literature the minor rs12896399-T variant 
was associated with blue eyes, paler skin and poor tan-
ning ability (Han et al. 2008). Interestingly, in our study, 
rs12896399 turned out to be the second strongest predictor 
in RF (Fig. 3), although none of the results of allele and gen-
otype frequencies were significant and the OR values were 
close to the neutral 1 value for all pigmentation phenotypes. 
It was alike for rs731236, which was one of the strongest 
variants, especially for tanning prediction, explaining 11% of 
the trait in RF. The rs731236-G variant was described to be 
associated with pale skin and red/light hair by other authors 
(Pośpiech et al. 2014; Orlow et al. 2017). Although, in our 
study we observed analogous tendency and the OR values 
were much higher than for rs12896399, none of the results 
were statistically significant. On the other hand, rs731236 
has been shown to be associated with other variants, such as 

the R variants of MC1R in predicting light vs. dark skin and 
red vs. non-red hair in UK individuals (Walsh et al. 2017), 
but also influenced sensitivity to sun and freckling in people 
of Icelandic, North American and Siberian origin (Bouakaze 
et al. 2009; Valenzuela et al. 2010; Caliebe et al. 2016; 
Sulem et al. 2007; Myles et al. 2007). MC1R is considered 
as one of the strongest factors in melanin synthesis pathway 
in Europeans and has been particularly associated with red 
hair and pale skin, mostly through its interactions with other 
pigmentation markers including HERC2, OCA2 and ASIP 
(Duffy et al. 2007; Pośpiech et al. 2014; Valenzuela et al. 
2010; Caliebe et al. 2016; Lalueza-Fox et al. 2007; Bran-
icki et al. 2009). Interestingly, no strong LD was observed 
between rs1805007 and other markers in this study and there 
was only one lighter pigmentation-associated TT variant car-
rier, who indeed had pale and severe freckled skin, high 
susceptibility to sunburns, red hair and hazel eyes. Alike 
in the case of single rs12203592-TT carrier, rs1805007-TT 
individual was retained in the model. Another ambiguous 
variant was rs16891982, which explained almost the least 
in multinomial predictions but was significant in BLR pre-
dictions. We observed significantly high OR values for skin 
color and tanning estimations and the discrepancy between 
the methods might be the result of the lack of the minor 
CC carriers and quite small percentage of GC heterozygotes 
(6.7%) in the training group. Still, even in rs16891982-GC 
variants, the C allele shifted the balance towards the darker 
skin shades and better tanning, which was in agreement with 
other authors (Bouakaze et al. 2009; Stokowski et al. 2007; 
Valenzuela et al. 2010; Pneuman et al. 2012). For the last 
SNP of the IrisPlex, rs1393350, we observed a tendency for 
association with the minor T allele with lighter pigmenta-
tion phenotypes, which was in agreement with Sulem et al. 
(2007). However, despite over 8% contribution to multino-
mial models and high OR values, none of the results were 
significant.

Apart from an individual association between a SNP 
and a phenotype, our modeling results are difficult to com-
pare with that of other authors for several reasons. Firstly, 
when referring to estimation among major populations on a 
global level, many authors obtained high prediction values 
that explained 70–97% of skin pigmentation variation (Lao 
et al. 2007; Liu et al. 2015; Walsh et al. 2017; Maroñas et al. 
2014). Walsh et al. (2017) studied 36 SNPs on 31 world 
populations and were not only able to distinguish the light 
and dark skin shades between continental groups but also to 
separate the subtle variation of skin tones even in 5-category 
scale. However, when referring to global skin color predic-
tion, the authors used an adequate scaling of skin tones from 
white to black; while for our Polish population, the grading 
of the trait was adjusted to the generally white skin color 
in this geographical region. Therefore, the term “dark” in 
our study would not be synonymous with the term “dark” 
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in studies considering global skin color. Because of more 
subtle differences in skin shades within one population, 
it is easier to assess greater diversity among populations 
than within one. Myles et al. stated that the skin color is 
an adaptive trait and there are considerable genetic differ-
ences reaching up to 85% between populations and only up 
to 15% inside a population (Myles et al. 2007). Taking that 
into account, as it is quite evident to spot significant dif-
ferences between two or more extreme phenotypic traits, 
our prediction results assessed for homogeneous population 
seem quite satisfying. The lowest predictive value in our 
study was 47.2% for tanning prediction in 4-category scale. 
In comparison, Valenzuela et al. who examined homogene-
ous North American population, reached 45.7% of skin color 
estimation (Valenzuela et al. 2010). Moreover, Maroñas 
et al. (2014) investigated skin color trait in population of 
South Asians and Europeans and, surprisingly, several vari-
ants previously reported to be associated with pigmenta-
tion in various populations turned out not to be significant, 
including the strongest pigmentation predictor in a world-
wide population rs12913832 in HERC2.

Secondly, Walsh et al. (2017) considered the skin color 
as the main pigmentation trait indicating the fact that the 
actual phenotype might change upon exposure to sun. Our 
study, on the other hand, proved that distinct SNPs might 
be associated with tanning capabilities but not with skin 
color and vice versa, and that the two traits might not even 
be associated with each other that much (Table 2). The final 
aim of police investigations is to find an unknown person 
using EVCs. Still, given the prediction on one’s skin color, 
it might be inconclusive not knowing what their skin sen-
sitivity to sun exposure is and how much, if at all, the skin 
shade changes upon tanning. Our study provides additional 
valuable information on the presumable final phenotype that 
might be relevant in forensic and anthropologic genetics 
applications. Importantly, when referring to genotype–phe-
notype predictions, one should always consider geographical 
origin of a subject based on mitochondrial DNA testing, 
which is highly recommended by other authors (Kayser and 
de Kniff 2011; Pneuman et al. 2012). Lastly, the comparison 
between our prediction models and that of other authors is 
limited due to the algorithms used. We tested three differ-
ent approaches, of which GLM turned out to be the most 
uncertain for 3- and more-category estimations, while it was 
a method of choice in prediction modeling used by many 
authors (Walsh et al. 2013, 2017; Dario et al. 2015; Valen-
zuela et al. 2010; Han et al. 2008; Maroñas et al. 2014; Liu 
et al. 2010). Considering categorical data, such as SNPs, 
logistic regression approach seems not to be the most appro-
priate mathematical algorithm. Our conclusions were rep-
licated by Pośpiech et al. who evaluated predictive capacity 
of SNPs using GLM, Neural Network and Classification 
and Regression Trees algorithms and indicated that GLM 

was indeed not the best in predictive success (Pośpiech et al. 
2015). In addition, none of the authors indicated the hyper-
parameters used in analyses and on what basis the param-
eters in their studies were chosen. Therefore, our study elu-
cidates the need for more appropriate analyses for different 
types of data to increase the forensic investigation efficiency.

Worth mentioning, we spotted differences in allele dis-
tribution for six SNPs (rs4778241, rs4778138, rs12896399, 
rs12203592, rs731236, rs1805007) between our study and 
the CEU of 1000Genomes study which were all in favor of 
presumable darker skin pigmentation traits among our study 
participants than in individuals of general European consent. 
We also observed different genotype distribution between 
males and females for two OCA2 variants in this study 
which, all together, implies that other genetic variants might 
be responsible for pigmentation traits in the Polish popu-
lation. It certainly requires further examination on greater 
number of individuals, which is a definite drawback of this 
study. Nevertheless, we assessed to confirm that rs12913832 
in the enhancer of OCA2 seemed to be the strongest variant 
for skin color, tanning and freckling traits, suggesting it is a 
strong general pigmentation marker in the Polish population. 
The other two variants in ASIP, rs6058017 and rs4911414, 
but not rs1015362, were strongly associated exclusively with 
skin sensitivity to sun exposure, while rs12203592 in IRF4 
turned out to be the strongest freckling predictor. Lastly, the 
rs4778241 and rs4778138 OCA2 haplotype and rs16891982 
in SLC45A2 seemed promising for skin color and tanning 
capabilities in Polish population.
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