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Abstract

Nuclear pore complex (NPC) is a fundamental component of the nuclear envelope and is key to the nucleocytoplasmic trans-
port. Mutations in several NUP genes that encode individual components of NPC known as nucleoporins have been identified
in recent years among patients with static encephalopathies characterized by developmental delay and microcephaly. We
describe a multiplex consanguineous family in which four affected members presented with severe neonatal hypotonia, pro-
found global developmental delay, progressive microcephaly and early death. Autozygome and linkage analysis revealed that
this phenotype is linked to a founder disease haplotype (chr9:127,113,732-135,288,807) in which whole exome sequencing
revealed the presence of a novel homozygous missense variant in NUP214. Functional analysis of patient-derived fibroblasts
recapitulated the dysmorphic phenotype of nuclei that was previously described in NUP214 knockdown cells. In addition,
the typical rim staining of NUP214 is largely displaced, further supporting the deleterious effect of the variant. Our data
expand the list of NUP genes that are mutated in encephalopathy disorders in humans.

Introduction

The nucleus is a double membrane-bound organelle that only
permits selective transport through the nuclear pore com-
plex (NPC), which together with the lamin and the double
nuclear membrane form the nuclear “envelope” (Cronshaw
et al. 2002; Rout et al. 2000). NPC is a universal nuclear
feature in all eukaryotes (Field et al. 2014). In mammals,
NPC comprises around 30 nucleoporins (NUPs), encoded
by NUP genes, that form distinct subcomplexes. The 3D
structure of the NPC is complex with an eightfold symmetry
comprising multiples of eight of each of the subcomplexes,
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a twofold symmetry comprising pairs of inner and outer
ring complexes, and filamentous projections into the cyto-
plasm and nucleoplasm (Alber et al. 2007; Schwartz 2005).
Cryo-electron tomography studies of fully native NPCs have
revealed remarkable details about their 3D structure with
distinct features observed on the cytoplasmic and nuclear
sides (Stoffler et al. 2003). The cytoplasmic side anchors
cytoplasmic filaments while the nuclear side anchors the
chromatin and has a central ring on top of the central pore,
with the latter being partially obstructed by a mobile cen-
tral plug (Stoffler et al. 2003). This structural conformation
endows NPC with the dual function of regulating nucleocy-
toplasmic transport as well as maintaining structural integ-
rity of the nuclear envelope (Hetzer et al. 2005).

NUP214 forms a subcomplex with NUP88 such that eight
subunits of NUP88—NUP214 form the cytoplasmic annual
ring that anchors the cytoskeleton to the NPC (Suntharal-
ingam and Wente 2003; Bastos et al. 1997; Kraemer et al.
1994). It was also found to facilitate the export of mRNA
through its interaction with DDX19 (Schmitt et al. 1999).
Another study demonstrated direct interaction with TTP
(Tristetraprolin), a key player in ARE (AU-rich elements)-
mediated transcription-level regulation of inflammatory
cytokines such as TNFa, and this interaction may regulate
TTP subcellular localization (Carman and Nadler 2004).

@ Springer


http://orcid.org/0000-0003-4158-341X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00439-019-01979-w&domain=pdf
https://doi.org/10.1007/s00439-019-01979-w

222

Human Genetics (2019) 138:221-229

Similarly, NUP214 directly binds SMAD2, SMAD3 and
SMAD#4 and regulates their nucleocytoplasmic shuttling
(Xu et al. 2002, 2003). Knockout of Nup214 in mouse is
embryonic lethal (Van Deursen et al. 1996). At the cellu-
lar level, NUP214 deficiency results in cell cycle arrest,
impaired nucleocytoplasmic transport and accumulation
of polyadenylated RNA in the nucleus (Van Deursen et al.
1996). Additionally, nup2 14 mutant Drosophila larvae dis-
play impaired NES nuclear export, most likely as a result
of impaired localization of CRM1, a key mediator of NES
nuclear export (Sabri et al. 2007; Xylourgidis et al. 2006).
Finally, NUP214 is recruited to the mitotic spindles, and
its deficiency has been shown to severely impair mitosis,
although the latter may also be caused by impaired nucleo-
cytoplasmic shuttling of molecules that are critical for mito-
sis (Bhattacharjya et al. 2015; Chatel and Fahrenkrog 2011).

Despite the extensive study of NUP214 in cells and in
model organisms, our understanding of its medical rel-
evance remains largely limited to the field of cancer. In fact,
NUP214 was first identified in the context of cancer where
fusion proteins created by translocations involving the N-
and C-termini of NUP214 were identified in ALL (acute
lymphoblastic leukemia) and AML disease (acute myeloid
leukemia), respectively (Graux et al. 2004; Von Lindern
et al. 1992). Very recently, an individual with developmen-
tal delay and failure to thrive was reported to have deletion
of NUP214 in one allele and a deep intronic likely splicing
variant in trans (Egloff et al. 2018). In this study, we present
data that support NUP214 as a bona fide Mendelian gene,
mutation of which causes an autosomal recessive severe
form of early infantile encephalopathy.

Materials and methods
Human subjects

The study family was enrolled in an IRB-approved research
protocol (KFSHRC RAC#2080006) with informed con-
sent. Venous blood was collected from the patient, healthy
siblings and parents. In addition, banked DNA samples
were available from two of the three affected siblings. A
skin biopsy was also obtained from the proband for func-
tional studies. Phenotypic data were collected from hospital
records.

Autozygome and linkage analysis

DNA samples were genotyped on the Axiom SNP Chip
platform following the manufacturer’s instructions. Deter-
mination of the autozygome was based on regions of
homozygosity >2 Mb as surrogates of autozygosity given
the parental consanguinity followed by mapping of the
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candidate autozygome that is exclusively shared by the
affected members using AutoSNPa (http://dna.leeds.ac.uk/
autosnpa). Linkage analysis was used to confirm the candi-
date autozygome and calculate LOD score based on a fully
penetrant autosomal recessive model using the EasyLINK-
AGE package.

Exome sequencing and variant filtering

Exome capture was performed using the TruSeq Exome
Enrichment kit (Illumina, San Diego, CA, USA) as per
the manufacturer’s instructions. Samples were prepared
as an [llumina sequencing library, and in the second step,
the sequencing libraries were enriched for the desired tar-
get using the Illumina Exome Enrichment protocol. Cap-
tured libraries were sequenced using Illumina HiSeq 2000
Sequencer, and the reads mapped against UCSC hgl9
(http://genome.ucsc.edu/) by BWA (http://bio-bwa.sourc
eforge.net/). The SNPs and Indels were detected by SAM-
TOOLS (http://samtools.sourceforge.net/). The resulting
variants were filtered as follows: homozygous — coding/
splicing — within candidate autozygome — absent or very
rare in Saudi and public exome databases — predicted to
be pathogenic by SIFT/PolyPhen/CADD as previously
described (Alkuraya 2013).

Cell culture, immunostaining and enveloping
surface ratio (ESR) calculation

We followed a standard protocol of establishing a primary
fibroblast cell line from a punch skin biopsy and maintained
the cells in a standard culture containing MEM + 10% FCS,
1% vL-glutamine and 1% penicillin. The following antibod-
ies were used under standard immunofluorescence condi-
tions: Anti-NUP214 antibody (ab70497). Images were taken
using Zeiss Axioimager Z2. For ESR (envelope vs surface
ratio) calculation, we followed a previously published pro-
tocol (Noda et al. 2015). Briefly, exact area of a nucleus was
measured as the area surrounded by the contour line, and
then a polygon area was divided by the exact area to make
the ESR (Noda et al. 2015). Nuclei with a ratio of >1.05
were defined as dysmorphic.

Results
Clinical report

The proband (IV:8) is a 13-month-old girl with severe hypo-
tonia and profound global developmental delay. She was
born at term with normal growth parameters. She was admit-
ted at age 2-weeks because of poor weight gain and cyanotic
spells and was found to have severe hypotonia and poor suck,
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but no gross facial dysmorphism. Her severe hypotonia
persisted and evolved into profound global developmental
delay where she at age 13 months cannot roll over, vocal-
ize or track visually. Abnormal movements were frequently
reported and although her EEG was not conclusive for frank
epileptiform discharges, she was diagnosed clinically with
epilepsy, which remained poorly controlled with therapy.
She had frequent lower respiratory tract infections initially
thought to be related to aspiration but they persisted even
after cessation of oral feeding, placement of gastrostomy
tube and undertaking of fundoplication. She had multiple
admissions to the PICU for respiratory failure thought to
be due to a combination of severe hypotonia and central
apnea. Although her somatic growth showed improvement
after gastrostomy tube feeding, she had progressive micro-
cephaly. She had extensive metabolic investigations includ-
ing CSF metabolites, plasma amino acids, acylcarnitines,
urine organic acids and mitochondrial sequence analysis, all
of which were negative. Her brain MRI was initially normal
but later showed evidence of nonspecific atrophy. Nerve con-
duction studies were normal. Ophthalmologic examination
suggested central vision loss. Clinical whole exome sequenc-
ing did not reveal any pathogenic variant that explains her
phenotype. She died at age 15 months due to respiratory
failure. Family history was notable for first cousin healthy
parents, two healthy siblings, two siblings who died with an
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identical clinical presentation at age 1 year and one sister
who died within hours of delivery with severe hypotonia
(Fig. 1; Table 1).

NUP214 is mutated in a novel recessive form
of encephalopathy

By combining the genotypes of the proband, her two
deceased affected siblings (no DNA was available from the
sister who died shortly after birth), the two healthy siblings
and the parents, we were able to identify a candidate autozy-
gous interval chr9:127,113,732-135,288,807 delineated by
r512555646; rs2885495. This was the only autozygous inter-
val exclusively shared by the affected members of the family.
Linkage analysis confirmed this interval and assigned a LOD
score of 3.2 (Fig. 1c). Although clinical exome sequencing
was “negative”, we performed our own exome re-sequencing
and analysis since our experience suggested that many such
“negative” cases may harbor mutations in novel disease
genes (Shamseldin et al. 2017). Indeed, we identified a sin-
gle novel variant in NUP214 (NM_005085.3:c.461A>G,p.
D154G), a gene with no OMIM entry for Mendelian dis-
eases, within the candidate locus, and Sanger sequencing
confirmed its full segregation with the phenotype in the fam-
ily in a strictly autosomal recessive fashion (Fig. 1a). This
variant is absent in gnomAD and local database of ethnically
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Fig. 1 a Pedigree of the study family (genotypes for the identified mutation in NUP214 are shown). b Clinical images showing lack of gross
facial dysmorphism. ¢ EasyLINKAGE revealed a single locus on chromosome 9 (NUP214 is boxed in red)
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Table 1 (continued)

Third affected (IV:9)

Second affected (IV:8)

First affected (IV:5)

ND

Normal, no indication of a defect of pterin

metabolism

ND

Pterins in CSF

ND

Normal

Biopterin and neopterin concentration ND

Amino acids in CSF

ND

Low concentrations of several amino acids with-

out pathological significance

ND

ND

Negative

Sequence analysis and deletion testing ND

of the mitochondrial genome

Age at death

11 months

15 months

1-year

ND not done

matched exomes and is predicted to be pathogenic by SIFT
(0.0), PolyPhen (0.9) and CADD (25), and is highly con-
served in different species (Fig. 2a, b).

p.D154G impairs the function of NUP214 and leads
to abnormal nuclear morphology

Multilobulated, even “flower-like” nuclei have been observed
when two individual NUPs were knocked down: NUP153
and NUP214 (Bhattacharjya et al. 2015; Hashizume et al.
2010; Lussi et al. 2010). Thus, we asked whether p.D154G
recapitulates the knockdown phenotype of NUP214 in the
nucleus of the patient fibroblasts, especially after demon-
strating that NUP214 is ubiquitously expressed in different
human tissues (Fig. 2c). Indeed, dysmorphic nuclei (defined
morphologically by the presence of blebs, hernias, invagina-
tions, and/or lobulations) were far more frequently observed
in the patient cells vs controls (Fig. 3a, b). In order to quan-
tify this defect, we measured the ESR, and found that (a)
number of nuclei with ESR of >1.05 in the patient cells
is nearly three times that in controls (Fig. 4c) and (b) aver-
age ESR in the patient cells is higher than that in controls
(Fig. 4D). NUP214 has a characteristic rim-staining pattern
(Kinoshita et al. 2012). This pattern was clearly displaced
to the nucleoplasm in our patient cells (Figure S1). Taken
together, these results show that the p.D154G variant is a
deleterious variant that recapitulates the induced NUP214
deficiency described previously.

Discussion

NUP214 was first studied in the context of cancer where
fusion proteins created by translocations involving the N-
and C-termini of NUP214 were identified in ALL and AML
disease, respectively (Graux et al. 2004; Von Lindern et al.
1992). NUPs share the following major domains in an N-
to C- orientation: coiled-coils, FG repeats, a-helical sole-
noids, pB-propellers, and zinc fingers (Devos et al. 2006).
The N-terminus has a seven-bladed beta propeller with each
blade comprising four antiparallel beta strands that together
form a sevenfold axis around a central cavity (Napetschnig
et al. 2007). Our variant p.D154 constitutes the third residue
of the VIDMKW motif in the A strand of the third blade,
which is required for the hydrogen bonding with other beta
strands (Napetschnig et al. 2007). This may explain why the
p-D154G variant we detected in the study family is associ-
ated with such a dramatic disruption of NUP214 localization
and function.

The nuclear envelope is a dynamic structure as best seen
in its dissolution during cell division (nuclear envelope
breakdown, NEBD), which is accompanied by the disassem-
bly of NPC into its individual NUP subcomplexes followed

@ Springer



226 Human Genetics (2019) 138:221-229
A B c 8§ 2 218 g3 5 3
s & § § §T 3 9 & =
EEEEEEREEREE
§ 8 & 2 8 8 5 2 85
C.A61ASG ?ﬁman HKLL - - KDA GMVIDMKWNPTVPSMV
* impanzee  HKLL--KDAGMVIDMKWNPTVPSMV
G G A G
TGATTGATATGAR Dog HKLL - - KDA GMVIDMKWNPTVPSMM
Cow HKLL - -KDA GLVIDMKWNPAVSSMV
T - Mouse HKVS - -NDA GMVNDMKWNPTVPSMV
- (J CHICKEN HKLA- -KDS AMVNDLKWNPASPTMV
Xenopus YKLL--RDP SSVTDLQWNPALPTMV
T G . Zebrafish ~ FRpp--AS- TLVODLKWSPVDASRL
- Epstein-virus ARMQAIQNAITYHGDLPLAPAEDILL
D c.461A>G
4
NUP214 p.D154G
s ¥
(-4 (-4
(=} (=)
= 2

Fig.2 a Sanger chromatogram of the mutation. b Conservation of the mutated residue in different species. ¢ RT-PCR showing expression of
NUP214 in different human tissues. d Cartoon for NUP214 transcript and proteins (arrow denotes the position of mutated base)
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Fig.3 a DAPI staining showing different dysmorphic features in the
nucleus: blebs (yellow diamond), invagination (white arrows), micro-
nucleoli (yellow arrow), and herniated nuclei (white asterisk). b Bar

by their reassembly as daughter cells reform their nuclear
envelopes (Hetzer et al. 2005). Thus, it is possible to specu-
late that the pathogenesis of abnormal nuclear morphology
we observed in the context of NUP214 mutation is related to
impaired dynamics of nuclear envelope stability.

The critical role played by NPC in development is readily
evident by the fact that complete knockouts of individual
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graph of the percentage of nuclei with dysmorphic morphology in the
patient vs control fibroblasts

NUPs are usually embryonic lethal in mouse or associated
with significant phenotypic abnormalities (Sakuma and
D’Angelo 2017). Several aspects of the NPC’s relevance
to human diseases have emerged in recent years. In Hun-
tington disease, severe mislocalization and aggregation of
NUPs with accompanying abnormal nucleocytoplasmic
transport have been observed (Grima et al. 2017). More
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Fig.4 a Calculation of ESR
using polygon area divided by
the exact area to calculate the
degree of nuclear dysmorphol-
ogy (see text). b Correlation

of increased ESR with nuclear
dysmorphology. ¢ Bar graph of
the percentage of nuclei with
ESR>1.05 (p value=0.007).

d Average of ESR values in the
patient vs control nuclei (error
bars are also shown)

ESR=1.01

C 20

* %k
18
16
14
12
AFF

relevant to the Mendelian disorder we describe in this study
is the recent identification of NUP mutations in the context
of brain developmental disorders. In 2015, we described a
family with a homozygous truncating variant in NUP107
and a combination of microcephaly and chronic kidney dis-
ease, also known as Mowat—Galloway syndrome (Alazami
et al. 2015). Since then, several studies have similarly shown
that biallelic mutations in NUP107 and a number of other
NUP genes cause varying combination of microcephaly and
glomerular renal disease (Braun et al. 2015, 2018). Very
recently, a case with a compound heterozygous mutation
in NUP214 was described, albeit with very limited clinical
information (developmental delay, failure to thrive and some
dysmorphic features) (Egloff et al. 2018).

To our knowledge, the phenotype of NUP214-related
encephalopathy we describe here is the most severe early
infantile brain-related phenotype observed thus far in the
context of NUP mutations. Given the fully lethal pheno-
type of complete Nup214 deficiency in mouse models,
it is likely that our mutation despite its profound delete-
rious effect is not a complete functional null. The spe-
cific involvement of certain body parts in the pathogen-
esis of NUP-related disorders remains poorly understood
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although it may be related to tissue-specific differences
in the composition of NPCs (Raices and D’angelo 2012).
The spatial and temporal variation in NPC composition
was first demonstrated for NPU210, but has since been
shown for several other NUPs (D’Angelo et al. 2012; Lupu
et al. 2008). It is also possible that the demand for normal
nucleocytoplasmic transport differs among organs, and
that the brain may be particularly vulnerable to impair-
ment of such a fundamental cellular function as has been
shown for several others.

In conclusion, we propose that while NUP214 com-
plete deficiency may be lethal in humans, partial defi-
ciency results in a novel autosomal recessive disorder
characterized by severe encephalopathy and early death.
The pathogenesis of this disorder remains to be fully elu-
cidated although it does seem to involve perturbation of
the nuclear envelope integrity. Future cases will shed light
on the allelic and phenotypic spectrum of NUP214-related
encephalopathy syndrome.
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