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Abstract
The fruit fly Drosophila melanogaster has served as an excellent model to study and understand the genetics of many human 
diseases from cancer to neurodegeneration. Studying the regulation of growth, determination and differentiation of the com-
pound eyes of this fly, in particular, have provided key insights into a wide range of diseases. Here we review the regulation 
of the development of fly eyes in light of shared aspects with human eye development. We also show how understanding 
conserved regulatory pathways in eye development together with the application of tools for genetic screening and functional 
analyses makes Drosophila a powerful model to diagnose and characterize the genetics underlying many human eye condi-
tions, such as aniridia and retinitis pigmentosa. This further emphasizes the importance and vast potential of basic research 
to underpin applied research including identifying and treating the genetic basis of human diseases.

Introduction

The sequencing of the genome of the fruit fly Drosophila 
melanogaster in 2000 (Adams et al. 2000; Myers et  al. 
2000; Rubin and Lewis 2000) and subsequent comparative 
genomic studies showed that approximately 70% of human 
disease-associated genes have a single Drosophila homolog 
(e.g. Reiter et al. 2001; Yamamoto et al. 2014). This high-
lights the relevance of this model organism to study the 
function of conserved genes and their roles in human dis-
ease (Wangler et al. 2015). Indeed, studies of the genetic 
regulation of Drosophila development over the last 30 years 
have provided many crucial insights into the genetic basis 
and progression of a wide range of human conditions from 
cancer to neurodegeneration and aging (Burke et al. 2017; 
Kreipke et al. 2017; Michno et al. 2005; Sen and Cox 2017; 
Sonoshita and Cagan 2017).

The compound eye of Drosophila in particular has 
proven to be an excellent model for many diseases despite 
the noticeable anatomical differences between insect and 

vertebrate eyes (Fig. 1; Table 1). The Drosophila eye con-
sists of a regular array of several 100 individual light-sens-
ing hexagonal structures called ommatidia (Cagan 2009; 
Hilbrant et  al. 2014; Kumar 2012, 2018; Posnien et  al. 
2012), which together project a single image to the brain 
(Land 2005) (Fig. 1). The human “camera” eye also pro-
jects one image but from a single lens (Fig. 1). Although 
humans have a much narrower field-of-view than fruit flies, 
our eyes achieve higher spatial resolution and acuity (Borst 
2009) because of thousands of sensory cells (rods and cones) 
packed tightly into the retina (Jonas et al. 1992), while each 
Drosophila ommatidia only has eight photoreceptors and 
11 accessory cells (Treisman 2013) (Fig. 1). At the basic 
structural level, however, both insect and vertebrate eyes are 
made up of a lens to focus light, a neural retina with photore-
ceptors to sense the light and a pigmented epithelium to pro-
tect photoreceptor signaling from scattered or diffracted light 
(Charlton-Perkins et al. 2011; Sanes and Zipursky 2010) 
(Fig. 1). Moreover, decades of research have revealed that 
the development of Drosophila eyes is regulated by genetic 
pathways that are conserved between flies and humans, and 
consequently studies of Drosophila have taught us much 
about human eyes (Gehring 2005; Halder et al. 1995; Kumar 
and Moses 2001; Vopalensky and Kozmik 2009; Wawersik 
and Maas 2000).

In this review, we focus on how research on the genetic 
regulation of Drosophila eye development has informed our 
understanding of human eye development and highlight the 
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power and potential of research on fly eyes to better under-
stand and potentially treat human conditions (Table 1).

Eye development

Selector genes of invertebrate and vertebrate eye 
development

The Drosophila eyes develop from evagination of the 
embryonic neuroectoderm to form two epithelial sacs, 
the so-called eye-antennal imaginal discs (Casares and 
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Almudi 2016; Green et al. 1993; Younossi-Hartenstein 
et al. 1993) (Figs. 1, 2). This region is characterized by the 
early expression of several conserved transcription factors, 
Orthodenticle (Otd)/Otx and the Pax6 homologues Twin 
of eyeless (Toy) and Eyeless (Ey) in the posterior region 
of the epithelial sac, which will give rise to the eye, ocelli, 
and head capsule, and Cut in the anterior region, which 
will mostly give rise to the antenna and maxillary palps 
(Czerny et al. 1999; Kenyon et al. 2003) (Fig. 2).

Much like in Drosophila, vertebrate eye development is 
centered on the activity of core selector genes, namely the 
Pax6 gene. Vertebrate Pax6 genes encode two alternatively 
spliced variants that differ in the presence of exon 5a. In 
contrast, Drosophila Pax6 and Pax6(5a) homologues arose 
as separate loci from a relatively recent gene duplication 
event (Aldaz et al. 2003; Jun et al. 1998). Like in verte-
brates, the two Drosophila Pax6 genes, ey and toy (Czerny 
et al. 1999; Quiring et al. 1994), and two Pax6(5a) genes, 
eyegone (eyg) and twin-of-eyegone (toe) (Jang et al. 2003; 
Jun et al. 1998) have distinct roles in eye development. ey 
and toy promote primarily retinal specification, whereas 
eyg mainly promotes cell proliferation (Chao 2004; 
Dominguez et al. 2004). Each Pax6/Pax6(5a) orthologue 
also acts through distinct transcriptional mechanisms, with 
Ey acting as a transcriptional activator, while Eyg seems to 
act as a transcriptional repressor (Chao 2004; Dominguez 

et al. 2004; Punzo 2004; Punzo et al. 2001; Yao and Sun 
2005).

Based on its sufficiency for eye development in Dros-
ophila and vertebrates, it was originally proposed that Pax6 
functions at the highest level of a hierarchy of genes whose 
sequential expression leads to eye development (Gehring 
1996). Indeed, three core members of this postulated hier-
archy: eyes absent (eya) (EYA1, EYA2, EYA3), sine oculis 
(so, SIX1, SIX2 and SIX3), and dac (DACH1) have been 
identified in Drosophila and vertebrates, and share simi-
lar temporal expression patterns during eye development 
(Bonini et al. 1997; Chen et al. 1997; Pignoni et al. 1997; 
Shen and Mardon 1997; Treisman 1999; Zuber 2003). How-
ever, rather than acting in a simple linear pathway, it seems 
that positive transcriptional feedback organizes these core 
selector genes into an interconnected network (Desplan 
1997). This regulatory structure appears critical to induce 
retinal tissue as evidenced by mis-expression experiments 
where core genes fail to induce ectopic eyes if any of the 
other critical factors is absent (Bonini et al. 1997). Positive 
transcriptional feedback is also needed for these genes to 
activate a second, independently regulated phase of gene 
expression, as many of these genes function at several stages 
of eye development. For instance, ey, eya and so are critical 
for growth of the eye primordium and initiation of differen-
tiation (Bonini et al. 1993; Cheyette et al. 1994; Halder et al. 
1998; Jang et al. 2003; Mardon et al. 1994; Pignoni et al. 
1997), while eya and so are then also required for progres-
sion of photoreceptor differentiation (Pignoni et al. 1997), 
and ey is needed for rhodopsin gene expression (Papatsenko 
et al. 2001; Sheng et al. 1997).

Cellular differentiation

During the first larval stages of Drosophila, the epithelial 
cells are undifferentiated progenitor cells that proliferate 
continuously due to the combined activity of the genes ey, 
homothorax (hth), toy, teashirt (tsh), tiptop and yorkie (yki) 
(Figs. 1, 2) (Bessa et al. 2009; Bessa and Casares 2005; 
Datta et al. 2009; Laugier et al. 2005). The growth of the 
Drosophila eye is interconnected with the organization of 
both antero-posterior and dorso-ventral axes during devel-
opment, such as established through the action of Wing-
less (Wg) and Notch (N) (Dominguez and de Celis 1998; 
Heberlein et al. 1998; Papayannopoulos et al. 1998). In par-
ticular, N induces proliferation by activating the expression 
of eyg (Dominguez et al. 2004). At the same time, the first 
wave of retinal determinants, mainly ey and toy, induce and 
reinforce the expression of other retinal determinants, eya, 
so and dachshund (dac) (Fig. 2) (reviewed in Casares and 
Almudi 2016; Davis and Rebay 2017).

The differentiation of the cells that form the ommatidia 
in Drosophila is a sequential process. A morphogenetic 

Fig. 1  Comparative overview of human and Drosophila eye develop-
ment. Eye development from week 4 to week 20 of human embry-
ogenesis a. At week 4 of development, the optic vesicles evaginate 
from the forebrain neuroectoderm inducing the adjacent ectoderm 
to form the lens placode. Between weeks 4 and 6, the optic vesicle 
invaginates on itself, forming the optic cup, which partially encap-
sulates the invaginating lens vesicle (interrupted posteriorly by the 
optic fissure). After week 6 and until week 20, the optic cup differ-
entiates into two main layers, the neuroretina and the pigmented 
epithelium, while the lens vesicle thickens and forms the crystalline 
lens. The neural cells in the neuroretina differentiate from the center 
to the periphery of the optic disc, such that the adult retina pattern is 
set with circumferential bands or zones enriched in specific photore-
ceptors. Eye development and adult retina patterning of Drosophila 
b. The eye imaginal disc develops from an invagination of the embry-
onic ectoderm, being subdivided early to form precursor regions to 
the eye and antenna (1st larval instar imaginal disc). During the 3rd 
larval instar, differentiation of ommatidia into clusters of 8 photore-
ceptor cells progresses from the posterior to the anterior of the disc, 
as a band of apical cell constrictions termed the morphogenetic fur-
row sweeps across the tissue. The longitudinal structure of the adult 
ommatidium shows an apical facet lens lined basally by primary pig-
ment cells and focusing into a central rhabdomere projected by the 
lateral membrane of the photoreceptor cells. The cluster of photore-
ceptor cells is surrounded by secondary and tertiary pigment cells. 
The adult retina is patterned dorso-ventrally into two main zones, 
a dorsal third consisting of the dorsal rim area and dorsal yellow 
ommatidia, and a ventral area with a stochastic pattern of yellow and 
pale ommatidia. Ommatidia in these areas have a specific repertoire 
of rhodopsin (Rh) gene expression in photoreceptors R7 and R8 (A—
anterior, P—posterior, D—dorsal, V—ventral, R—photoreceptor, 
Rh—rhodopsin)

◂
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wave, designated as the morphogenetic furrow (MF, Figs. 1, 
2), sweeps across the epithelium from the most posterior 
region towards the anterior promoting the recruitment and 
differentiation of the different types of cells that constitute 
the ommatidium (reviewed in Kumar 2011; Lee and Treis-
man 2002). During differentiation, the activity of Hedge-
hog ahead of the MF triggers N-dependent activation of the 
proneural gene atonal (ato) and restriction of its expression 
to a single cell in each proneural cluster, the R8 cell, which 

differentiates into the first photoreceptor of the ommatidial 
cluster (Jarman et al. 1994, 1995) (Fig. 2). Similarly, in 
zebrafish, retinal neurogenesis has been shown to occur in 
a wave starting in the optic cup adjacent to the optic stalk 
and spreading outwards, and is dependent on expression 
of Sonic Hedgehog and the Ato homologue Ath5 (Masai 
et al. 2000; Neumann and Nuesslein-Volhard 2000). In pri-
mates, differentiation also follows sequential waves of gene 
expression, emanating from the center of the optic disc to 
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Fig. 2  Drosophila melanogaster eye determination and gene regula-
tory network. Drosophila adult head a and eye-antennal imaginal disc 
stained with anti-Eya (magenta), DAPI (blue) and phalloidin-Alex-
aFluor488 (Green) b. Color code represents the larval structures that 
will give rise to the structures of the adult head: compound eye (CE, 
magenta), ocelli (oc, dark magenta), antenna (a, dark green), maxil-
lary palp (mp, light green), and head capsule (hc, blue). c Section of 
an eye imaginal disc showing the compartments where proliferation 
(most anterior), determination (around MF) and specification (poste-
rior to MF) are occurring. From anterior to posterior (left to right): 
progenitors are characterized by high levels of proliferation (mitotic 

cells in red), followed by synchronic cells at G1, the first mitotic wave 
(FMW), morphogenetic furrow (MF), and cells differentiating (sec-
ond mitotic wave, SMW) into ommatidia most posteriorly. Mitotic 
cells are stained using an anti-PH3 antibody (red), MF is marked 
with Phalloidin-AlexaFluor488 (green) and photoreceptors are shown 
using anti-Elav, in blue. A simplified gene network showing the main 
molecules involved in the three processes is displayed. Color code 
highlights the process in which each molecule has its main role. Scale 
bar 50 µm. All the panels show anterior to the left and posterior to the 
right
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its periphery (Cornish et al. 2005; Hendrickson et al. 2008) 
(Fig. 1). Much like Ato in Drosophila, Ath5 in mice seems 
to be essential to specify the first retinal neurons, the retinal 
ganglion cells (Brzezinski et al. 2012; Sun et al. 2003). In a 
recent study, gene replacement of Drosophila Ato with the 
mouse ortholog Ath1 demonstrated its ability to recapitu-
late the correct specification of the initial photoreceptors 
in Drosophila, albeit with changes in the pattern of retinal 
differentiation (Weinberger et al. 2017). Furthermore, in 
zebrafish, the early differentiating red cones recruit undif-
ferentiated cells to drive further cone cell differentiation, in a 
process analogous to R8 recruitment of other photoreceptors 
in Drosophila (Raymond and Barthel 2004). Therefore, the 
initial specification of photoreceptors from undifferentiated 
progenitor cells appears to have many similarities between 
flies and vertebrates (Fig. 1).

In flies, Ato activates the expression of senseless (sens), 
whereas in the two adjacent remaining cells, Rough inhib-
its sens to specify the R2 and R5 photoreceptors (Pepple 
et al. 2008). The rest of the photoreceptors are specified in 
a sequential manner, involving the activity of the epidermal 
growth factor receptor (EGFR) signaling pathway, much of 
which was first delineated in Drosophila by the analysis of 
mutants affecting photoreceptor differentiation (Freeman 
1996, 1997; Kumar et al. 1998). During this specification 
process, photoreceptors are specialized by expression of spe-
cific color-detecting rhodopsins, a process that shares some 
similarities again between flies and vertebrates (Fig. 1).

In flies, the Otx-family transcription factor Otd regulates 
the transcriptional repressor Defective Proventriculus (Dve) 
to regulate rhodopsin gene expression in specific photore-
ceptor subtypes (Johnston et al. 2011; Yan et al. 2017). In 
mice, the genes Nr2e3 and Nrl also act with Otx-family 
members, like Crx, the orthologue of fly Otd, to activate 
rod opsin expression and repress cone opsin expression 
(Cheng et al. 2004; Hennig et al. 2008; Kaewkhaw et al. 
2015; Peng et  al. 2005). Interestingly, like Otd, human 
OTX1 and OTX2 can induce dve expression in Drosophila 
photoreceptors, suggesting conserved mechanisms of OTX-
mediated regulation of photoreceptor specification between 
flies and humans (Terrell et al. 2012). Differentiation of yel-
low and pale ommatidial subtypes in Drosophila is based 
on the stochastic expression of the PAS-bHLH transcrip-
tion factor Spineless, which determines Rh3 expression, 
and is counteracted by Spalt-major (Sal) and Otd to select 
expression of Rh4 (Fig. 1) (Johnston et al. 2011; Tahayato 
et al. 2003; Wernet et al. 2006). Interestingly, in mice, Sall3 
(homolog of sal) has been shown to activate opsins and in 
humans expression of red versus green opsins also relies 
on a stochastic mechanism (de Melo et al. 2011; Nathans 
et al. 1989; Wang et al. 1992). Although different to that of 
Drosophila, this stochastic mechanism may share aspects of 
counter-regulation by Sal and OTX factors.

Overall, current research suggests that late photorecep-
tor specification by regulation of rhodopsin gene expres-
sion shares many conserved mechanisms between flies and 
vertebrates, which highlights this as an important area of 
focus for understanding human retinal diseases using the 
Drosophila model.

Insights into human eye conditions from Drosophila

Research on Drosophila Pax6 genes and their impact 
on understanding eye developmental diseases

As mentioned above, in both flies and humans, oculogen-
esis is the product of a conserved gene regulatory network 
centered on the activity of Pax6 (Gehring 2014; Quiring 
et al. 1994). The Drosophila Pax6 gene, ey, was cloned first 
and functionally analyzed, and then shown to share a high 
level of sequence conservation with the Small eye gene in 
mice and the Aniridia gene in humans, all now collectively 
established as Pax6 functional homologues (Halder et al. 
1995; Quiring et al. 1994). Nearly 300 dominant mutations 
in the human Pax6 locus have been described and most 
of these mutations lead to iris hypoplasia or total loss of 
the iris associated with cataracts and corneal changes, a 
condition designated as aniridia (Glaser et al. 1992; Han-
son et al. 1994; Jordan et al. 1992; Verbakel et al. 2018). 
Other mutations in Pax6 (and other functionally conserved 
genes in eye development) can also cause failed embryonic 
optic fissure closure in MAC (microphthalmia–anophthal-
mia–coloboma) spectrum diseases, like anophthalmia, char-
acterized by absence of one or both eyes; microphthalmia, 
characterized by abnormally small eyes with various mal-
formations, and colobomas, characterized by an opening in 
the iris, retina, choroid or optic disc (Glaser et al. 1994; 
Skalicky et al. 2013; Williamson and FitzPatrick 2014). Of 
the core eye regulators, apart from Pax6, mutations in Six5, 
for example, have been shown promote cataract formation 
in mice (Klesert et al. 2000; Sarkar et al. 2000) and muta-
tions in EYA1 have been associated with congenital cataracts 
(Azuma et al. 2000).

Despite the differences in development of the optic pri-
mordium between Drosophila and vertebrates, Pax6/Ey is 
necessary to induce eye formation, and ectopic expression 
of ey or mouse Pax6 is sufficient to induce ectopic eyes (Hal-
der et al. 1995). Additionally, a Drosophila eye enhancer of 
ey is capable of driving many features of endogenous Pax6 
expression in mice (Xu et al. 1999). These experiments have 
established the Drosophila model as suitable to study con-
served Pax6 functions in eye development and disease. It is, 
however, worth noting that based on the human and mice 
mutant phenotypes, Pax6 in vertebrates seems more critical 
for lens development (Glaser et al. 1994).
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The fly eye, which develops as an evagination of the 
embryonic ectoderm, much like the vertebrate lens vesicle, 
may thus bear greater similarities in genetic regulation to 
this structure than to the whole vertebrate eye (Charlton-Per-
kins et al. 2011) (Fig. 1). Of special mention in this respect 
is the highly conserved regulation of lens crystallin proteins 
by Drosophila Pax2 through the same binding sites as ver-
tebrate Pax6 (Blanco et al. 2005; Kozmik et al. 2003). Lens 
crystallins are a family of ancient proteins, found even in jel-
lyfish, where their expression in lentoid bodies relies on the 
activity of the ancestral PaxB transcription factor (Kozmik 
et al. 2003). Therefore, it appears that the Pax2 gene may 
have been co-opted into lens development in Drosophila, 
whereas vertebrate Pax6 has retained or reacquired that 
function. As such, Drosophila research into Pax2 regula-
tion of Crystallin gene expression may prove essential to 
uncover mechanisms of vertebrate lens abnormalities in 
Pax6 mutations.

Drosophila contributions to understanding conserved 
aspects of the gene regulatory logic of eye development

Drosophila research has been instrumental in understanding 
and modeling the gene regulatory logic underlying eye dif-
ferentiation (Frankfort and Mardon 2002). Recently, this was 
again shown by rigorous spatiotemporal quantification and 
computational modeling that helped to reveal general prin-
ciples about the logic of the Hedgehog, Notch and EGFR 
signals during eye growth and morphogenesis (Fried et al. 
2016; Zhu et al. 2016). Indeed, the regulatory logic among 
genes involved in eye determination was shown to be very 
similar between flies and vertebrates. For example, switch-
ing off or dampening ey/Pax6 expression is required for pho-
toreceptor fate specification in both flies and vertebrates, as 
in both cases maintenance or prolonged high levels of Ey/
Pax6 after eye determination have been associated with fail-
ures of neuronal differentiation (Belecky-Adams et al. 1997; 
Canto-Soler et al. 2008; Toy et al. 2002).To achieve this 
transition, the positive feedback loop that maintains ante-
rior ey expression in eye precursors must be interrupted. In 
Drosophila, this inhibition results from rewiring the network 
such that Eya-So directly represses ey transcription in dif-
ferentiating cells (Atkins et al. 2013). Interestingly, increas-
ing the levels of Eya and So anterior to the MF reduces ey 
expression (Atkins et al. 2013). Dac appears to be crucial for 
this switching, as Dac is required for ey repression posterior 
to the MF and can cooperate with Eya and So to inhibit 
ey transcription in anterior cells (Atkins et al. 2013). One 
idea is that Dac joins Eya-So to switch the complex into 
a repressive activity (Davis and Rebay 2017). Although a 
direct repressive function has not been confirmed in Dros-
ophila, this may be a conserved function of Dac, as mam-
malian DACH1 can recruit co-repressors and directly repress 

target gene transcription (Chen et al. 2013; Chu et al. 2014; 
Li et al. 2003; Sundaram et al. 2008; Wu et al. 2003, 2006, 
2008, 2009, 2011; Zhao et al. 2015). On the other hand, 
mammalian Eya is thought to convert repressive SIX–DACH 
complexes to activating EYA–SIX–DACH complexes (Li 
et al. 2002, 2003).

A second example of regulatory switching is the coordi-
nation of proliferation with specification in retinal progeni-
tors. Competency to switch from proliferation to specifica-
tion is initiated when Ey activates transcription of eya and 
so, which in turn reinforces ey expression and promotes dac 
transcription (Fig. 1) (Anderson et al. 2006; Atkins et al. 
2013; Bonini et al. 1997; Chen et al. 1997; Halder et al. 
1998; Niimi et al. 1999; Ostrin 2006; Pappu 2005; Pignoni 
et al. 1997; Salzer and Kumar 2009). Dac then terminates 
the pro-proliferative role of Hth–Yki complexes by inhib-
iting Hth expression and interfering with the ability of 
Hth–Yki to activate transcription of the pro-growth bantam 
microRNA (Fig. 2) (Bras-Pereira et al. 2015). Subsequently, 
Ey cooperates with Eya–So to activate ato transcription, 
which specifies the first photoreceptor to initiate ommatidial 
assembly (Fig. 2) (Jemc and Rebay 2007; Zhang et al. 2006; 
Zhou et al. 2014). This results in a mutual inhibition between 
the Ey–Hth–Tsh and Ey–Eya–So–Dac signaling networks, 
which drives precursors from asynchronous proliferation to 
coordinated differentiation.

As in the first switching example, Dac appears to be a 
key player in the transcriptional repression events that drive 
developmental transition. How these transitions are orches-
trated at the level of chromatin regulation and transcriptional 
regulation is poorly understood. One idea stemming from 
Drosophila studies is that core eye determination factors 
recruit Polycomb group proteins (PcG) to promote switching 
from proliferative precursors to differentiating retinal cells. 
Indeed, deletion of repressive Polycomb Group genes leads 
to ectopic Hth and Tsh expression posterior to the MF, which 
is reminiscent of eya, so, or dac loss (Janody et al. 2004). 
Another intriguing observation is that mutation of skuld or 
kohtalo, two Trithorax Group genes, leads to inappropri-
ate maintenance of Ey posterior to the MF (Janody et al. 
2004). Consistent with this, Eya1 and Six1 recruit the SWI/
SNF complex to activate downstream target transcription 
that drives cochlear neurogenesis (Ahmed et al. 2012), while 
Dach1 primarily associates with co-repressors, as discussed 
above.

The rewiring mechanisms of the retinal determination 
gene network discussed above are now beginning to give 
a better picture of developmental transitions, such as the 
transition from proliferative precursors to differentiating reti-
nal cells. These mechanisms, namely the role of DACH1 in 
cell proliferation, are also beginning to be appreciated in the 
context of human cancer (Chen et al. 2013; Chu et al. 2014; 
Wu et al. 2006, 2009, 2011), but further studies in vertebrate 
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models are needed to investigate how these mechanisms may 
be impaired specifically in eye developmental diseases.

Retinal degeneration models

As highlighted earlier in this review, the Drosophila com-
pound eye has little resemblance to the human eye morpho-
logically and yet the gene regulatory networks governing 
their development are remarkably similar. At a cellular level, 
the fly and human retinas share many similarities, namely 
in the structure of photoreceptors and in the genetic and 
molecular bases of phototransduction, both of which are 
frequently affected in retinal disease.

Since the mid-70s genetic screens have been designed 
in Drosophila to identify mutations where the morphogen-
esis of the eye is normal, but photoreceptor cells degenerate 
from the onset of adult visual function (Harris and Stark 
1977; Harris et al. 1976; Hotta and Benzer 1970; Steele and 
O’Tousa 1990; Yoon et al. 2000). These studies revealed 
mutants that lead to either a light-independent (Bentrop 
1998; Dolph et al. 1993; Lee et al. 1996; Raghu et al. 2000) 
or light-dependent photoreceptor degeneration (Meyertho-
len et al. 1987; Stark and Sapp 1987; Steele and O’Tousa 
1990). This was of great relevance to understanding the 
mechanisms of many inherited degenerative diseases that 
cause blindness in humans, such as Retintis Pigmentosa, a 
disease that affects 1 in 4000 people, and is associated with 
progressive degeneration from night blindness to full blind-
ness, or Leber congenital amaurosis (LCA), the most early 
and severe form of inherited retinal dystrophy, accounting 
for at least 5% of inherited retinal diseases (Verbakel et al. 
2018). Animal models have shown that retinal degeneration 
in these cases results from cell death via apoptosis (Chang 
et al. 1993; Chen et al. 1999; Liu et al. 1999).

Mutations in humans that cause Retinitis Pigmentosa 
have been mapped to more than 80 known genes, and the 
genetics of their inheritance is complex, from autosomal 
dominant or recessive to X-linked (Ali et al. 2017; Daiger 
et al. 2007; Kaplan and Rozet 2008; Verbakel et al. 2018). 
Mutations in the human rhodopsin genes account for nearly 
25% of the autosomal dominant retinitis pigmentosa (ADPR) 
cases (Alemaghtheh et al. 1993; Ali et al. 2017; Bhattacha-
rya et al. 1991; Shokravi and Dryja 1993; Sung et al. 1993; 
Verbakel et al. 2018). Importantly, many of the mutations 
uncovered in Drosophila genetic screens affect the synthe-
sis, maturation, intracellular transport, chemical recycling or 
degradation of the light-sensitive G protein-coupled receptor 
rhodopsins.

As in vertebrates, the phototransduction cascade in Dros-
ophila is initiated by the photoactivation of a G protein-
coupled receptor rhodopsin covalently linked to a chromo-
phore, the carotenoid 3-hydroxyl, 11-cis retinal (Fig. 3). 
Light-stimulation induces isomerization of the chromophore 

thereby inducing a conformational change of rhodopsin to 
metarhodopsin that allows its interaction with a Gqα protein, 
thereby inducing multiple downstream processes, namely 
metabolism of diacylglycerol and the ensuing regulation of 
calcium influx (Fig. 3) (reviewed in Wang and Montell 2007; 
Xiong and Bellen 2013). Phototransduction is terminated 
upon metarhodopsin phosphorylation by GPRK1 and upon 
Arrestin2 binding, which lead to endocytic internalization 
(Fig. 3). Early studies in Drosophila revealed that mutations 
in genes involved in the termination of metarhodopsin activ-
ity, including arr2, rdgB, rdgC, norpA and Camta, cause 
light-dependent retinal degeneration (Fig. 3) (Wang and 
Montell 2007). In these cases, cell death is light depend-
ent because it depends on the light-induced association of 
metarhodopsin with arrestin, the internalised accumulation 
of which triggers apoptosis in photoreceptors (Alloway et al. 
2000; Kiselev et al. 2000; Kristaponyte et al. 2012). Simi-
lar to what happens in Drosophila, the vertebrate rhodopsin 
mutant RhK296E, common in autosomal dominant retinitis 
pigmentosa (ADPR), forms a stable complex with arrestin 
and accumulates in the inner segment of photoreceptors 
(Chen et al. 2006), suggesting this is a conserved mecha-
nism in retinal degeneration between flies and vertebrates. 
Other Drosophila and vertebrate mutants highlight toxicity 
due to internalised accumulation of rhodopsin, such as in 
genes affecting endolysosomal degradation or the autophagy 
pathway (Chinchore et al. 2009; Hara et al. 2006; Komatsu 
et al. 2006; Xu et al. 2004). Furthermore, dominant muta-
tions in Drosophila Rh1 were isolated that cause photore-
ceptor degeneration only in the heterozygous state (Colley 
et al. 1995; Kurada and O’Tousa 1995), with many being 
identical to those found in ADRP patients, implying that 
degeneration is dependent on the existence of both wild-type 
and mutant rhodopsin and revealing that dominant mutant 
rhodopsin interferes with the maturation of wild-type rho-
dopsin (Colley et al. 1995). Toxicity due to incorrect fold-
ing or maturation of rhodopsin has also been implicated by 
mutations in the Drosophila chaperones calnexin and Xport, 
which lead to Rh1 accumulation in the ER and reduced Rh1 
levels in rhabdomeres and thereby cause light-enhanced reti-
nal degeneration (Rosenbaum et al. 2006, 2011).

Uncontrolled activity of rhodopsin can also result in 
retinal degeneration. Indeed, this is the case in the Dros-
ophila Rh1 PP100 mutant, where the mutant opsin persis-
tently binds arrestin and there is a constitutive activity of 
the phototransduction cascade (Iakhine 2004). In this case, 
loss of either arrestin or the Gqα rescues the degenerative 
phenotype. This mechanism may be relevant to autosomal 
dominant congenital night blindness, where a mild retinal 
degeneration is seen as a result of constitutively active forms 
of rod opsin (Dryja 2000).

The transcriptional mechanisms regulating the expres-
sion of rhodopsin genes are yet another important factor 
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Fig. 3  The Drosophila phototransduction apparatus. The Drosoph-
ila compound eye a is composed of hundreds of ommatidia b each 
made up of a cluster of 8 photoreceptor cells surrounded by acces-
sory cells. Each photoreceptor cell projects a microvilli dense mem-
brane towards the center of the ommatidium, making up the light-
sensitive rhabdomere c. The rhabdomere membrane is supported at 
its base by the Crumbs/PatJ/Stardust complex and at its core by the 
structural proteins Chaoptin, Prominin and Eyes Shut. Within the 
rhabdomere membrane d, the phototransduction cascade is initi-
ated by the light-induced conformational change of rhodopsin into 

metarhodopsin, which in turn is able to become phosphorylated by 
GPRK1, interact with a Gαq protein and bind Arrestin2. This initi-
ates a series of other reactions, from the conversion of PIP2 into IP3 
and DAG to the internalization of metarhodopsin–arrestin complexes. 
DAG is able to stimulate  Ca2+ influx via TRP channels, which in turn 
can be counterbalanced by  Ca2+/Na+ antiport by the CalX channel. 
Light-induced conformational change of metarhodopsin can promote 
its dephosphorylation by RdgC and phosphorylation of Arrestin2 by 
CAMKII, which promotes its dissociation, thus ensuing the recycling 
of rhodopsin’s original state
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commonly affected in retinal diseases. In Drosophila, the 
transcriptional activation of the Rh3 and Rh5 genes and 
transcriptional repression of Rh6 are orchestrated by the 
homeodomain protein Otd, and these functions can be par-
tially complemented by the human Otd-related genes OTX2 
and Crx, both of which are expressed in human cones and 
rods and regulate many photoreceptor-specific genes (Terrell 
et al. 2012). Importantly, several homeodomain mutations 
in CRX lead to LCA and these mutations have been used 
in genetic complementation experiments with Drosophila 
otd to reveal differential effects of these mutations on rho-
dopsin gene expression and rhabdomeric structure (Terrell 
et al. 2012).

Concerning rhabdomeric structure, some Drosophila 
mutants have been particularly useful in elucidating how 
this impacts retinal degeneration. In particular, mutations 
affecting the Crumbs complex, formed by the proteins Star-
dust, Discs-lost/PATJ and Crumbs, were shown to disrupt 
the correct separation of the rhabdomere from the stalk 
membrane in photoreceptors (Fig. 3) (Berger et al. 2007; 
Hong et al. 2003; Pellikka et al. 2002; Richard et al. 2006). 
Furthermore, mutations affecting the GPI-anchored protein 
Chaoptin and the transmembrane protein Prominin along 
with its associated extracellular glycoprotein Eyes Shut pre-
vent the separation of adjacent rhabdomeric membranes and 
disrupt the inter-rhabdomeral space (Fig. 3) (Cook and Zel-
hof 2008; Gurudev et al. 2014; Husain et al. 2006; Nie et al. 
2012; Zelhof et al. 2006). These mutations result in light-
dependent photoreceptor degeneration possibly as a direct 
consequent of loss of localisation of rhodopsin and other 
proteins to the rhabdomeric membrane. Indeed, these effects 
are similar to architectural defects seen in the rhabdomeres 
of null or strong mutants of Drosophila Rh1 (Kurada and 
O’Tousa 1995; Leonard et al. 1992). Importantly, Crumbs 
has been shown to interact and stabilize Myosin V and 
thereby promote trafficking of Rh1 to the rhabdomeres 
(Pocha et al. 2011). This mechanism may bear relevance to 
cases of autosomal recessive retinitis pigmentosa and LCA 
and autosomal dominant pigmented paravenous chorioreti-
nal atrophy associated with mutations in the human CRB1 
gene (Cremers et al. 2002; den Hollander et al. 1999, 2001, 
2010; Jacobson et al. 2003; Lotery et al. 2001; McKay et al. 
2005), or in autosomal recessive retinal degeneration caused 
by mutation in human PROMINI-1 (Maw et al. 2000), or 
RP25, the orthologue of Drosophila Eyes Shut (Abd El-Aziz 
et al. 2008; Alfano et al. 2016; Yu et al. 2016).

Critically, Drosophila research has contributed to high-
light targets for therapeutical approaches to many of the 
degenerations reported above. The chemical transformations 
of dietary carotenoids into 3-hydroxyl, 11-cis retinal, were 
shown to be important modulators of light-induced retinal 
degeneration (Voolstra et al. 2010; Wang et al. 2010, 2012). 
Limiting de novo chromophore synthesis, via B-carotene/

vitamin-A dietary depletion, can greatly reduce rhodop-
sin levels, thus significantly rescuing light-induced retinal 
degeneration in mutants affecting the stability of the metar-
hodopsin–Arrestin2 complex (Alloway et al. 2000; Berger 
et al. 2007; Kiselev et al. 2000; Richard et al. 2006), and 
similarly in crumbs, stardust and PATJ mutant eyes (Johnson 
et al. 2002).

On the other hand, in cases of accumulation of immature 
rhodopsin, a Drosophila study has shown that boosting ER-
associated degradation (ERAD), by overexpression of the 
ERAD factors Hrd1 and EDEM2, reduces mutant Rh1 lev-
els in dominant RhG69D mutants, thereby delaying retinal 
degeneration (Kang and Ryoo 2009). Intriguingly, genetic 
inactivation of the ERAD effector chaperone VCP/ter94 
in Drosophila or its chemical inhibition with Eeyarestatin 
I led to strong suppression of retinal degeneration caused 
by accumulation of the immature RhP23H mutant (Griciuc 
et al. 2010). These apparently conflicting observations hint 
at different mechanisms of dominance of Rh1 mutations and 
argue that manipulation of ERAD for therapeutic purposes 
should consider these differences carefully. Similar to the 
effects observed for the manipulation of ERAD, potentiat-
ing autophagy or lysosomal degradation pathways can effec-
tively reduce rhodopsin accumulation and ameliorate retinal 
degeneration (Lee et al. 2013; Wang et al. 2009).

A possible mechanism underlying the degeneration upon 
subcellular rhodopsin accumulation is an overload of cyto-
plasmic  Ca2+ influx (Orrenius et al. 2003). Cytoplasmic 
 Ca2+ influx induces the dephosphorylation of metarhodopsin 
by CAMKII and, therefore, low levels of  Ca2+ can lead to 
accumulation of internalized metarhodopsin–arrestin com-
plexes and cause photoreceptor degeneration (Chinchore 
et al. 2009; Kiselev et al. 2000; Orem and Dolph 2002). This 
is also seen in loss of function mutations in TRP calcium 
channels, but simultaneous counterbalancing mutations in 
the  Ca2+/Na2+ exchanger CalX or the diacylglycerol Kinase, 
RDGA, can greatly suppress light-induced retinal degenera-
tion, indicating that balanced  Ca2+ levels are critical for pho-
toreceptor survival (Fig. 3) (Raghu et al. 2000; Wang et al. 
2005). Cytoplasmic  Ca2+ influx during the photo-response is 
modulated by the levels of PIP2 and their effect on calcium 
channels. Interestingly, an altered PIP2 regeneration cycle 
in Drosophila photoreceptors, such as through mutations 
affecting the Diacylglycerol Kinase, RDGA, or the phos-
phatidate phosphatase, Lazaro, or overexpression of phos-
pholipase D, can all modify light-induced neurodegeneration 
phenotypes (Garcia-Murillas et al. 2006; Inoue et al. 1989; 
Kwon and Montell 2006; LaLonde et al. 2006; Masai et al. 
1993).

It has been suggested that dominant negative mutations 
in rhodopsin associated with retinitis pigmentosa could be 
especially amenable to gene therapy, as providing extra dos-
age of rhodopsin was shown to significantly ameliorate the 
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cell death observed in the Rh P23H mouse model (Lewin 
et al. 2014; Mao et al. 2011). However, too much rhodopsin 
overexpression was also shown to cause retinal degeneration 
in this case, indicating that rhodopsin augmentation needs to 
be tightly controlled for therapeutic purposes. In Drosoph-
ila, it was also noticed that expression of phosphorylation-
deficient rhodopsin could offer protective effects in norpA 
mutant photoreceptors, indicating that modulation of rho-
dopsin phosphorylation is critical to prevent its high levels 
of toxic internalization in light-dependent retinal degenera-
tion (Kristaponyte et al. 2012).

With the advent of CRISPR/Cas9 technology, it is now 
possible to realize many of these gene therapy changes, 
albeit cautiously considering possible off-target effects. 
Recently, AAV-mediated CRISPR/Cas9 targeting of Nrl, 
a rod-specific transcription factor, was shown to improve 
rod survival in a mouse Rh P374S mutant (Yu et al. 2017). 
Furthermore, CRISPR/Cas9 targeting of the Rh P23H allele 
has been achieved efficiently in a null background both in 
the mouse and pig retina, offering a great promise for gene 
therapy (Burnight et al. 2017; Latella et al. 2016). Alterna-
tively, using an artificial transcription factor, it was recently 
possible to repress a mutant rhodopsin gene in pigs, while 
maintaining normal expression of the wild-type rhodopsin 
(Botta et al. 2016).

Future perspectives

The genetic basis of most eye conditions, for example, ano-
phthalmia and microphthalmia, has only been characterized 
in less than 30% of cases (Chassaing et al. 2014; Williamson 
and FitzPatrick 2014). This low rate of diagnosis is caused 
in part by the polygenic nature of eye development and by 
the fact that many cases are caused by rare variants. This 
is exacerbated by a poor understanding of the function of 
most human genes. Further functional analysis of known 
disease-causing genes and screens for new candidates in 
Drosophila has great potential to improve diagnosis and bet-
ter understand the underlying mechanisms (Wangler et al. 
2017). This was exemplified recently by an elegant screen 
in Drosophila for lethal mutations in genes involved in sen-
sory functions and cross-referencing with human exome data 
(Yamamoto et al. 2014). This study allowed the diagnosis 
of conditions in several individuals including a new role for 
Crx in bull’s eye maculopathy where the phenotypic effect 
on photoreceptors was similar in flies and humans (Yama-
moto et al. 2014). This was facilitated by the availability of 
sophisticated approaches for screening and powerful tools 
for genetic and phenotypic analysis in this model. There-
fore, it is clear that the Drosophila eye will continue to be 
an excellent and economic model to study eye conditions 
as well as other diseases (Chow and Reiter 2017; Kumar 
2018; Senturk and Bellen 2017; Yamamoto et al. 2014). This 

can be enhanced by further collaborations between clini-
cians and researchers working on Drosophila (Wangler et al. 
2015) as part of national and international initiatives such as 
the Undiagnosed Diseases Network (Gahl et al. 2016) and 
tools such as GeneMatcher (Sobreira et al. 2015a, b).
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