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Abstract
Although Genome Wide Association Studies (GWAS) have led to many valuable insights into the genetic bases of common 
diseases over the past decade, the issue of missing heritability has surfaced, as the discovered main effect genetic variants 
found to date do not account for much of a trait’s predicted genetic component. We present a workflow, integrating epig-
enomics and topologically associating domain data, aimed at discovering trait-associated SNP pairs from GWAS where 
neither SNP achieved independent genome-wide significance. Each analyzed SNP pair consists of one SNP in a putative 
active enhancer and another SNP in a putative physically interacting gene promoter in a trait-relevant tissue. As a proof-of-
principle case study, we used this approach to identify focused collections of SNP pairs that we analyzed in three independent 
Type 2 diabetes (T2D) GWAS. This approach led us to discover 35 significant SNP pairs, encompassing both novel signals 
and signals for which we have found orthogonal support from other sources. Nine of these pairs are consistent with eQTL 
results, two are consistent with our own capture C experiments, and seven involve signals supported by recent T2D literature.

Introduction

The majority of human GWAS efforts to date have focused 
on detecting main effects, i.e., individual SNPs that are 
associated with a given complex trait. Some would argue 
that this is indeed where the focus should be placed, as the 
majority of SNPs contribute to a given trait in an additive 
manner (Hill et al. 2008). However, the discovered single 
genetic variants do not typically account for much of a com-
plex trait’s predicted genetic component, an issue commonly 
referred to as the ‘missing heritability’. There has been much 
discussion regarding potential sources of missing heritability 
(Eichler et al. 2010; Zuk et al. 2012). Based on the complex-
ity of the biomolecular networks driving biological systems, 
one possible reason for this is that multiple common variants 
work together to affect the pathogenesis of a trait and are dif-
ficult to detect as they either act in an additive fashion, where 
the individual effects are too small to reach genome-wide 
statistical significance, or they interact. The latter would be 
consistent with the prevalence of epistasis in model organ-
isms (Brem et al. 2005; Mackay 2014).

Investigating the action of multiple SNPs in GWAS is 
challenging. Even when focusing only on pairs of SNPs, the 
search space is very large, affecting computational require-
ments and statistical power due to the extensive multiple 

Electronic supplementary material The online version of this 
article (https ://doi.org/10.1007/s0043 9-018-1893-0) contains 
supplementary material, which is available to authorized users.

 * Elisabetta Manduchi 
 manduchi@pennmedicine.upenn.edu

 * Jason H. Moore 
 jhmoore@upenn.edu

1 Department of Biostatistics, Epidemiology, and Informatics, 
University of Pennsylvania, Philadelphia, PA, USA

2 Division of Human Genetics, The Children’s Hospital 
of Philadelphia, Philadelphia, PA, USA

3 Center for Spatial and Functional Genomics, The Children’s 
Hospital of Philadelphia, Philadelphia, PA, USA

4 Department of Population and Quantitative Health Sciences, 
Case Western Reserve University, Cleveland, OH, USA

5 Department of Pathology and Laboratory Medicine, 
Perelman School of Medicine at the University 
of Pennsylvania, Philadelphia, PA, USA

6 Department of Genetics, Perelman School of Medicine 
at the University of Pennsylvania, Philadelphia, PA, USA

http://orcid.org/0000-0002-4110-3714
http://orcid.org/0000-0003-2025-5302
http://orcid.org/0000-0002-5015-1099
http://crossmark.crossref.org/dialog/?doi=10.1007/s00439-018-1893-0&domain=pdf
https://doi.org/10.1007/s00439-018-1893-0


414 Human Genetics (2018) 137:413–425

1 3

comparisons required. Thus, filters are typically used to 
reduce the number of models to analyze. One rational pos-
sibility is to apply computational filters, e.g., using meth-
ods such as ReliefF and its derivatives (Robnik-Šikonja and 
Kononenko 2003; Moore and White 2007; Moore 2015) or 
MDR (Ritchie et al. 2001), or “greedy” approaches which 
first identify SNPs with significant or marginally signifi-
cant main effects and then investigate models involving only 
these SNPs (Qi et al. 2007; Verma et al. 2016). A downside 
of the latter is that interacting SNPs with no main effects 
would be missed (see Urbanowicz et al. 2014 for a discus-
sion of pure and strict epistasis).

Another approach is to use biological filters. For example, 
Mitra et al. (2017) limited their SNP pair search space based 
on the Ras/MAPK pathway, which is known to be relevant to 
Autism Spectrum Disorders. Motivated by the recognition 
of the importance of regulatory networks in genomic studies 
(Cowper-Sal Iari et al. 2011; Boyle et al. 2017), we recently 
proposed to utilize biological filters based on enhancers and 
promoters (Manduchi et al. 2018). Enhancers are non-coding 
regions that affect the expression of possibly distant genes 
through chromatin looping in a tissue-specific manner. In 
Manduchi et al. (2018), we used interacting enhancer-pro-
moter pairs available in EnhancerAtlas (Gao et al. 2016) for 
pancreas and HCT116 (a colonic carcinoma cell line) and 
investigated SNP pairs associated to T2D with a specific 
focus on epistasis, using Likelihood Ratio Tests of logistic 
regression models based on SNP genotypes, as implemented 
in PLATO (Hall et al. 2017). In the current study, we have 
built on this approach, extending and improving it in sev-
eral ways. First of all, recognizing that our proposed filter is 
based on genomic interactions in cis, we conducted our tests 
based on 2-SNP haplotypes (using UNPHASED, Dudbridge 
2008), as opposed to genotypes. Here by 2-SNP haplotype 
we mean the phased alleles for a SNP pair, where the SNPs 
in the pair are not necessarily in Linkage Disequilibrium 
(LD; in fact we only considered pairs with r2 < 0.6). Sec-
ond, we extended our study to haplotype associations that 
include but are not limited to interactions, in other words 
we analyzed each haplotype both with a full and with an 
interaction model. Third, we generated enhancer-promoter 
pairs for tissues that are more specific to T2D, namely we 
considered four potential T2D relevant tissues (pancreatic 
islet, adipose tissue, small intestine, and liver) and we iden-
tified putative active enhancers and promoters for each tis-
sue, based on epigenetic marks, using publicly available 
data sets. We then proceeded to create a putative superset of 
the interacting enhancer-promoter pairs for each tissue. To 
this end, to link each enhancer to more than just the closest 
promoter, while at the same time limiting the number of 
linked promoters, we made use of topologically associat-
ing domains (TADs). These are DNA regions within which 
physical interactions are believed to occur more frequently, 

as opposed to relatively infrequent interactions across TAD 
boundaries. TADs have been used to aid in the identifica-
tion of candidate genes at GWAS signals (Way et al. 2017). 
We used these to link each putative active enhancer to all 
putative active promoters within the same TAD. Even if this 
was a potential superset of the actual interacting enhancer-
promoter pairs, it was adequate to focus our search space to 
a manageable size. For each of the four tissues, we extracted 
SNP pairs consisting of one SNP in an active enhancer (at 
least in that given tissue) and one SNP in a linked active 
promoter and analyzed the 2-SNP haplotypes using three 
separate T2D GWAS.

It is typically difficult to replicate statistically significant 
interactions at the SNP pair level. For example, small dif-
ferences in Minor Allele Frequencies (MAFs) across data 
sets can greatly affect the results (Greene et al. 2009). To 
address this, we utilized the three different GWAS data sets 
available to us to increase power by applying a standard 
meta-analysis method to combine p values and identify sig-
nificant SNP pairs for each tissue based on evidence across 
multiple studies.

Figure 1 illustrates our workflow, which could be useful 
to investigate SNP pairs in GWAS in general. For any given 
trait, we do not expect the enhancer–promoter approach to 
capture all possible interesting SNP pairs; different biologi-
cal filters could help explore different slices of the SNP 
pair space. Our aim was to take advantage of the increasing 
availability of tissue-specific epigenomics and ‘contactom-
ics’ data sets to generate one biologically reasonable filter, 
which also has the added advantage of providing findings 
that could be more easily interpreted. Here by ‘contactom-
ics’ we mean high-throughput experiments (such as HiC 
and capture C) aimed at detecting physical contacts between 
distal genomic regions, i.e., chromatin loops. Our results 
indicate that, whenever these types of functional genomics 
data are available for a tissue relevant to a GWAS trait, the 
‘enhancer-promoter slice’ of the SNP pair space is worth 
exploring.

Results

In Online Resource 1 sheet 1, we report all results from 
our haplotype analyses (in either the full or the interaction 
model) having an adjusted combined p value across the three 
GWAS < 0.1. The p values for each of the three GWAS are 
indicated in Online Resource 1 sheet 1, together with the 
meta-analysis combined p values and the Benjamini–Hoch-
berg (BH) adjusted combined p values. In the analyses using 
the full model, ‘omnibus’ association of the paired SNP hap-
lotypes with T2D was investigated. In the analyses using the 
interaction model, association of the cis-phase interaction of 
the SNP pair with T2D was investigated. For each SNP pair 
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we also provide the adjusted combined p values from the 
main effect analyses on each SNP. Moreover, SNPs associ-
ated with well-established T2D signals are marked by an 
asterisk. We are particularly interested in those SNP pairs 
in our results where neither SNP has a main effect either 
from our analyses or by being a proxy to an established T2D 
sentinel. Table 1 indicates, for each tissue, the number of 
significant pairs for each model and the number detected 
by both models; moreover, the number of full model pairs 
not involving main effects is reported (none of the interac-
tion pairs involved main effects). Some pairs were present in 
more than one tissue SNP pair collection. The UNPHASED 
analyses over the 4 tissues yielded ~ 150 distinct significant 
2-SNP haplotypes in the full model. A good portion of these 
comprised, as expected, main effect SNPs, several of which 
associated with well-known T2D sentinels. There were 35 
distinct pairs consisting of SNPs that were not detected as 

main effects and were not well-known T2D signals. In addi-
tion, five distinct significant 2-SNP cis-phase interactions 
were also detected, none involving main effect SNPs. In 
Online Resource 1 sheet 2 we report, for each significant 

Fig. 1  Analysis workflow. 
Epigenomics and contactomics 
data are used to identify puta-
tive interactive enhancer–pro-
moter pairs in a tissue. 2-SNP 
haplotypes derived from these 
interacting regions are analyzed 
in multiple GWAS both in terms 
of a full model and in terms of 
an interaction model. Moreover, 
the individual SNPs in these 
pairs are also examined for main 
effects. For each analysis model, 
significant results are identified 
through meta-analyses, with 
appropriate multiple testing 
corrections. The results from 
the three models as well as 
information from the litera-
ture on established signals are 
combined to extract the most 
interesting SNP pairs for the full 
or the interaction models, e.g., 
SNP pairs non involving main 
effect SNPs. Notation: here, for 
each i = 1, 2, …, m,  (Si1,  Si2) 
denotes a pair of SNPs, the first 
in an enhancer and the second 
in a linked promoter

epigenomics 

E P Gene A 

Gene B P 
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Table 1  Number of pairs analyzed and number of significant pairs for 
each tissue and each of the full and interaction models

Overlap indicates the number of significant pairs detected by both 
models

Tissue Pairs analyzed Full [no 
main 
effects]

Interaction Overlap

Pancreatic islet 261,574 7 [1] 1 1
Small intestine 789,310 9 [3] 3 1
Adipose tissue 505,858 42 [20] 1 1
Liver 1,130,898 95 [20] 2 2
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SNP pair with no main effects, the meta-analysis odd ratio 
results for each observed haplotype with respect to the indi-
cated reference haplotype.

In what follows we focus on the significant SNP pairs 
with no main effects, summarized in Table 2. Some of these 
points to novel signals, whereas others are consistent with 
genes previously reported to be relevant for T2D or with 
GTEx results or with our own capture C data.

The only pair in pancreatic islet after main effect fil-
tering was (enhancer SNP1 = rs7991210, promoter 
SNP2 = rs3742250), significant in both models. These two 
SNPs are in relatively high LD, having an r2 close to our 
threshold of 0.6 (see “Materials and methods”). The cor-
responding gene promoter is propionyl-CoA carboxylase 
alpha subunit (PCCA ), whose activity was not found to be 
significantly different between pancreatic islets from T2D 
patients and controls (MacDonald et al. 2009). However, 
interestingly, this pair was also in the liver SNP pair collec-
tion and its enhancer SNP is in LD with rs7335993 (r2 = 0.83 
from http://raggr .usc.edu/ across Europeans), which has an 
eQTL p value = 0.015 with PCCA  in liver from GTEx.

Another pair, (rs691531, rs9433110), was present in 
both the small intestine and adipose tissue SNP pair col-
lections, and was significant in the interaction analyses in 
small intestine as well as in the full and interaction analyses 
in adipose tissue. This pair is associated with the SEP15 
promoter, which in turn overlaps with the HS2ST1 gene. The 
enhancer SNP in this pair is in LD with rs263436 (r2 = 0.89 
from http://raggr .usc.edu/ across Europeans), which has an 
eQTL p value = 0.041 with SEP15 in adipose subcutaneous 
tissue from GTEx. In the small intestine, there was another 
pair identified in the interaction analyses involving the same 
promoter SNP with enhancer SNP rs691774. The latter SNP 
is in relatively high LD with the enhancer SNP of the previ-
ous pair (r2 = 0.86, thus marginally passed our 0.9 threshold 
on pairs) so they are likely to represent the same signal.

The pair (rs1563072, rs12444778) appears both in the 
small intestine and in the adipose tissue SNP pair data, 
and was significant in the full model analyses in both tis-
sues. This pair was associated with the promoter of RP11-
960L181. The enhancer SNP in this pair (which lies within 
an intron of GCSH) is in LD with rs1048194 (r2 = 0.89 from 
http://raggr .usc.edu/ across Europeans), which has an eQTL 
p value = 0.021 with RP11-960L18.1 in small intestine from 
GTEx. There was another pair involving the same promoter 
SNP, namely (rs12444137, rs12444778), identified by the 
full model both in the adipose tissue and in the liver col-
lection. In the liver collection, there was an additional pair 
also involving the same promoter SNP and identified by the 
full model.

The pair (rs5000803, rs760294) was identified by the 
full model in small intestine and consists of a SNP in the 

promoter of ABHD16A and a SNP in a putative enhancer 
within an intron of HLA-DRB1.

There were two significant full model pairs in adipose 
tissues involving rs344954, which is both in the promoter 
of AC022498.1 and in a putative active enhancer in the 
same TAD. AC022498.1 is an uncharacterized gene which 
co-localizes with LPP, where a T2D signal was previously 
identified in American Indians (Nair et al. 2014).

The pair (rs2789686, rs74145425), identified in the 
adipose tissue analyses, is annotated to the promoter of 
ANXA11, which is one of three novel genes recently associ-
ated to T2D (Zhang et al. 2017). There are also two pairs, 
both involving the SNP rs2789686 and a SNP in the pro-
moter of PLAC9 that were identified in these analyses. 
Besides residing in one of our putative adipose active 
enhancers, rs2789686 also resides within the ANXA11 
region. This SNP is in LD with rs2789681 (r2 = 0.98 from 
http://raggr .usc.edu/ across Europeans), which has an eQTL 
p value = 0.023 (respectively, 0.025) with ANXA11 in adi-
pose subcutaneous (respectively, visceral) tissue from GTEx.

Both SNP pairs (rs4631106, rs802920), associated 
with the REST promoter, and (rs12900028, rs8037641), 
associated with the ARID3B promoter, were in the adi-
pose tissue and in the liver data and significant in the full 
model. This is particularly interesting for the latter pair as 
it is consistent with capture C data that we had generated 
for HEPG2 (a liver carcinoma cell line), where we found 
support for a cis physical interaction between the region 
chr15:74,832,872–74,834,488 containing rs8037641 and the 
region chr15:74,661,397–74,666,138 containing rs12900028 
(coordinates refer to hg19), as illustrated in Online Resource 
2.

The pair (rs12692585, rs3749119) in the adipose tissue 
collection, identified by the full model, is associated with 
the promoter of PLA2R1 and its enhancer SNP lies between 
ITGB6 and RBMS1 where T2D susceptibility loci have been 
previously identified (Qi et al. 2010).

There are five significant pairs from the adipose tissue 
collection with no main effects identified by the full model 
comprising rs344956. However, the main effect adjusted p 
value of the latter SNP was marginally significant, so these 
are less interesting.

The pair (rs10893517, rs112771035) from the liver 
data was identified by both the full and interaction mod-
els; rs112771035 maps to the promoter of ST3GAL4, a gene 
found to be associated with liver enzyme concentrations in 
plasma (Chambers et al. 2011), which are associated with 
increased risk of various diseases, including T2D.

Two pairs from the liver data identified by the full model 
involve rs12221064 in the promoter of CNNM2. This gene 
is among those associated with T2D (Lau et al. 2017). The 
enhancer SNP in one of the pairs (rs2297786) is in high LD 
with rs11191438 (r2 = 1 from http://raggr .usc.edu/ across 

http://raggr.usc.edu/
http://raggr.usc.edu/
http://raggr.usc.edu/
http://raggr.usc.edu/
http://raggr.usc.edu/
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Table 2  Significant SNP pairs (BH adjusted combined p value < 0.1) with no main effects identified in pancreatic islet (PI), small intestine (SI), 
adipose tissue (AT), and liver (L)

The gene whose promoter contains SNP2 is indicated, as well as the unadjusted p values in each of the GWAS analyses for the specified model. 
The nominal and BH adjusted combined p values can be found in Online Resource 1 sheet 1

SNP1 SNP2 r2 Gene Tissue Model Geneva p WTCCC p Fusion p

rs7991210 rs3742250 0.591 PCCA PI Full 1.35E−23 0.654475 0.495636
G × G 7.47E−20 0.623518 0.57585

L Full 1.35E−23 0.654475 0.495636
G × G 7.47E−20 0.623518 0.57585

rs2239773 rs9607435 0.186 RAC2 SI Full 0.0977869 1.69E−12 0.782302
G × G 0.0599406 5.38E−12 0.365182

rs691531 rs9433110 0.088 SEP15 SI G × G 0.454612 7.39E−18 0.308633
AT Full 0.870941 5.50E−17 0.40292

G × G 0.454612 7.39E−18 0.308633
rs691774 0.225 SI G × G 0.0232432 6.20E−07 0.0819933
rs1563072 rs12444778 < 0.001 RP11-960L18.1 SI Full 0.015694 2.66E−06 0.131013

AT Full
rs12444137 < 0.001 AT Full 0.0374404 1.92E−07 0.480055

L Full
rs4889233 < 0.001 L Full 0.0240927 1.06E−06 0.158887
rs5000803 rs760294 0.004 ABHD16A SI Full 0.000907663 0.000106705 0.203069
rs344954 rs76452789 0.066 AC022498.1 AT Full 0.0846342 1.31E−05 0.025006
rs10937334 rs344954 < 0.001 AT Full 0.00150375 0.0148112 0.00666026
rs2789686 rs74145425 0.013 ANXA11 AT Full 0.00419716 6.91E−05 0.360385

rs7078815 0.026 PLAC9 AT Full 0.0514477 3.31E−06 0.145875
rs77246347 0.01 AT Full 0.0250975 4.43E−06 0.125312

rs4631106 rs802920 < 0.001 REST AT Full 0.0463463 0.000543548 0.00148916
L Full

rs12900028 rs8037641 0.093 ARID3B AT Full 0.0419312 8.98E−06 0.0208672
L Full

rs4264137 rs7113256 0.002 RP11-47J17.3 AT Full 0.0795953 0.000101605 0.00134218
rs12692585 rs3749119 0.107 PLA2R1 AT Full 2.56E−06 0.0322027 0.307709
rs144766 rs35736225 0.467 RP11-71E19.1 AT Full 8.86E−06 0.128905 0.00332326
rs6928037 rs7757002 < 0.001 AKAP12 AT Full 0.275003 2.05E−09 0.246787
rs12937368 rs9903948 0.008 TRIM16L AT Full 0.508614 1.18E−13 0.450758
rs10893517 rs112771035 0.026 ST3GAL4 L Full 0.188627 9.71E−13 0.115665

G × G 0.0302362 2.32E−14 0.0378748
rs2297786 rs12221064 0.139 CNNM2 L Full 0.010628 0.000102675 0.0726505
rs3740392 0.033 Full 0.00538619 0.000165605 0.121239
rs7542230 rs927213 0.093 RP5-1103B4.3 L Full 0.00432044 0.00227759 0.00453232
rs668555 0.082 Full 0.00801939 0.00463659 0.00110452
rs683916 0.11 Full 0.00664302 0.00775782 0.000836407
rs174358 rs62236167 < 0.001 CECR7 L Full 0.00829575 0.0015778 0.0142282
rs3740392 rs4147157 0.021 WBP1L L Full 0.0181201 0.000361481 0.0118717
rs34535555 rs6440583 0.029 HLTF L Full 0.000394938 0.00438674 0.0626907
rs7172774 rs12438885 0.001 SLCO3A1 L Full 0.0119797 0.000125584 0.0290589

rs6496760 < 0.001 SV2B Full 0.005133 0.000297094 0.0813713
rs11634420 < 0.001 Full 0.00163886 0.000277501 0.277045
rs12913299 < 0.001 Full 0.00554814 0.000353431 0.102018

rs76024800 rs7577213 0.468 HECW2 L Full 0.279908 2.85E−11 0.048992
rs9478919 rs7757002 < 0.001 AKAP12 L Full 0.264986 2.54E−09 0.230095
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Europeans), which has an eQTL p value = 0.02 with CNNM2 
in liver from GTEx.

Three pairs in the liver data identified by the full model 
include rs927213, in the promoter of RP5-1103B4.3. This 
SNP is also within an intron of C8B and its three paired 
enhancer SNPs are all within an intron of this gene as well.

The pair (rs174358, rs62236167) identified from the 
liver data is associated with the promoter of CECR7 and 
its enhancer SNP is also proximal to the promoter of 
SLC25A18. The pair (rs3740392, rs4147157), also from 
the liver full model analyses, is associated with the WBP1L 
promoter and its enhancer SNP resides within an intron 
of AS3MT. Another pair identified in these analyses is 
(rs34535555, rs6440583) that is associated with the HLTF 
promoter and whose enhancer SNP resides within a CP 
intron.

Of the four full model pairs from the liver data involv-
ing the enhancer SNP rs7172774, three are associated to 
the SV2B promoter and one is associated to the SLCO3A1 
promoter. The enhancer SNP rs7172774 is in LD with 
rs5814485 (r2 = 0.95 from http://raggr .usc.edu/ across Euro-
peans), which has an eQTL p value = 0.03 with SV2B in liver 
from GTEx.

The pair (rs76024800, rs7577213) associated with the 
HECW2 promoter, was identified in the liver full model 
analyses. This is interesting as, similar to the pair asso-
ciated with ARID3B described above, it is consistent 
with our HEPG2 capture C data, where we found sup-
port for a cis physical interaction between the region 
chr2:197,455,749–197,459,135, containing rs7577213, and 
the region chr2:197,486,443–197,488,380, containing three 
proxies (r2 > 0.8) for rs76024800: rs150785400, rs10497795, 
and rs10497794 (coordinates refer to hg19), as illustrated 
in Fig. 2.

Online Resource 3 indicates the frequencies of the 
alternate alleles for each SNP involved in the pairs from 
Table 2 in each GWAS, together with absolute differences. 
The median absolute difference between the GENEVA and 
WTCCC frequencies (0.00722) was ~ fourfold smaller than 
that between GENEVA and FUSION (0.0318) and between 
WTCCC and FUSION (0.0334).

Discussion

We used a workflow that incorporates epigenomics data 
from trait-relevant tissues and TAD data to reduce the search 
space for 2-SNP haplotype analyses on GWAS data, reason-
ing that physically interacting regulatory regions may lead 
to plausible cooperating/interacting SNP pairs. Others have 
used epigenetic marks and physical chromosomal interac-
tions to validate SNP pairs otherwise discovered (Hemani 
et al. 2014). In our approach, we instead used functional 
genomics data as our starting point to focus our searches on 
a manageable and reasonable SNP pair universe. This type 
of biological filter may miss some trait-relevant pairs, but 
has the advantage that pairs so identified are more easily 
interpretable. We have also exploited the availability of inde-
pendent GWAS for a given trait (in our case T2D) to extract 
results which combine evidence from multiple studies.

Our work builds on a previous pilot study (Manduchi 
et al. 2018) improving its workflow in several ways. Recog-
nizing that our biological filter is based on genomic inter-
actions in cis, we switched from genotype-based analyses 
to 2-SNP haplotype-based analyses. We also extended our 
scope from interaction only to interaction or full (‘omni-
bus’) model. To borrow strength from all available GWAS, 
we used meta-analyses, fully imputing all three GWAS. 
We also refined the pre-processing of the WTCCC data set 

Fig. 2  HEPG2 capture C evidence for (rs76024800, rs7577213). The 
loop track indicates the HECW2 promoter bait region containing 
rs7577213 and the captured region containing the three proxy SNPs 
to rs7602480. The SNP track shows the location of the four SNPs. 
The location of HECW2 is indicated. Finally, the tracks with the 

capture C reads corresponding to the HECW2 bait in three replicate 
experiments are indicated. In the latter, we limited the y-axis range to 
[0–9] since, in capture C, peak height varies with distance from bait 
so including the full peaks near bait would have rendered the other 
peaks visually indiscernible

http://raggr.usc.edu/
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as it pertains to related-individual filtering, introducing a 
graph theoretical approach (see “Materials and methods”). 
Finally, we used tissues more closely relevant to T2D, uti-
lizing ENCODE (ENCODE Project Consortium 2012) and 
RoadMap (Roadmap Epigenomics Consortium et al. 2015) 
histone modification, promoter, and open chromatin data, in 
addition to EnhancerAtlas (Gao et al. 2016) enhancer data, 
to define tissue-specific putative active enhancers and pro-
moters. Additional data sets of this sort, e.g., FANTOM 5 
(Andersson et al. 2014; FANTOM Consortium et al. 2014) 
could be utilized in this workflow. A more general direction 
for future work is to investigate the use of 2-SNP diplotype-
based analyses in our workflow, i.e., association analyses 
using 2-SNP haplotype pairs on homologous chromosomes.

We used TADs to link all enhancers and promoters within 
the same TAD. We, therefore, expect that most of the actual 
interacting enhancer–promoter regions would be a subset 
of the paired regions we analyzed, but our filtering sufficed 
to reduce the search space to a manageable size. TADs are 
believed to be relatively tissue-invariant (Dixon et al. 2012; 
Nora et al. 2012), thus we used available TADs from human 
Embryonic Stem Cells (hESC). With the advent of high-
resolution capture HiC data (Mifsud et al. 2015; Javierre 
et al. 2016), when available, more precise tissue-specific 
contactomics data sets could be employed in our workflow 
in lieu of TADs, enabling us to narrow down the potentially 
interacting enhancer–promoter pairs to a collection that 
coincides with the actual ones for that tissue.

Our findings include both 2-SNP haplotypes associated 
with the disease according to the full model and 2-SNP 
haplotypes whose interaction is associated with the disease. 
After filtering out those findings involving at least one SNP 
with a main effect, the remaining results are expected to 
include pairs of SNPs whose mechanism of association 
with T2D could either be epistasis (when an interaction is 
detected) or an additive contribution of effects too small 
to reach genome-wide significance. In terms of effect size, 
UNPHASED selects one of the haplotypes as reference and 
outputs the odds ratio for each of the other observed haplo-
types. After computing meta-analyses odd ratios (OR) across 
the three studies, the median undirectional OR (undirOR 
defined as OR when OR ≥ 1 and 1/OR when OR < 1) was 
1.14 [0.99–1.27], which is comparable to effect sizes for 
known T2D sentinel SNPs in Europeans (DIAGRAM Con-
sortium et al. 2014).

Our approach shows promise, in that it is able to uncover 
both novel and established candidate genes, such as recently 
identified T2D relevant loci, or loci with the support of 
GTEx or our own capture C data. The capture C evidence 
in effect supports the physical interaction between the two 
SNP-containing regions in a cell line close to a relevant 
tissue, which is important in our case especially because 
we started with a superset of potential enhancer-promoter 

regions. However, as described above, with future direct 
availability of capture C data for relevant tissues, these 
would be used in the initial workflow step to define the SNP 
pairs to investigate. The GTEx evidence instead supports 
the specific association between the enhancer SNP and 
the expression of the gene relative to the associated SNP’s 
promoter. This is relevant, although it does not support the 
interaction of two SNPs directly. In the future, investigation 
of the genetic interaction effect on the expression of the gene 
may provide such direct evidence.

Most of our findings were derived from our liver, adipose 
and small intestine enhancer-promoter collections. This may 
indicate that the 2-haplotype mechanisms uncovered by this 
type of workflow are primarily pertaining to insulin resist-
ance, or it may be due to the fact that pancreatic islets consist 
of a mixed cell population, only a fraction of which (the 
beta cells) are most relevant to T2D. Future availability of 
high-quality beta cell derived epigenomics data should yield 
more specific T2D relevant regulatory regions potentially 
leading to a greater number of significant SNP pairs in the 
pancreatic context. Of course, statistical epistasis is different 
from biological epistasis (Moore and Williams 2005, 2009; 
Phillips 2008), and more generally, statistical associations 
are different from biological associations. Thus, establishing 
whether our findings lead to precise biological mechanisms 
of variant pairs which are associated to T2D, warrants fur-
ther investigation. We also note that the SNP pair collections 
we derived were obtained after removing LD redundancies, 
so our SNP pair results must be assessed with not the spe-
cific SNPs in mind but rather the genomic regions in which 
they are harbored.

Overall, this approach represents an opportunity to impli-
cate additional loci contributing to the pathogenesis of com-
plex traits. After all, much of the missing heritability has still 
to be resolved for common diseases (Manolio et al. 2009), 
including T2D, so it is clear that many more loci, or combi-
nations thereof, remain to be characterized. The additional 
advantage of our approach is that the constraint of one SNP 
being located in a promoter leads to less ambiguity about 
what the effector gene could be; although one can still not 
be certain given other complex mechanisms that could still 
be at play. By reducing the degree of multiple testing by 
limiting testing on known genomic features, we have been 
successful in identifying a number of loci that yield a degree 
of replication support, most obviously AC022498.1, REST, 
ARID3B, ST3GAL4, RP5-1103B4.3, CECR7, WBP1L and 
SLCO3A1. Interestingly, none of these genes have strong lit-
erature support for a role in T2D, so are revealing new biol-
ogy underpinning this common disease; in addition, the fact 
that some of these genes are non-coding in nature highlights 
the need to understand their mechanism of action further in 
the context of complex traits.
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In conclusion, we have utilized available T2D GWAS and 
functional genomics data to propose a workflow for 2-SNP 
haplotype investigation which appears promising and is 
extensible to other traits when, in addition to GWAS data 
sets, epigenomics and contactomics data sets are also avail-
able for tissues that are relevant to the traits.

Materials and methods

Definition of putative active enhancer and promoter 
pairs

The tissue-specific data we used to define putative active 
enhancers and promoters are listed in Online Resource 4 
and were obtained from ENCODE (http://www.encod eproj 
ect.org; ENCODE Project Consortium 2012) and Enhancer-
Atlas (Gao et al. 2016). We used hg19 coordinates in all 
cases, applying LiftOver (Hinrichs et al. 2006) when needed. 
Region operations were performed with BEDOPS v2.4.25 
(Neph et al. 2012).

Putative active enhancers For each of the four tissues, the 
results from steps (1)–(4) are what we refer to as ‘putative 
active enhancers’:

1. Intersect broad peaks from H3K4me1 and H3K27ac.
2. Flank open chromatin regions by 150 bp on each side, 

merging any overlapping regions which result from this 
extension. Open chromatin regions were obtained by 
merging available DNase-Seq or ATAC-Seq peaks and 
available combined open chromatin files.

3. Take all regions from (2) which overlap with a region 
from (1).

4. Merge results from (3) with the available annotated 
enhancer regions for the tissue from EnhancerAtlas or 
ENCODE, if any (see Online Resource 4).

Putative active promoters For each of the four tissues, the 
results from steps (1)–(6) are what we refer to as ‘putative 
active promoters’:

1. Take H3K4me3 broad peaks.
2. Flank open chromatin regions by 150 bp on each side, 

merging any overlapping regions which result from this 
extension. Open chromatin regions were obtained by 
merging available DNase-Seq or ATAC-Seq peaks and 
available combined open chromatin files.

3. Take all regions from (2) which overlap with a region 
from (1).

4. Merge results from (3) with the available annotated pro-
moter regions for the tissue from ENCODE, if any (see 
Online Resource 4).

5. Take all regions from 1000  bp upstream to 500  bp 
downstream of GeneCode v19 Transcription Start Sites 
(TSS), downloaded from the UCSC Genome Browser 
(Hinrichs et al. 2006).

6. Take any region from (5) which intersects any of the 
regions in (4).

Pairing We utilized TADs to narrow down enhancer–pro-
moter pairs which may interact. TADs are believed to be 
relatively tissue-invariant (Dixon et al. 2012; Nora et al. 
2012). We used the hESC TADs, derived from HiC data, 
downloaded from http://promo ter.bx.psu.edu/hi-c/downl 
oad.html (Dixon et al. 2012) to link our putative tissue-
specific enhancers to promoters, by pairing each putative 
active enhancer with every putative active promoter in the 
same TAD. For each tissue, SNPs harbored in each putative 
active enhancer or promoter were identified with Biofilter 
v2.4.0 (https ://ritch ielab .psu.edu/softw are/biofi lter-downl 
oad-1; Bush et al. 2009; Pendergrass et al. 2013). All SNP 
pairs with one SNP in an enhancer and one SNP in a linked 
promoter were formed. These pairs were then used in the 
post-imputation quality control (QC) described below.

GWAS data set processing

The three GWAS data sets used for this work are listed 
below and are available, upon application, at the indicated 
websites.

• The GENEVA Genes and Environment Initiatives in 
T2D, available from the database of Genotypes and Phe-
notypes (dbGaP; Tryka et al. 2014) under phs000091.
v2.p1 (https ://www.ncbi.nlm.nih.gov/proje cts/gap/cgi-
bin/study .cgi?study _id=phs00 0091.v2.p1).

• The Finland–United States Investigation of NIDDM 
Genetics (FUSION) Study, available from dbGaP under 
phs000867.v1.p1 (https ://www.ncbi.nlm.nih.gov/proje 
cts/gap/cgi-bin/study .cgi?study _id=phs00 0867.v1.p1).

• Welcome Trust Case Control Consortium (WTCCC; 
Welcome Trust Case Control Consoritum 2007; 
https ://www.wtccc .org.uk) T2D and Control data 
sets EGAD00000000001, EGAD00000000002, and 
EGAD00000000009.

Imputation We used PLINK v1.9 (https ://www.cog-
genom ics.org/plink 2/), bcftools (http://www.sange r.ac.uk/
scien ce/tools /samto ols-bcfto ols-htsli b) and vcftools (Dela-
neau et al. 2012) to manipulate and filter our data sets. For all 
data sets, our starting points were the plink files made avail-
able from the respective source. In the case of GENEVA, we 
started from the dbGaP ‘zero-out’ plink files (where a set of 
specific SNPs in specific samples had been set to 0, because 
a chromosome anomaly or quality problem was detected) 

http://www.encodeproject.org
http://www.encodeproject.org
http://promoter.bx.psu.edu/hi-c/download.html
http://promoter.bx.psu.edu/hi-c/download.html
https://ritchielab.psu.edu/software/biofilter-download-1
https://ritchielab.psu.edu/software/biofilter-download-1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000091.v2.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000091.v2.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000867.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000867.v1.p1
https://www.wtccc.org.uk
https://www.cog-genomics.org/plink2/
https://www.cog-genomics.org/plink2/
http://www.sanger.ac.uk/science/tools/samtools-bcftools-htslib
http://www.sanger.ac.uk/science/tools/samtools-bcftools-htslib
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and merged the NHS and HPFS data after removal of the 
duplicate markers and duplicated/related individuals anno-
tated in the provided sample files. For WTCCC, we merged 
the data sets from the three accessions cited above. In all 
cases, we mapped coordinates to hg19, and then applied the 
following filters in the listed order:

1. Individuals failing the PLINK ‘--check-sex’ were 
removed.

2. Markers with missing-call rate exceeding 0.05 were 
removed.

3. Markers with Minor Allele Frequency (MAF) below 
0.01 were removed.

4. Markers with Hardy–Weinberg equilibrium exact test p 
value below 0.00001 were removed.

This filtering lead to the following counts:
GENEVA: 724,194 markers for 5866 individuals (2738 

cases and 3128 controls; 2498 males and 3368 females).
FUSION: 314,276 markers for 1699 individuals (916 

cases and 783 controls; 942 males and 757 females).
WTCCC: 422,927 markers for 4966 individuals (1973 

cases and 2993 controls; 2608 males and 2358 females).
These data were recoded to vcf format and prepared 

for imputation according to the Sanger Imputation Server 
(McCarthy et al. 2016) instructions. The Sanger Imputation 
Server EAGLE2 + PBWT pipeline (Loh et al. 2016; Dur-
bin 2014) was used to impute the data with UK10K + 1000 
Genomes Phase 3 (Huang et al. 2015; 1000; Genomes Pro-
ject Consortium 2015) as reference panel.

Principal components (PCs) PCs were computed using 
genotyped data only. For each data set, we applied a second 
(more stringent) round of filtering to the data used as inputs 
to the Sanger Imputation Server in the following order:

1. Individuals failing the PLINK ‘--check-sex’ were 
removed.

2. Markers with missing-call rate exceeding 0.01 were 
removed.

3. Individuals with missing-call rate exceeding 0.01 were 
removed.

4. Markers with MAF below 0.05 were removed.
5. Markers with Hardy–Weinberg equilibrium exact test p 

value below 0.00001 were removed.
6. Individuals were filtered based on relatedness as detailed 

below.
7. Steps 2–5 were then repeated.

The first ten PCs were then obtained using the PLINK 
-pca command after Linkage Disequilibrium (LD) pruning 
(-indep-pairwise 50 5 0.2).

Individual filtering based on relatedness A quick and 
commonly used method to filter individuals based on 

relatedness in a given GWAS data set is described in Ander-
son et al. (2010). First, identity by state (IBS) is calculated 
(with PLINK) for each pair of individuals based on the aver-
age proportion of alleles shared in common at independent 
genotyped markers, where markers are pruned so that no 
pair within a given window (window size = 50) is correlated 
(typically taken as r2 > r0 for a specified r0). Then, a custom 
script runs through the pairs as output by PLINK and one 
individual is removed from each pair with an IBS greater 
than a specified threshold I0, where the individual removed 
is the one with the greater number of missing data. We 
applied this approach, i.e., steps 11–13 of Anderson et al. 
(2010), with I0 = 0.125 and the r2 threshold for LD-pruning 
selected to get a number of markers close to 100,000 (0.2 for 
GENEVA, 0.3 for FUSION and WTCCC). This removed 29 
individuals for GENEVA and 7 for FUSION. However, this 
approach dropped a substantial number of individuals for 
WTCCC; upon closer examination we observed that this was 
due to the presence of a small set of individuals with high 
IBS with the majority of the other subjects in the WTCCC 
data set (possibly an artifact). In practice, the approach in 
Anderson et al. (2010) works well in many situations but in 
cases like the WTCCC it does not remove a reasonably small 
number of individuals. If we consider the problem at hand in 
a graph-theoretic manner, where the individuals are nodes 
and there is an edge between two nodes if the correspond-
ing individuals have IBS > I0, then the goal is to remove the 
smallest number of nodes so that the resulting graph has no 
edges. Thus, the problem is reduced to the known ‘minimum 
vertex problem’ in graph theory. This is an NP-hard prob-
lem which, however, has an approximation algorithm. The 
approximation algorithm never finds a vertex cover whose 
size is more than twice the size of a minimum possible ver-
tex cover. When we applied the approximation algorithm 
directly to our WTCCC with a custom script exploiting the 
python Networkx library (Hagberg et al. 2008), this sug-
gested the removal of 148 individuals. Aware that this may 
not be optimal, we proceeded in a two-step way to reduce the 
number of removed individuals. First, we used the approach 
(Anderson et al. 2010) with I0 set to a higher value (0.3), 
which removed 64 individuals. Then we applied the mini-
mum vertex cover approximation approach to the remaining 
individuals, which removed 36 additional individuals. With 
this two-step approach, we therefore removed 100 individu-
als overall in the WTCCC to achieve unrelatedness.

Post-imputation quality control (QC) For each tissue 
and for each GWAS data set, we considered the imputed 
data for the individuals remaining after the filtering used 
for PCs and all bi-allelic SNPs from the pairs obtained 
for that tissue passing all imputation filters and with an 
info score > 0.7. We then applied filtering in the follow-
ing order:
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1. Markers with missing-call rate exceeding 0.01 were 
removed.

2. Individuals with missing-call rate exceeding 0.01 were 
removed. For GENEVA, ancestry annotation was pro-
vided and we retained only those individuals annotated 
as European ancestry.

3. Markers with MAF below 0.05 were removed.
4. Markers with Hardy–Weinberg equilibrium exact test p 

value below 0.00001 were removed.
5. Markers with different genotype call rates between cases 

and controls according to steps 24–25 of Anderson et al. 
(2010) were removed (actually no markers after 1–4 
failed this filter).

Among the SNP pairs corresponding to each tissue we 
retained those where both SNPs were present in all three 
post-imputation QC-ed GWAS data sets. These pairs were 
LD-pruned using PLINK and based on the post-imputation 
QC-ed GENEVA data set as follows. Any pair with r2 ≥ 0.6 
was removed. Moreover, pairs were sequentially removed 
to ensure that the final collection did not contain any two 
pairs (eSNP1, pSNP1), (eSNP2, pSNP2) with the r2 between 
eSNP1 and eSNP2 ≥ 0.9 and the r2 between pSNP1 and 
pSNP2 ≥ 0.9. The final number of SNP pairs to analyze 
for each tissue and the numbers of individuals and SNPs 
involved in these analyses for each of the three GWAS data 
sets are reported in Table 3.

2‑SNP haplotype analyses

For each tissue we analyzed the corresponding SNP pair 
collection using UNPHASED (Dudbridge 2008) on the 
2-SNP haplotypes, both with the ‘full’ model option and 
with the ‘gxg’ model option. In the full model, there is an 
odds ratio parameter for each observed haplotype. One of 
the haplotypes (the first one when haplotypes are sorted) is 
chosen as reference (with an odds ratio of 1) and the odds 
ratios for the other haplotypes are computed against this. The 
gxg test compares the haplotype main effects model to the 

full model. The haplotype main effects model (‘haplomain’) 
uses allele coding (where haplotype risks are represented in 
terms of main effects of each locus and interactions between 
them) and defines a full model for one marker, and another 
full model for the other marker, with no interaction terms 
between the two markers. More details are available in the 
user manual (https ://sites .googl e.com/site/fdudb ridge /softw 
are/unpha sed-3-1).

Upon testing gender and age for association with pheno-
type in each GWAS (for age, we had detailed information 
only for GENEVA and FUSION), we determined to only 
adjust for gender in the WTCCC and FUSION analyses. 
After assessing inflation of the UNPHASED p values on 
each data set, we determined that the best option was to not 
adjust for any PC. For each of the two analysis models, we 
combined the p values with the Stouffer’s method across 
the three GWAS using the sumz function in the R package 
‘metap’ (https ://cran.r-proje ct.org/web/packa ges/metap /) 
with weights equal to square root of the number of individu-
als in each GWAS. We then adjusted the combined p values 
by applying the BH multiple testing correction (Benjamini 
and Hochberg 1995), implemented in R. We used a threshold 
of 0.1 on our adjusted combined p values.

For each GWAS and for each SNP pair with no main 
effects we have extracted all UNPHASED haplotype odds 
ratios and 95% confidence intervals and combined these 
across the three studies using GWAMA v2.2.2 (Mägi and 
Morris 2010).

Main effects

We used PLINK v1.9 to perform logistic regression analyses 
for main effects, with the same covariate adjustments as in 
UNPHASED. We combined p values across data sets and 
adjusted them as done for the SNP pair analyses, using the 
same significance threshold. To mark SNPs for well-known 
T2D signals we started with a manually curated list of about 
60 sentinel loci and compiled the list of all SNPs having 

Table 3  Statistics on SNP 
collections and GWAS data sets

Tissue SNP pairs Distinct SNPs

Pancreatic islet 261,574 36,329
Adipose tissue 505,858 51,169
Small intestine 789,309 68,514
Liver 1,130,898 90,070

GWAS Individuals Cases Controls Males Females

GENEVA 5607 2616 2991 2347 3260
WTCCC 4865 1917 2948 2558 2307
FUSION 1688 911 777 935 753

https://sites.google.com/site/fdudbridge/software/unphased-3-1
https://sites.google.com/site/fdudbridge/software/unphased-3-1
https://cran.r-project.org/web/packages/metap/
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r2 ≥ 0.4 with at least one of these loci using http://raggr 
.usc.edu/ and the European population from 1000 Genomes 
phase 3. The SNP list resulting from the latter is in Online 
Resource 5.

Enhancer annotation

In Online Resource 1 sheet 1, we annotated enhancers by 
the presence of predicted transcription factor (TF) binding 
motifs within their region. To obtain the latter, we scanned 
the enhancer sequences with the FIMO (v4.11.3) software 
from the MEME suite (Bailey et al. 2009; Grant et al. 2011) 
using the (519) JASPAR CORE 2016 vertebrate motifs 
(Mathelier et al. 2016), with a q value threshold of 0.05 for 
hits.

GTEx queries

We used the GTEx v7 (https ://www.gtexp ortal .org) query 
‘Test your own eQTL’ for each specified SNP, gene and tis-
sue and reported the resulting eQTL p value, without addi-
tional multiple testing corrections, as we were merely using 
this in a confirmatory fashion for pre-specified hypotheses 
obtained from our analyses.

Capture C data

Triplicate libraries were generated from HEPG2 cells using 
methods described in Xia et al. (2016). We used Agilent 
SureSelect oligonucleotide probes to capture hybrid reads 
involving regions of interest (baits). The baits relevant to this 
work are two DpnII fragments, respectively, in the promoters 
of ARID3B and HECW2. The locations of these baits and of 
the oligonucleotides selected within each are provided in 
Online Resource 6.

Data availability

The accessions for the publicly available ENCODE (http://
www.encod eproj ect.org) data sets used in this work are 
listed in Online Resource 4. The EnhancerAtlas data are 
publicly available at http://www.enhan cerat las.org/.

The three GWAS data sets used for this work are avail-
able, upon application, at the websites listed in “Materials 
and methods”. One of these data sets consists of data gen-
erated by the Wellcome Trust Case-Control Consortium 
(WTCCC). A full list of the investigators who contributed 
to the generation of the data is available from http://www.
wtccc .org.uk. Funding for the WTCCC project was provided 
by the Wellcome Trust under awards 076113, 085475 and 
090355. The Consortium and/or Individual Investigators 

bear no responsibility for the further analysis or interpre-
tation of these data, over and above that published by the 
Consortium.

All remaining relevant data are in the Online Resources. 
In addition, bam files for the aligned valid hybrid read pairs 
corresponding to Online Resource 2 and Fig. 2 are available 
from the corresponding authors on reasonable request.
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