
1 3

Hum Genet (2017) 136:1129–1141
DOI 10.1007/s00439-017-1819-2

REVIEW

RNA processing as an alternative route to attack glioblastoma

Fabiana Marcelino Meliso1   · Christopher G. Hubert2 · Pedro A. Favoretto Galante1 · 
Luiz O. Penalva3 

Received: 3 February 2017 / Accepted: 2 June 2017 / Published online: 12 June 2017 
© Springer-Verlag GmbH Germany 2017

as apoptosis, DNA repair, cell proliferation, and migration. 
Splicing defects can even induce genomic instability, a 
common characteristic of cancer, and a driver of tumor evo-
lution. Importantly, components of the splicing machinery 
are targetable; multiple drugs can inhibit splicing factors 
or promote changes in splicing which could be exploited 
to begin improving clinical outcomes. Here, we review the 
current literature and present a case for exploring RNA pro-
cessing as therapeutic route for the treatment of GBM.

Glioblastoma genomics

Glioblastoma (GBM) is the most common and most lethal 
cerebral malignancy. According to Word Health Organiza-
tion (WHO 2016), a GBM patients’ life expectancy is about 
15  month after diagnosis, and less than 5%, of patients 
survive more than 5  years (WHO). Currently, GBM is 
diagnosed through advanced imaging techniques, includ-
ing computing tomography (CT) and magnetic resonance 
imaging (MRI). The primary treatment regimen is surgi-
cal removal of the tumor, followed by radiotherapy and/or 
chemotherapy (WHO, ABTA 2016). Unfortunately, many 
other factors such as high vascularity, aggressive prolif-
eration and invasion, and the notorious heterogeneity that 
characterize GBM contribute to therapeutic resistance (Sot-
toriva et al. 2012; Xie and Mittal 2014; Motaln et al. 2015). 
This inefficacy of current therapies emphasizes urgent need 
for new discoveries leading to more efficient routes of 
treatment.

The Cancer Genome Atlas (TCGA) is a massive 
genomic and transcriptomic project started in 2005 by the 
National Cancer Institute (NCI) and the National Human 
Genome Research Institute (NHGRI) with the purpose of 
assembling genomic information about multiple tumor 

Abstract  Genomic analyses have become an important 
tool to identify new avenues for therapy. This is especially 
true for cancer types with extremely poor outcomes, since 
our lack of effective therapies offers no tangible clinical 
starting point to build upon. The highly malignant brain 
tumor glioblastoma (GBM) exemplifies such a refrac-
tory cancer, with only 15  month average patient survival. 
Analyses of several hundred GBM samples compiled by 
the TCGA (The Cancer Genome Atlas) have produced an 
extensive transcriptomic map, identified prevalent chromo-
somal alterations, and defined important driver mutations. 
Unfortunately, clinical trials based on these results have not 
yet delivered an improvement on outcome. It is, therefore, 
necessary to characterize other regulatory routes known for 
playing a role in tumor relapse and response to treatment. 
Alternative splicing affects more than 90% of the human 
coding genes and it is an important source for transcript 
variation and gene regulation. Mutations and alterations in 
splicing factors are highly prevalent in multiple cancers, 
demonstrating the potential for splicing to act as a tumor 
driver. As a result, numerous genes are expressed as can-
cer-specific splicing isoforms that are functionally distinct 
from the canonical isoforms found in normal tissue. These 
include genes that regulate cancer-critical pathways such 
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types, including GBM. The TCGA classifies GBM into 
four subgroups: classical, mesenchymal, neural, and pro-
neural. Tumors in the classical subgroup present the most 
common genomic abnormalities. They are characterized 
by high expression of the epidermal growth factor recep-
tor EGFR, but do not contain TP53 mutations, commonly 
observed in other GBM subgroups. Mesenchymal tumors 
tend to be more aggressive and often display mutations 
in NFI, PTEN, and TP53 and display high expression of 
CHI3L1 and MET. The neural subgroup typically expresses 
several genes commonly observed in normal cerebral tis-
sue, non-tumor nerve cells, or neurons, whereas the pro-
neural subtype is associated with younger patient and is 
characterized by frequent mutations in IDH1, PDGFRA, 
and TP53 (Verhaak et  al. 2010). Other studies have cat-
egorized GBM mutations based on survival time (Kim 
et  al. 2013, Bao et  al. 2013). In long survivor patients, 
the amplification of CDK4 and of EGFR, deletion of 
CDKN2A, increased expression of DNM1 and mitogen-
activated protein kinase 1 (MAPK1), and decreased expres-
sion of HSPA9, PSMD3, and CANX have been observed 
(Brennan et  al. 2013; Patel et  al. 2013). Overexpression 
of PI3K/AKT pathway-associated genes, including NEK9 
and PI3KCB, of ribosomal proteins, including RPS11 and 
RPS20, and of some survival kinase genes are genomic 
characteristics of treatment-resistant patients. Mutations in 
the telomerase reverse transcriptase gene, TERT, were also 
observed in resistant tumors (Yong et al. 2015; Simon et al. 
2015; Varghese et al. 2016). Interestingly, these mutations 
can occur in the non-protein-coding space; in fact, TERT 
promoter mutations may be the most common mutations in 
GBM.

This set of studies and findings is building the profile 
of differentially expressed and mutated genes in GBM. In 
addition to these items, scientists are now focusing their 
efforts upon comprehension of epigenetic and RNA pro-
cessing changes, including DNA methylation, aberrant 
miRNA expression, and more recently alterations in splic-
ing pattern and polyadenylation [poly(A)] site usage.

RNA‑processing regulators in glioblastoma

Changes in the expression levels and activity of RNA 
binding proteins can trigger multiple alterations in RNA 
processing, thus contributing to the acquisition of cancer-
relevant phenotypes. Expression analysis of more than 
300 RBPs in normal vs. tumor tissues showed that 36 of 
them are upregulated in brain tumors (Galante et al. 2009). 
More recently, using TCGA data, Kechavarzi and Janga 
(2014) have studied approximately 850 RBPs in 16 dif-
ferent tissues from the Human BodyMap 2.0 Project. 
First, they showed that RBPs are differentially expressed 

at significantly higher levels compared to other classes 
of genes, including regulators, such as transcription fac-
tors, suggesting a key role in controlling gene expression. 
Next, the authors demonstrated that a set of 30 RBPs is 
strongly upregulated across at least two-thirds of the nine 
cancers profiled. Highly upregulated RBPs were related 
to gene expression, transcriptional deregulation and trans-
port of biomolecules, cellular regulation, and proliferation 
(Kechavarzi and Janga 2014). Cheung and collaborators 
(2008) compared ten GBM and ten non-tumor tissues via 
microarray analysis and identified three splicing regulators 
associated with GBM-specific splicing events. In a study 
focusing exclusively on glioblastoma, we studied over 
1500 RBPs and their expression profile in tumor versus 
normal brain samples (Correa et  al. 2016). We identified 
223 upregulated and 135 downregulated RBPs in tumors 
compared to normal brain, as well as 275 upregulated and 
85 downregulated RBPs found in glioma stem cells (GSCs) 
compared to normal neural progenitor cells. We deter-
mined 58 RBPs to be upregulated in tumor cells in both 
analyses, 21 of which were associated with poor prognosis. 
Their impact on cell viability, proliferation, and apoptosis 
revealed the small nuclear ribonucleoprotein-associated 
proteins B (SNRPB), a core component of the spliceo-
some, as the main effectors. Knockdown of SNRPB had a 
strong impact on alternative splicing events, preferentially 
affecting genes involved in RNA processing, DNA repair, 
and chromatin modulation. The exon junction complex pro-
teins MAGOH and MAGOHB and the splicing component 
SNRPG were also implicated as possible oncogenic factors 
(Correa et al. 2016). A similar effect has been observed in 
lung cancer, where high expression of SNRPB along with 
other RNA-processing regulators was significantly associ-
ated with reduced overall survival (Valles et al. 2012).

A major player in RNA processing and cancer devel-
opment is the Polypyrimidine-tract-binding protein, 
PTB (Kafasla et  al. 2012) which functions at the inter-
section between neurogenesis and brain tumor develop-
ment. PTB is poorly expressed in cerebral tissues, but 
highly expressed in low-grade astrocytoma, anaplastic 
astrocytoma, glioblastoma multiforme, medulloblastoma, 
paraganglioma, and the glial population of both gangli-
oglioma and dysplastic gangliocytoma (McCutcheon 
et  al. 2004; Izaguirre et  al. 2012; Fontana et  al. 2015). 
High expression of PTB is also observed in tumors out-
side the nervous system. In ovarian and breast cancers, 
for instance, it is overexpressed and its knockdown led 
to a decrease in growth, colony formation, and invasive-
ness (He et al. 2007, 2014). PTB binds to polypyrimidine 
tracts located mainly in introns and can influence exon 
inclusion (Kafasla et  al. 2012). PTB overexpression in 
glioma tissues and GSCs alters the regulation of micro-
tubule dynamics through MARK4 by causing an increase 
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in the production of the MARK4L isoform, thus enhanc-
ing cell proliferation (Fontana et  al. 2015). Neoplastic 
transformation of glial cells affects the inclusion of the 
alpha exon in human FGFR-1 mRNA (Jin et  al. 1999). 
This alpha exon is included in FGFR-1 mRNA transcripts 
in normal cells, but not in GBM cells thanks to the action 
of PTB. The new isoform generates a high-affinity recep-
tor that confers a cell growth advantage (Jin et al. 2000).

A member of the large family of heterogeneous nuclear 
ribonucleoproteins, hnRNPH, is upregulated in gliomas 
(Lefave et al. 2011; Golan-Gerstl et al. 2011). It contributes 
to invasion and survival of tumor cells and impacts tumor 
growth. In GBM, the death-domain adaptor protein insu-
loma–glucagonoma protein 20 (IG20) is consistently aber-
rantly spliced and generates an antagonist, anti-apoptotic 
isoform (MAP-kinase activating death-domain protein, 
MADD), redirecting TNF-α/TRAIL-induced death signal-
ing to promote survival and proliferation. This switch in 
splicing is regulated by hnRNPH. Similarly, hnRNPH regu-
lates the splicing of RON tyrosine kinase receptor, generat-
ing a variant that promotes migration and invasion (Lefave 
et al. 2011; Golan-Gerstl et al. 2011). hnRNPH participa-
tion in tumorigenesis is likely very complex, since RNA-
seq, CLIP, and proteomic analyses revealed an elaborate 
network containing a large number of hnRNPH targets 
regulated at multiple levels. Although splicing regulation 
is the main mechanism by which hnRNPH regulates gene 
expression, poly(A) site selection, and translation are also 
employed (Uren et al. 2016).

HuR (ELAVL1) is probably the most well-characterized 
RNA binding protein and is the only member of the ELAV 
family that is ubiquitously expressed (Grammatikakis et al. 
2017). HuR is a polyvalent RNA binding protein, acting at 
the level of RNA stability, translation, and RNA process-
ing and multiple binding sites for HuR have been identi-
fied in intronic regions. Several research groups performed 
genomic analyses of HuR (RNA-seq and CLIP), establish-
ing a large list of targets that corroborate its involvement in 
multiple biological processes, including apoptosis, prolif-
eration, RNA processing and metabolism, cell cycle, angio-
genesis, and inflammation (Lebedeva et al. 2011; Mukher-
jee et al. 2011; Uren et al. 2011). RNA-seq analysis of HuR 
knockdown cells indicating changes in splicing, supporting 
then an additional role for HuR as an RNA-processing reg-
ulator (Srikantan and Gorospe 2011). HuR is overexpressed 
in highly malignant tumors, including GBM, and is related 
to poor survival (Abdelmohsen and Gorospe 2010; Vo et al. 
2012; Grammatikakis et  al. 2017). HuR knockdown in 
GBM cells decreased anchorage-independent growth and 
cell proliferation, induced apoptosis, and reduced tumor 
volume in a xenograft assay. Conversely, overexpression of 
HuR induced chemo-resistance to standard glioma thera-
pies (Filippova et al. 2011).

RBM14 is an RNA binding protein that interacts with the 
transcriptional co-regulator TRBP and regulates transcrip-
tion and splicing in a promoter-preferential manner, affect-
ing the expression of steroid hormones (Auboeuf et  al. 
2002). It is homologous to the oncoproteins EWS and TLS. 
The RBM14 gene is amplified at the chromosome 11q13 
locus in a subset of primary human cancers, including non-
small cell lung carcinoma, squamous cell skin carcinoma, 
and lymphoma, and RBM14 has been shown to have trans-
forming activities in soft agar assays (Su et al. 2007). On 
the other hand, RBM14 is significantly decreased in human 
renal cell carcinoma when compared with normal kidney. 
In this context, it seems to function as tumor suppressor. 
RBM14 inhibits G(1)-S transition in human kidney cells 
and suppresses anchorage-independent growth and xeno-
graft tumor formation, in part via inhibition of MYC and 
its downstream effectors CCND1 and SKP2 (Kang et  al. 
2008). RBM14 is highly expressed in embryonic tissues 
and stem cells and is necessary to maintain the stem-like 
state of GBM spheres. RBM14 knockdown affects GBM 
sphere size, reduces tumorigenesis, and increases the sen-
sibility of GBM stem-like cells in vivo (Yuan et al. 2014). 
RBM14 was identified in a screen as an inhibitor of neur-
ite outgrowth (Simpson et al. 2015). This multi-functional 
protein has also been recently connected to genomic insta-
bility, DNA repair, and radio-resistance in the context of 
GBM (Kai 2016). RBM14 was also identified as a novel 
suppressor of assembly of centriolar protein complexes, 
where its depletion induces ectopic formation of centriolar 
protein complexes via the STIL/CPAP complex. A reduc-
tion in RBM14 levels makes GBM cells more sensitive to 
radiation, since it stimulates DNA repair by controlling the 
DNA-PK-dependent non-homologous end-joining (NHEJ) 
pathway (Yuan et al. 2014; Shiratsuchi et al. 2015).

Figure  1 summarizes the regulatory roles of the RBPs 
here described. In Fig.  2, we show their expression pro-
file in gliomas and survival plots. High expression of 
hnRNPH1, PTBP1, SNRPB, and ELAVL1 is linked to 
poor survival. As expected, the expression of these RBPs 
is higher in GBM in respect to gliomas grades II and III, 
while there is decreased expression of NUDT in higher 
grades.

A recent article from Bi and collaborators (2017) has 
reinforced the importance of RNA-processing factors in 
glioblastoma development. Using label-free quantitative 
proteomics, they have detected 136 differentially expressed 
proteins between GBM and low-grade gliomas. Among 
them are several proteins implicated in RNA processing 
(SNRPA1, SNRPB2, SF3A1, hnRNPL, EFTUD2, SF3B3, 
PRPF8, and SF3B2). Through network analysis, the authors 
have linked RNA-processing regulators to EGFR, STAT1, 
and MAPK1 and signal transduction pathways implicated 
in GBM development. It is important to emphasize that 
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these splicing factors were found to be in the central posi-
tion of the network connecting RNA processing and neu-
ronal structure and function.

All examples listed above refer to RNA-processing fac-
tors implicated in oncogenic activities. Unfortunately, regu-
lators acting as tumor suppressors in the context of GBM 
have not received much attention. Analysis of TCGA data 
indicates that several RBPs implicated in RNA processing 
are strongly downregulated in GBM (Correa et  al. 2016), 
and in many cases, their low levels of expression are associ-
ated with poor prognosis. Table 1 shows 63 of those RBPs 
downregulated in GBM compared to normal tissue. These 
are labeled according to function and we indicate the rela-
tion of each to alternative splicing, RNA processing, and 
binding to poly(A) tail. This list is likely ripe for functional 
screening to identify new players in gliomagenesis.

Alternative splicing events in glioblastoma development

RNA-processing regulation occurs in a specific manner by 
a complex RNA–protein network according to cellular and 
tissue context. Changes in this delicate balance can lead to 
disease states and cancer (Yeo et al. 2016). In fact, alterna-
tive and aberrant splicing can affect several important play-
ers in tumor initiation and growth (Yu et al. 2007; Danan-
Gotthold et al. 2015; Tsai et al. 2015; Yeo et al. 2016). For 
example, changes in expression or function of RNA-pro-
cessing factors as well as mutations in splice sites, regula-
tory elements, and RNA binding protein sites are respon-
sible for most of the alterations observed in cancer cells 
(Brooks et al. 2014; Kechavarzi and Janga 2014; Weinhold 
et al. 2014; Darman et al. 2015).

Large-scale expression analyses in multiple tumor types 
have produced a catalogue of splicing isoforms related to 
malignant transformation (Dorman et  al. 2014; Brooks 
et  al. 2014, Tsai et  al. 2015; DiFeo et  al. 2009, Dargahi 
et al. 2014). Similarly, splicing regulators displaying muta-
tions or differential expression in cancer cells have been 
identified. The most common examples include SF3B1 
SRSF1, RBM4, RBM5/6/10, U2AF1, and the splicing 
kinases clk/STY and CLK2 (Tsai et al. 2015; Brooks et al. 
2014; Garcia-Sacristan et  al. 2005; Yoshida et  al. 2015). 
Interestingly, an examination of TCGA RNA-seq data from 

eight distinct cancer types showed several shared splicing 
alterations produced by the RNA binding proteins (RBPs) 
RBFOX2, QKI, MBNL1/2, PTBP1, and CELF2 (Danan-
Gotthold et al. 2015), suggesting common malignant routes 
via splicing regulation.

Changes in splicing mechanisms have also been widely 
associated with GBM malignancy. Genome-wide analysis 
from exon expression array defined a set of 14 genes with 
splicing alterations prevalent in GBM samples (Cheung 
et  al. 2008). In another large-scale study, 117 genes have 
shown to display both splicing and expression alterations 
in both GBM and oligodendroma. Many of these genes 
belong to categories regulating neuron differentiation, exo-
cytosis, and regulation of neurotransmitter secretion. Sev-
eral of the most significantly upregulated and downregu-
lated genes were suggested by the authors as possible GBM 
biomarkers (Yu and Fu 2015). In another study, expres-
sion analysis of 250 GBM patients identified 2477 genes 
with alternative exon usage in tumors. Overall, the genes 
displaying alternative exon usage were related to multiple 
pathways involved in cancer establishment, including cell 
adhesion, regulation of Ras and Rho signaling, cytoskel-
eton organization, chromatin modification, and oxidative 
phosphorylation (Sadeque et al. 2012).

Another series of studies focused on splice alterations 
of specific GBM relevant genes, particularly those of the 
epidermal growth factor (EGF) signaling pathway. Sev-
eral genes associated with EGF are regulated by alterna-
tive splicing and play relevant functions in GBM develop-
ment. EGF itself undergoes alternative exon usage in GBM 
resulting in variants that increase GBM survival or overall 
increased EGF expression that increases GBM survival 
and resistance (Sadeque et al. 2012). In a related example, 
splicing of a brain-enriched cassette exon in the membrane-
binding tumor suppressor annexin A7 (ANXA7) decreases 
endosomal targeting of EGFR, enhancing EGFR signal-
ing during glioblastoma development (Ferrarese et  al. 
2014). The EGFRvIII mutant isoform is highly prevalent 
in GBM (Padfield et al. 2015) and its expression results in 
genome-wide alterations in alternative splicing patterns. 
One such EGFRvIII-induced change upregulates the het-
erogeneous nuclear ribonucleoprotein (hnRNP) A1, which 
in turn promotes the splicing of the transcript encoding 

Fig. 1   Representation of RNA-
processing regulators implicated 
in glioblastoma development 
and their role in gene expression
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Fig. 2   RNA-processing regula-
tors and relevance to GBM 
development. Expression levels 
of RBM14, hnRNPH1, PTB, 
SNRPB, HuR (ELAVL1), 
and NUDT21 (CFIm25) were 
assessed in grade II (red box-
plot), III (green boxplot), and IV 
(blue boxplot) gliomas, as well 
as patient survival time accord-
ing to gene expression level. 
Boxplots and survival plots 
were created using GlioVis 
portal (Bowman et al. 2017). 
The data set used in those 
analyses was from adult human 
data from TCGA_GBMLGG 
multiple data sets combined. On 
the right: survival curve analy-
sis was based on Kaplan–Meier 
estimation and was considered 
significant if long-rank and Wil-
coxon p values were less than 
or equal to 0.05. We considered 
all histology groups (oligoden-
droglioma, oligoastrocytoma, 
astrocytoma, and GBM) of all 
subtypes (mesenchymal, classi-
cal, and pro-neural) and based 
the chosen cutoff on the median 
value. The survival curve rep-
resents the number of survivors 
(Y axis) along the time (X axis). 
On the left: the box plots were 
based on mRNA expression 
data from RNA-seq platform. 
We used a predefined plot based 
on histology and compared 
glioma grades II, III, and IV
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the MYC-interacting partner Max, thus generating Delta 
Max. Delta Max promotes glioma cell proliferation and 
GBM growth by enhancing tumorigenic functions of MYC 
(Babic et  al. 2013). In addition, CD97, a member of the 
epidermal growth factor seven-span transmembrane (EGF-
TM7) family, is implicated in cell adhesion and migration, 
and is overexpressed in classical and mesenchymal GBM 
subtypes. Five extracellular EGF-like domains can be alter-
natively spliced to generate different isoforms. Two of 
CD97 isoforms, known as EGF (1,2,5) and EGF (1,2,3,5), 
are found in GBM and participate in growth, migration, 
and metastasis of cancer cells, as well as binding integ-
rins which enable GBM invasiveness and angiogenesis. 
The proportion of these isoforms present in GBM is strik-
ing enough to put one of them, EGF (1,2,5), on the list of 
GBM prognostic candidates (Safaee et  al. 2015). Table  2 
summarizes prominent alternatively spliced genes in GBM, 
including their respective GO terms related to their molecu-
lar functions.

Alternative splicing isoforms can have very distinct 
biological functions. A switch in splicing isoform balance 
or generation of a new isoform can contribute to cancer 
phenotypes. For instance, the C-CBL gene encodes an E3 
ubiquitin-protein ligase involved in cell signaling and pro-
tein ubiquitination. Although this gene normally functions 
as a tumor suppressor, a C-CBL splicing variant generated 
by exon skipping in glioma cells contributes to malignant 
behavior (Seong et  al. 2015). Similarly, the expression of 
RSU1, a gene that normally inhibits oncogenic Ras signal-
ing in GBM cells, can undergo exon skipping resulting in 
a loss of tumor suppressor function and subsequent tumor 
growth (Chunduru et  al. 2002). Another example is KAP, 
a cyclin-dependent kinase-associated phosphatase that 
dephosphorylates CDK2, inhibiting cell cycle progression. 
In astrocytomas, KAP aberrant splicing leads to the pro-
duction of a dominant negative variant that decreased KAP 
protein, promotes cell cycle progression, and increases 
cell migration (Yu et  al. 2007). The transcription activa-
tor Krüppel-like factor 6 (KLF6) gene encodes multiple 
protein isoforms derived from alternative mRNA splicing. 
As many as 16 alternatively spliced variants with diver-
gent or even opposing functions can be produced. The 
full-length KLF6 (KLF6-FL) is a tumor suppressor gene, 
while the KLF6 splice variant 1 (KLF6-SV1) is an onco-
genic isoform prevalent in GBM cells (Tchirkov et  al. 
2010). KLF6-SV1 reduction decreased cell proliferation by 
about 50% (Camacho-Vanegas et al. 2007). GLI1 encodes 
a transcription factor that promotes stem cell proliferation, 
but its activity is inhibited by TP53. GLI1’s truncated iso-
form, TGLI1, has gain-of-function in relation to the paren-
tal form, is highly expressed in GBM, promotes tumor 

Table 1   Possible impact of downregulated RNA-processing factors 
on GBM

63 RBPs implicated in RNA processing identified by Correa et  al. 
(2016) as downregulated in GBM compared to normal tissue are 
listed and labeled according to function.

The differential expression of each gene in GBM relative to normal 
brain tissue is represented by log2 fold change and adjusted p value 
(padj). Values were considered significant based on an adjusted 
p value less or equal to 0.05. The GlioVis (Bowman et al. 2017) plat-
form was used to determine any association between downregulation 
of selected RBPs and poor prognosis
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cell migration, invasion, and malignancy, and fuels tumor 
growth by increasing angiogenesis (Lo et  al. 2009). Car-
bonic anhydrase XII (CA-XII) is a transmembrane enzyme 
that is associated with hypoxic tumor growth by creat-
ing an acidic environment preferred by some tumor cells. 

The CA-XII isoform present in astrocytomas is primarily 
a shorter mRNA variant, where the absence of 11 amino 
acids may cause changes in structure and protein function 
augmenting tumor cell growth (Haapasalo et al. 2008). The 
growth hormone-releasing hormone (GHRH) is a member 

Table 2   GO terms related to alternatively spliced genes in GBM

This table specifies the GO terms related to the main molecular functions of genes that are alternatively spliced in GBM. The last column shows 
the reference related to that gene. GO function annotations were obtained using the DAVID tool (Huang et al. 2009)

Gene Relevant gene ontology terms References

Rbfoxl Nucleotide binding, nucleic acid binding, RNA binding, mRNA binding, protein binding Cheung et al. (2008)

App DNA binding, binding, protein binding, peptidase activity, transition metal ion binding, PTB domain 
binding

Cacna1g Ion channel activity, scaffold protein binding

Cald1 Protein binding, cadherin binding involved in cell–cell adhesion

Clta and Cltb Structural molecule activity, protein binding, peptide binding

Dync1l2 Microtubule motor activity, protein binding

Kcnc2 Voltage-gated potassium channel activity, ion channel binding

Nf1 GTPase activator activity, protein binding

Rtn4 Protein binding, poly(A) RNA binding, cadherin binding involved in cell–cell adhesion

Sncb Phospholipase inhibitor activity, calcium ion binding

Tnc Syndecan binding

Tpd52l2 Protein homodimerization and heterodimerization activity, poly(A) RNA binding

Aff2 G-quadruplex RNA binding Yu and Fu (2015)

Gnal GTPase activity, signal transducer activity, GTP binding, metal ion binding

Arpp21 Nucleic acid binding, calmodulin binding

Cacna2d3 Voltage-gated ion channel activity, calcium channel activity, metal ion binding

Hist1h3j Protein binding, nucleosomal DNA binding, histone binding, protein heterodimerization activity, cad-
herin binding involved in cell–cell adhesion

Rgs7 Signal transducer activity, GTPase activator activity, G-protein beta-subunit binding

Apba2 Beta-amyloid binding, protein binding

Map4 Structural molecule activity, protein binding, microtubule binding, poly(A) RNA binding

Nuf2 Protein binding

Inpp5f Protein binding, protein homodimerization activity

Top2a Magnesium ion binding, DNA binding, chromatin binding, protein binding, ATP binding, DNA-depend-
ent ATPase activity, drug binding, protein homodimerization and heterodimerization activity, histone 
deacetylase binding, poly(A) RNA binding

Ttn Protein kinase activity, calcium ion binding, protein binding, calmodulin binding, ATP binding, struc-
tural constituent of muscle, protein self-association

Sadeque et al. (2012)

Neb Actin binding, protein binding, structural constituent of muscle

Pkd1 Calcium channel activity, protein binding, carbohydrate binding, ion channel binding

Egf Protein tyrosine kinase activity, Ras guanyl-nucleotide exchange factor activity, epidermal growth factor 
receptor binding, calcium ion binding, protein binding, growth factor activity, Wnt-protein binding

Adgre5 Transmembrane signaling receptor activity, G-protein coupled receptor activity, calcium ion binding, 
protein binding

Safaee et al. (2015)

Cbl Transcription factor activity, sequence-specific DNA binding, signal transducer activity, calcium ion 
binding, protein binding, zinc ion binding, ligase activity, receptor tyrosine kinase binding, cadherin 
binding involved in cell–cell adhesion

Seong et al. (2015)

Rsu1 Protein binding Chunduru et al. (2002)

Klf6 Nucleic acid binding, DNA binding, protein binding, metal ion binding Tchirkov et al. (2010)

Ca12 Carbonate dehydratase activity, zinc ion binding Haapasalo et al. (2008)

Ghrh Growth hormone–releasing hormone activity, growth hormone-releasing hormone receptor binding Mezey et al. (2014)
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of the glucagon family of proteins that is produced in the 
hypothalamus and later cleaved to generate somatoliberin, 
which stimulates growth hormone release from the pitui-
tary gland. GHRH receptor has two splice isoforms, the 
functional SV1 and the non-functional SV2. GBM patients, 
whose tumors lack GHRH expression, present poor prog-
nosis, while GHRH positive and SV1 negative patients 
showed a better prognosis (Mezey et al. 2014).

In addition to oncogenic isoforms, alternative splic-
ing can create tumor suppressor isoforms as well. USP5 
maintains chromatin structure and degradation of abnor-
mal proteins, whereas USP5 isoform 1 inhibits cellular 
growth and migration (Izaguirre et  al. 2012). The tumor 
suppressor INK4b is a cyclin-dependent kinase inhibitor 
which forms a complex with CDK4 or CDK6 to prevent 
the activation of the CDK kinases by cyclin D. Although 
INK4b is frequently deleted in GBM (Kim and Sharp-
less 2006; Solomon et  al. 2008), Simon and collabora-
tors (2001) found wild-type INK4b in 34% of GBM cell 
lines analyzed. The INK4b gene displays two splice vari-
ants, p15 and p10; however, only the full product (p15) 
displays tumor suppression properties (Simon et al. 2001). 
RECK is a cysteine-rich, extracellular protein with protease 
inhibitor-like domains that was defined as tumor suppres-
sor and metastases inhibitor in many contexts. RECK sup-
presses tumor invasion by negatively regulating members 
of the matrix metalloproteinase family: MMP-9, MMP-2, 
and MT1-MMP. Higher canonical RECK expression in 
combination with higher canonical to alternative tran-
script expression ratio positively correlates with higher 
overall survival rate after chemotherapeutic treatment of 
GBM patients. Moreover, glioblastoma cells transfected 
with RECK-B alternative splice variant showed higher 
anchorage-independent clonal growth (Trombetta-Lima 
et  al. 2015). Some splicing variants of CYP27B1, a gene 
that participates on D3 vitamin metabolism, retain intron 
1 leading to transcripts with premature stop codon. Those 
splicing variants result in truncated proteins without enzy-
matic activity. These variants contribute to decreased 
CYP27B1 activity, thereby decreasing GBM tumorigenic-
ity (Diesel et al. 2005).

Similar to alternative splicing, alternative poly(A) (APA) 
contributes to transcript variation by generating mRNAs 
with shorter or longer 3′ untranslated regions (UTRs). 
These APA variations can have dramatic impact on gene 
expression levels, by creating or eliminating target sites for 
miRNAs and RNA binding proteins, which affect mRNAs 
translational efficiency and stability. RNA-seq analyses 
have established that APA is more prevalent than antici-
pated. Moreover, comparisons between normal and tumor 
tissue revealed great differences in respect to poly(A) 
site usage (Mayr and Bartel 2009). A large-scale study 
identified 4530 APA isoforms for 2733 genes in GBM, 

of which 182 APA isoforms from 148 genes were differ-
entially expressed between GBM and normal brain tissue 
(Shao et al. 2013). A bona fide example of how APA can 
influence tumor progression is the gene O6-methylgua-
nine-DNA methyltransferase (MGMT) which encodes a 
protein that can reverse the damage of alkylating agents, 
including the GBM standard-of-care therapeutic temozolo-
mide. Elongation of the 3′ UTR of MGMT mRNA leads 
to miRNA-mediated silencing, impacting therapy out-
come (Kreth et al. 2013). Factors implicated in poly(A) are 
proposed to act as suppressor agents. This is the case of 
CFIm25 (NUDT21) gene; its depletion in U251 GBM cells 
produced 3′ UTR shortening, activation of oncogenic path-
ways, and alterations in cell proliferation and growth. In 
HeLa cells, CFIm25 knockdown generated 1450 transcripts 
with shorter 3′ UTR (Masamha et al. 2014). We observed 
that the expression of CFIm25 is lower in GBM in compar-
ison with LGG. Moreover, brain tumor patients displaying 
low expression of CFIm25 have worse prognosis.

Cancer therapy via splicing modulation

Since defects in mRNA splicing can lead to the develop-
ment of several diseases, including cancer, modulation of 
splicing has the potential to be a promising therapeutic 
route. A critical consideration for any potential therapy is 
the therapeutic window—the difference between the dose 
that kills the targeted cancer cells and the dose that harms 
the normal tissues of the body. One of the most excit-
ing outcomes of the cancer-specific biological functions 
described above is that cancer may be uniquely susceptible 
to splicing modulation therapy, where normal body tissues 
may not be. The first study to demonstrate this transforma-
tion-specific dependence upon RNA splicing machinery 
focused on the SF3b-complex protein PHF5A. Genome-
wide functional screens using patient-derived models dem-
onstrated that PHF5A is required for GBM cell survival 
but not for proliferating normal neural stem cells (NSCs). 
PHF5A loss or drug inhibition of its complex caused mas-
sive cell death only in the cancer cells (Hubert et al. 2013). 
RNA sequencing confirmed genome-wide splicing altera-
tions and aberrant splicing events such as intron inclusion 
after PHF5A loss only in the cancer cells, not in normal 
NSCs. Since NSCs share many features with their trans-
formed GBM counterparts, the authors iteratively trans-
formed the resistant NSCs to become tumorigenic and 
pinpointed MYC overexpression as the trigger for splicing 
inhibitor sensitivity (Hubert et  al. 2013). Studies in other 
cancer types have since confirmed that the spliceosome is 
a therapeutic vulnerability in MYC-driven cancers (Adler 
et al. 2014; Hsu et al. 2015). MYC’s ability to function as 
a global amplifier of transcription (Lin et  al. 2012) could 
confer an overall increase in cellular RNA flux due to 
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MYC activation specifically in cancer cells. Such increased 
demand might explain how MYC-driven cancer cells can 
acquire a unique sensitivity to perturbations of an otherwise 
universal cellular process. These studies have underscored 
the need for therapeutically tractable inhibitors of the RNA 
splicing machinery.

One of the first splicing modulators studied in cancer 
therapy was spliceostatin A, a methyl ketal derivative of 
FR901464, a potent anti-tumor compound isolated from a 
culture broth of Pseudomonas sp. No. 2663. Spliceostatin 
A functions as an inhibitor of splicing component SF3B1, 
which is involved in 3′ splice site recognition (Darman 
et al. 2015; Alsafadi et al. 2016). In leukemia, SF3B1 muta-
tions were found in advanced stage of the disease and were 
related to poor prognosis (Cazzola et al. 2013). Mutations in 
SF3B1 gene were also identified in breast cancer and linked 
to ER-positive diseases, AKT1 mutations, and copy number 
variations. According to the same study, SF3B1 mutant cell 
lines were sensitive to spliceostatin A and the treatment has 
altered splicing signature (Maguire et al. 2015).

In the particular case of GBM, metformin has been 
shown to act synergistically with temozolomide (TMZ) to 
inhibit the proliferation of glioblastoma cells. Metformin 
downregulated SOX2 expression in TMZ-resistant glioma 
cells, reduced neurosphere formation capacity of glioblas-
toma cells, and inhibited GBM xenograft growth. Gene 
expression profiling data revealed that metformin’s impact 
on GBM cells mainly involves RNA binding and splicing 
pathways (Yang 2016); however, this may be an indirect 
effect through diverse cellular machinery. Another relevant 
compound is the anti-hypertensive agent amiloride, which 
can lead to apoptosis and radio-sensitivity through the 
modulation of APAF1 splicing (Tang et al. 2013). Among 
the analogous of FR901464, Pladienolide B reduced tumor 
size in glioblastoma U251 xenografts (Mizui et  al. 2004). 
Importantly, Pladienolide B synthetic analog E7107 is 
in phase 1 clinical trial and has been shown good results 
by controlling tumor growth in several types of cancer 
(Eskens et  al. 2013; Hong et  al. 2014; Fan et  al. 2011). 
Another interesting example is AR-A 014418, a selective 
GSK-3 inhibitor. Treatment of U373 and U87 glioblastoma 
lines with AR-A 014418 activated the apoptotic signaling 
pathway and reduced cell viability accompanied by down-
regulation of SRSF1, SRSF5, PTPB1, and hnRNPs (Yadav 
et  al. 2014). Another compound which results in altered 
RNA splicing is hydrogen peroxide (H2O2). Treatment of 
BE2 neuroblastoma and MDA-MD-468 adenocarcinoma 
cells with H2O2 decreased expression of important splicing 
regulators such as PTBP1 and hnRNP A2/B1 and induced 
expression of the alternative spliced isoform of sGC, an 
anti-oxidant subunit activated in response to oxidative 
stress (Cote et  al. 2012). As discussed above, PTBP1 and 
several hnRNPs are overexpressed in tumors, including 

glioblastoma, and the downregulation of these factors can 
be an important target to new anti-tumor therapies devel-
opment. Finally, cross-talk between miRNAs and the RBPs 
from splicing machinery is an under-explored level of regu-
lation with many interesting possibilities. Teplyuk and col-
laborators (2016) showed that miR-10b is a promising can-
didate for the development of new therapies; modulation of 
miR-10b function affected cell cycle and splicing regula-
tion in glioma stem cells (GSC) and attenuated the growth 
of intracranial GBM xenografts.

Attempts to use highly targeted therapies, includ-
ing RTK inhibitors, have thus far produced disappointing 
results in GBM. This could be due to a number of fac-
tors such as cellular heterogeneity, including controversial 
stem-like cell populations, barriers to drug delivery, includ-
ing the blood–brain-barrier, cellular plasticity, and chal-
lenges of modeling GBM through traditional culture mod-
els. However, targeting components of oncogenic splicing 
machinery causes widespread alteration of thousands of 
transcripts and hundreds of proteins simultaneously, reduc-
ing the chance for therapeutic escape due to heterogeneity 
or adaptation. This approach has also been effective using 
both traditional cell lines as well as primary patient-derived 
GBM models in  vitro and in  vivo (Hubert et  al. 2013). 
These findings suggest that the modulation of RNA splic-
ing in refractory diseases such as GBM may hold thera-
peutic promise, where narrower targeting of single, easily 
replaceable proteins has been less effective.

Conclusions

Twenty years of genomic research have established RNA 
processing as a main contributor of transcript variation 
and gene expression regulation as well as its weight as a 
player in numerous diseases and cancer. In the last 5 years, 
cancer researchers increased their interest in RNA process-
ing. Numerous mutations and aberrant expression of splic-
ing regulators and RBPs have been observed in a variety 
of tumor types. These can function as tumor drivers and as 
major contributors of cancer-relevant phenotypes. Moreo-
ver, the growing list of inhibitors and molecules capable 
of interfering with splicing decisions has made RNA pro-
cessing a target in the map of cancer therapy. Nowhere is 
this needed more than in the case of GBM. GBM thera-
pies based on targeting a single gene or pathway have not 
shown dramatic improvement in clinical outcome despite 
specific genomic mutation data. Less targeted strategies 
using inhibitors of major regulatory hubs such as RBPs and 
splicing factors could have more potent effects and may be 
harder for tumor cells to evade.

Although the many examples of RNA-processing events 
and regulators implicated in GBM compiled here touch 
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a variety of biological processes, it is clear that these 
many studies have just scratched the surface of this field. 
Genomic analyses of RNA processing in GBM need to be 
expanded. The TCGA and similar databases are rich depos-
itories that can be explored more extensively. Each new 
study reports new splicing mRNA isoforms and poly(A) 
site alterations in GBM, but we have no mechanism for 
incorporating new findings into a unified database such 
as the TCGA, so we are very far from having a compre-
hensive catalogue of RNA isoform profiles. Similarly, the 
global impact of most RNA-processing regulators impli-
cated in GBM is not known, since RNA-seq and CLIP 
analyses were not performed in most studies so far. For-
tunately, in recent years, we have seen an expansion and 
improvement of both genomic methods and bioinformatics 
tools to analyze splicing and poly(A) site events, as well 
as an increase in RNA-seq read length and a decreasing of 
sequencing price, which allow better mapping of splicing 
and poly(A) site selection. Furthermore, the improvement 
of GBM models such as xenografts, organoids, and direct 
patient samples is opening new territory for exploration by 
allowing RNA processing to be studied amidst greater cel-
lular diversity. All of these advancements combined and the 
development of new drugs are creating an unprecedented 
opportunity to illuminate the roles of RNA-processing reg-
ulation in GBM (and cancer) and to convert this knowledge 
into new therapeutic advancements, increasing the rate of 
patient survival.
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