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controls of European ancestry. Five BMI SNPs were asso-
ciated with VTE at P  <  0.05, with the strongest associa-
tion seen for the FTO SNP rs1558902 (OR 1.07, 95% CI 
1.02–1.12, P = 0.005). In addition, we observed a signifi-
cant association between genetically predicted BMI and 
VTE (OR = 1.59, 95% CI 1.30–1.93 per standard deviation 
increase in BMI, P = 5.8 × 10−6). Our study provides evi-
dence for a causal relationship between high BMI and risk 
of VTE. Reducing obesity levels will likely result in lower 
incidence in VTE.

Abstract  Observational studies have shown an associa-
tion between obesity and venous thromboembolism (VTE) 
but it is not known if observed associations are causal, due 
to reverse causation or confounding bias. We conducted 
a Mendelian Randomization study of body mass index 
(BMI) and VTE. We identified 95 single nucleotide poly-
morphisms (SNPs) that have been previously associated 
with BMI and assessed the association between geneti-
cally predicted high BMI and VTE leveraging data from 
a previously conducted GWAS within the INVENT con-
sortium comprising a total of 7507 VTE cases and 52,632 
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Introduction

Venous thromboembolism (VTE) is the collective term for 
deep vein thrombosis (DVT) and its life-threatening com-
plication pulmonary embolism (PE). Between 300,000 and 
600,000 Americans are diagnosed with VTE every year, 
though VTE is under-diagnosed and accurate incidence data 
are difficult to estimate (Anderson et  al. 2007; Heit et  al. 
2001; Hirsh and Hoak 1996). Further, it has been suggested 
that 60,000–100,000 Americans die of VTE annually. In 
addition, approximately a third of all VTE cases experience 
recurrence within 10 years (Beckman et al. 2010). The under-
lying mechanisms causing VTE remain, to a large extent, elu-
sive. This is especially true for idiopathic (unprovoked) VTE. 
Known risk factors include oral contraception, menopau-
sal hormone therapy, smoking, family history of VTE, and 
high body mass index (BMI) (Heit 2015). Data based on the 
National Hospital Discharge Survey between 1979 and 1999 
showed that obese patients had a 2.5-fold [95% confidence 
interval (CI) =  2.49–2.51] risk to develop a DVT and 2.2-
fold (95% CI = 2.20–2.23) risk to develop PE. Risks associ-
ated with obesity were highest in obese individuals less than 
40 years old (Stein et al. 2005). Using data from the Nurses’ 
Health Study, we previously showed that the association 
between BMI and VTE is linear and apparent even across 
a modest range (22.5–25  kg/m2) (Kabrhel et  al. 2009). A 
drawback with observational studies is their limited ability to 
provide insights into causality. Establishing a causal relation-
ship between a risk factor and disease requires circumventing 
issues of confounding, bias and reverse causation. Indeed, it 
is possible that observed BMI–VTE associations have been 
confounded by other risk factors that were not captured 
appropriately, including smoking habits, dietary habits, phys-
ical ability/activity or other underlying medical conditions. 
Further, observed BMI–VTE associations might also have 
been subject to reverse causation if individuals diagnosed 
with VTE have less physical ability leading to increased BMI. 
Mendelian Randomization (MR) is an approach that utilizes 
robust genetic predictors of risk factors to assess causal asso-
ciations between risk factors and diseases (Davey Smith and 
Hemani 2014). As inherited genetic variation is determined 
at conception and is in general not vulnerable to confound-
ing, it represents a powerful tool for assessing causal relation-
ships. Here, we leverage information from a recent genome-
wide association study (GWAS) of BMI (Locke et al. 2015) 
to explore the causal relationship between obesity and VTE. 
We assessed the associations of 95 BMI single nucleotide 

polymorphisms (SNPs) in a VTE study comprising 7507 
cases and 52,632 controls (Germain et al. 2015).

Materials and methods

GWAS of VTE

To assess whether a genetically predicted BMI is associ-
ated with VTE, we used data from a recent GWAS of VTE 
within the INVENT consortium. Details about the GWAS 
design and participating studies have been published pre-
viously (Germain et  al. 2015) and can be found in Sup-
plementary Table 1. In total, 7507 VTE cases and 52,632 
controls from 12 studies were included. Study participants 
were European-ancestry adults in two French case–control 
studies, two Dutch case–control studies, and four cohort 
and four case–control studies from the United States. In all 
studies, VTE (PE or DVT) was objectively diagnosed by 
physicians using different techniques including compres-
sion venous duplex ultrasonography, computed tomog-
raphy, Doppler ultrasound, impedance plethysmography, 
magnetic resonance, venography, pulmonary angiography, 
and ventilation/perfusion lung scan. VTE events related 
to cancer, autoimmune disorders, or natural anticoagulant 
inhibitor deficiencies (protein C, protein S, antithrombin) 
were excluded in most studies. All participating studies 
were approved by their respective institutional review board 
and informed consent was obtained from studied indi-
viduals. Genotyping arrays differed between studies (Ger-
main et al. 2015). Each study was imputed using the 1000 
Genomes phase I, version 3 reference dataset. Association 
analyses were performed separately in each study using 
logistic or Cox-proportional regression analyses adjusted 
for study-specific covariates. Results were then combined 
using fixed-effects meta-analysis. We only included SNPs 
with a minor allele frequency (MAF) >0.005 and with an 
imputation quality score (r2) >0.3 in all 12 studies.

Identification of SNPs associated with BMI

We conducted a literature search to identify and extract 
information for SNPs that were associated with BMI 
on a genome-wide significant level (P  <  5  ×  10−8) in 
the largest GWAS to date. We identified 97 SNPs asso-
ciated with BMI (Locke et  al. 2015) (Supplementary 
Table  2). Of those 97 SNPs, 77 reached genome-wide 
significance in European ancestry populations only 
(European ancestry-specific P values for the 20 remain-
ing SNPs ranged between 6.0 ×  10−8 and 6.1 ×  10−6). 
BMI SNPs rs11057405, rs2245368, and rs7239883 were 
not assessed in the INVENT VTE GWAS. We replaced 
rs7239883 with rs4569374 (r2 =  1.0 in 1000 Genomes 
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CEU population), but we could not identify any proxies 
for the other two SNPs and they were, therefore, excluded 
from the analysis. For all identified SNPs, we obtained 
information about the effect allele, trait-specific associa-
tion estimates, and standard errors from the original pub-
lications. We then extracted VTE-specific effect estimates 
and P values from the INVENT GWAS for each of the 95 
SNPs.

Statistical analysis

Since we do not have access to individual-level GWAS 
data in the VTE GWAS, we leverage recently devel-
oped methods to obtain an estimate of the causal effect 
of BMI on VTE. Specifically, we conducted 2-sample 
MR analyses to estimate the association between BMI 
and VTE using summary genetic association statis-
tics, as described previously (Burgess et  al. 2013). The 
ratio estimate (β̂) of the effect of BMI (X) on VTE (Y) 
using genetic variants k =  1, …, K (here, K =  95) can 

be calculated as β̂ =

∑

k
XkYkσ

−2
Yk

∑
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X
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allele effect of SNP k on BMI, Yk is the per-allele change 
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 . Under certain assumptions 

(VanderWeele et  al. 2014), β̂ can be interpreted as the 
causal log odds ratio of VTE associated with one stand-
ard deviation (SD) unit change in BMI. We conducted 
two sets of analyses, the first analysis including all 95 
SNPs for which we had data and the second analysis only 
including SNPs (n = 75) that had been found associated 
on genome-wide significant levels with adult BMI in 
European ancestry populations only. For both SNP sets, 
effect estimates for BMI were extracted from a Euro-
pean ancestry population. To explore if the effect of BMI 
SNPs on VTE is independent of known VTE genetic risk 
factors, we reran the individual SNP analysis condition-
ing on the known VTE SNPs including F5 rs6025, F5 
rs4524, F11 rs2289252, F11 rs2036914, FGG rs2066865, 
ABO rs8176645, ABO rs8176746, ABO rs2519093, F2 
rs1799963, PROCR  rs867186, and PROCR rs6088735 
(Germain et  al. 2015). We then reran the MR analysis 
including the 95 SNPs that have been shown to be associ-
ated with BMI. A key assumption in MR analysis is that 
the instrumental variables (genetic variants) can only be 
associated with the outcome through the risk factor of 
interest (BMI) and not through some other pathway (so 
called pleiotropy). Therefore, we conducted sensitiv-
ity analyses using MR Egger regression (Bowden et  al. 

2015) to assess bias from directional pleiotropy. All P 
values are unadjusted for multiple testing.

Results

We selected 97 SNPs that have been found to be asso-
ciated with BMI on a genome-wide significant level in 
a meta-analysis including all ethnicities (Locke et  al. 
2015). Together these SNPs explain ~2.7% of the vari-
ation in BMI. We were able to include 95 SNPs in our 
MR analysis. Five SNPs were associated with VTE at 
P < 0.05, with the strongest association seen for the FTO 
SNP rs1558902 (OR 1.07, 95% CI 1.02–1.12, P = 0.005, 
Supplementary Table  2). The plot of VTE effect sizes 
vs. BMI effect sizes is seen in Fig. 1. The overall asso-
ciation between genetically predicted BMI and VTE 
was 1.59 per SD increase in BMI (95% CI 1.30–1.93, 
P = 5.8 × 10−6; Table 1). We reran the analysis including 
only the 75 SNPs found to be genome-wide significant in 
European ancestry only and observed a similar associa-
tion (OR =  1.58, 95% CI 1.28–1.95 per SD increase in 
BMI, P = 2.02 × 10−5; Table 1). To explore if the effect 
of BMI SNPs on VTE is independent of known VTE 
genetic risk factors, we reran the analysis conditioning 
on 11 known VTE SNPs. The overall association between 
genetically predicted BMI (based on 95 BMI-related 
SNPs) and VTE remained unchanged (OR = 1.62 per SD 
increase in BMI, 95% CI 1.31, 2.00; P =  7.2 ×  10−6). 
We further explored the potential impact of directional 
pleiotropy by conducting MR Egger regression to esti-
mate the average directional pleiotropic effect across 
the SNPs and to estimate the causal effect of BMI after 
adjusting for potential directional pleiotropic effects. 
We found that the intercept from MR Egger regression 

Fig. 1   SNP-specific VTE effect sizes [log(OR) per added allele] vs. 
BMI effect sizes (β per SD) for known BMI SNPs. Circles corre-
spond to individual SNPs
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was not significantly different from zero (−0.005, 95% 
CI −0.02, 0.01; P = 0.43) suggesting no directional plei-
otropy. Further, the estimated causal effect estimated 
by MR Egger regression was larger in magnitude com-
pared to the MR analysis (OR = 1.90, 95% CI 1.17, 3.08; 
P = 0.01; Table 1). 

Discussion

We used a Mendelian Randomization approach to assess 
the causal relationship between BMI and VTE in a Euro-
pean ancestry population. Our results showed evidence 
for a causal association between higher BMI and VTE, 
lending support to previous observational studies. Among 
the SNPs we assessed, we observed the strongest asso-
ciation for the FTO locus. SNP rs1558902 has been esti-
mated to explain 0.33% of the variation in adult BMI, 
which is almost three times as much as any other single 
SNP and interestingly, this is also the SNP that showed 
strongest association with VTE in this analysis. Due to its 
association with BMI, SNP rs1558902 has been assessed 
for association with multiple other traits and has been 
found to be associated with C-reactive protein (CRP) lev-
els and HDL cholesterol (Ligthart et  al. 2016). A corre-
lated SNP, rs9939609 (r-sq = 0.92), has been found to be 
associated with a plethora of traits including heart failure, 
type II diabetes, dyslipidemia, hypertension, metabolic 
syndrome, liver enzymes, fasting insulin, CRP, and tri-
glycerides (Fall et al. 2013).

In addition to its association with environmental risk 
factors like obesity, VTE has a strong genetic basis fol-
lowing a multifactorial inheritance model (Crous-Bou 
et  al. 2016). Most identified genetic risk factors involve 
mutations in the clotting system, including: variants in 
factor V (e.g. the Factor V Leiden mutation), prothrom-
bin (e.g. prothrombin 20210-A), fibrinogen gamma, 
antithrombin, protein C, protein S as well as genetic 
variations coding for blood group non-O. To explore if 
the observed association between genetically predicted 
BMI and VTE is independent of known VTE genetic risk 

factors, we reran the analysis using VTE SNP effects 
conditioned on 11 known VTE genetic variants. The 
association between genetically predicted BMI and VTE 
remained unchanged, arguing that the causal effect of 
BMI on VTE is independent from known VTE genetic 
risk markers.

There are several plausible biological mechanisms by 
which obesity causes VTE. At one level, the development 
of VTE depends on mechanical factors such as venous 
stasis. Obesity may decrease venous return of blood from 
the lower extremities thereby increasing the risk of both 
VTE and chronic venous insufficiency (Willenberg et al. 
2010). Obesity is also correlated with low-grade chronic 
inflammation (Blokhin and Lentz 2013), and inflamma-
tory markers (e.g. CRP and albumin) have been shown 
to modulate the relationship between BMI and VTE 
(Olson et al. 2014). Finally, obesity may lead to impaired 
fibrinolysis, as obese subjects have increased circulating 
levels of plasminogen activator inhibitor-1 (PAI-1) which 
inhibits the breakdown of clot (Ouchi et  al. 2011; Shi-
momura et  al. 1996). Based on recent estimates, more 
than one-third of Americans are obese, and the popula-
tion prevalence of obesity in western countries contin-
ues to rise. The most recent data reported by the Centers 
for Disease Control and Prevention suggest that 37.7% 
of adults in the United States were obese in 2013–2014. 
This is up from 30.5% in 1999–2000 (Ogden et al. 2015). 
Simultaneously, the incidence of VTE has also been 
increasing. In 2009, the annual incidence of first-time 
VTE diagnosis (DVT or PE or both) was 133/100,000 
individuals. This is up from 95/100,000 individuals in 
1999 (Heit et al. 2016). The increased incidence of VTE 
is multifactorial, and likely related to both increasing dis-
ease occurrence in the population and increased detec-
tion due to improvements in diagnostic technology. By 
demonstrating a causal relationship between obesity and 
VTE, our data provide support that rising prevalence of 
obesity may help explain the high prevalence of VTE. 
Moreover, to the extent that public health interventions 
can reduce the incidence of obesity, there may be an 
accompanying decrease in the incidence of VTE.

Table 1   Associations between 
genetically predicted BMI and 
VTE

OR (95% CI) P

Association between genetically predicted BMI and VTE using 95 SNPs from multi-ethnic BMI  
meta-analysis

 1.59 (1.30–1.93) 5.8 × 10−6

Association between genetically predicted BMI and VTE using 75 SNPs from European ancestry  
BMI meta-analysis

 1.58 (1.28–1.95) 2.0 × 10−5

Association between genetically predicted BMI (95 SNPs) and VTE based on MR Egger regression

 1.90 (1.17–3.08) 0.01
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MR analysis is based on a few key assumptions: (1) 
valid associations between SNPs and risk factors; (2) 
SNPs are not associated with any confounders between 
the risk factors and outcome; and (3) SNPs only affect 
the outcome through the risk factor of interest (no plei-
otropic effects). For the first assumption, we only used 
SNPs that have shown to be associated with BMI on a 
genome-wide significant level. For the second assump-
tion, the major potential confounder is population strati-
fication. We believe this to be small since the VTE GWAS 
was conducted in European ancestry populations only 
and analyses were adjusted for population stratification 
through principal components as appropriate. Although 
we included BMI SNPs that reached genome-wide sig-
nificance in a multi-ethnic meta-analysis, our results did 
not change when we restricted our analysis to SNPs that 
reached genome-wide significance in European ancestry 
populations. We assessed the validity of the third assump-
tion by performing MR Egger regression and observed 
no evidence of directional pleiotropic effects that would 
have influenced our results. However, we note that MR 
Egger regression is valid under the assumption that the 
association between genetic variants and the exposure 
(here BMI) is independent of the direct effects the genetic 
variants have on the outcome (here VTE). This assump-
tion is also known as the InSIDE assumption and would 
thus be violated if any pleiotropic effects act through a 
confounder of the BMI–VTE association. Further, we 
note that MR Egger regression is only sensitive to direc-
tional pleiotropy, thus it will not detect situations where 
several SNPs exhibit pleiotropy but in different direc-
tions, canceling out the “overall effect” of pleiotropy. In 
addition, compared to the 2-sample MR analysis that was 
primarily used here, MR Egger regression has less power 
to detect a true causal effect in the presence of balanced 
pleiotropy (Bowden et al. 2016). Since our outcome was 
binary, there is a possibility that adjustment for covari-
ates in the VTE analysis (in our case, primarily sex and 
age) will affect the causal estimate asymptotically as the 
coefficients from logistic regression are non‐collapsible 
(Burgess et al. 2016). However, this should not affect the 
validity of causal findings, provided that the instrumental 
variables are valid both marginally and conditionally on 
the covariates. A potential limitation of our study is the 
use of summary-level statistics rather than individual-
level data which would have allowed us to explore casual 
relationships in subgroups such as PE vs. DVT, smokers 
vs. non-smokers or women vs. men.

In conclusion, using data from the largest GWAS of 
VTE to date, we found evidence of a causal relation-
ship between high BMI and risk of VTE. Fighting current 
increasing trends in obesity will most likely lead to a reduc-
tion of VTE incidence.
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