
1 3

Hum Genet (2017) 136:451–462
DOI 10.1007/s00439-017-1771-1

ORIGINAL INVESTIGATION

Integrative multi‑omics analysis revealed SNP‑lncRNA‑mRNA 
(SLM) networks in human peripheral blood mononuclear cells

Wei Xia1,2,3 · Xiao‑Wei Zhu1,2 · Xin‑Bo Mo1,2 · Long‑Fei Wu1,2 · Jian Wu4 · Yu‑Fan Guo4 · Ke‑Qin Zeng4 · 
Ming‑Jun Wang4 · Xiang Lin1,2 · Ying‑Hua Qiu1,2 · Lan Wang1,2 · Pei He1,2 · Fang‑Fei Xie1,2 · Peng‑Fei Bing1,2 · 
Xin Lu1,2 · Yao‑Zhong Liu5 · Neng‑Jun Yi6 · Fei‑Yan Deng1,2 · Shu‑Feng Lei1,2 

Received: 8 December 2016 / Accepted: 20 February 2017 / Published online: 28 February 2017 
© Springer-Verlag Berlin Heidelberg 2017

interaction networks. The causal inference test (CIT) was 
used to identify lncRNA-mediated (epi-) genetic regulation 
on mRNA expressions. Our eQTL analysis detected 707 
pairs of cis-effect associations (p  <  5.64E−06) and 6657 
trans-effect associations (p < 3.51E−08), respectively. We 
also found that top significant cis-eSNPs were enriched 
around the lncRNA transcription start site regions, and that 
enrichment patterns of cis-eSNPs differs among different 
lncRNA sizes (small, medium and large).The constructed 
SLM interaction networks (1 primary networks and four 
small separate networks) showed various complex inter-
action patterns. Especially, the in-depth CIT detected 50 
significant lncRNA-mediated SLM trios, and some hot-
spots (e.g., SNPs: rs926370, rs7716167 and rs16880521; 
lncRNAs: HIT000061975 and ENST00000579057.1). 
This study represents the first effort of dissecting the SLM 
interaction patterns in PBMCs by multi-omics integrative 
network analysis and causal inference test for clearing the 
regulation chain. The results provide novel insights into the 
regulation patterns of lncRNA, and may facilitate investiga-
tions of PBMC-related immune physiological process and 
immunological diseases in the future.
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Abstract  Long non-coding RNAs (lncRNAs) serve as 
important controller of cellular functions via regulating 
RNA transcription, degradation and translation. However, 
what are the regulation patterns of lncRNAs on downstream 
mRNA and how the upstream genetic variants regulate 
lncRNAs are largely unknown. We first performed a com-
prehensive expression quantitative trait locus (eQTL) anal-
ysis (MatrixeQTL package, R) using genome-wide lncRNA 
expression and SNP genotype data from human peripheral 
blood mononuclear cells (PBMCs) of 43 unrelated individ-
uals. Subsequently, multi-omics integrative network analy-
sis was applied to construct SNP-lncRNA-mRNA (SLM) 
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KEGG	� Kyoto encyclopedia of genes and genomes
LD	� Linkage disequilibrium
lncR-eQTLs	� lncRNA eQTLs
lncRNAs	� Long non-coding RNAs
PBMCs	� Peripheral blood mononuclear cells
PCC	� Pearson correlation coefficients
RA	� Rheumatoid arthritis
SLM	� SNP-lncRNA-mRNA
SNPs	� Single nucleotide polymorphisms
TES	� Transcription end site
TFBS	� Transcription factor binding sites
TSS	� Transcription start site

Introduction

Long non-coding RNA (lncRNA) is a class of non-pro-
tein-coding transcripts with more than 200 nucleotides in 
length, which has varied secondary structures and spatial 
features that allow them to bind DNA, RNA or protein 
partners (Guttman et al. 2009; Ponting et al. 2009). Previ-
ous studies have pointed out that lncRNAs may play vital 
roles in a wide range of biological and cellular processes, 
including development, localization, alternative splicing, 
chromatin remodeling, cell cycle control and cell apopto-
sis, migration and metabolism (Cabianca et al. 2012; Gupta 
et al. 2010; Kino et al. 2010; Klattenhoff et al. 2013; Meola 
et  al. 2012; Tripathi et  al. 2010; Willingham et  al. 2005). 
Recently, evidences showed that lncRNAs can serve as 
important controller of cellular functions via regulating 
RNA transcription and epigenetic modulation, and enhanc-
ing RNA degradation (Mercer et  al. 2009; Prensner and 
Chinnaiyan 2011; Wang and Chang 2011).

Over the past decade, genome-wide association studies 
(GWAS) have identified a large number of SNPs that are 
associated with complex traits and diseases (Altshuler et al. 
2008; Lettre and Rioux 2008; McCarthy and Hirschhorn 
2008). Surprisingly, only 7% of these identified variations 
are located in protein-coding regions (Kumar et  al. 2012; 
Pennisi 2011), leaving a majority of them located at the 
non-coding intervals, including lncRNAs (Pennisi 2010), 
suggesting that these SNPs are not likely to alter the pro-
tein-coding sequence or protein structure, but most likely to 
involve other regulation models including regulating gene 
transcription. After large scale GWAS research, a big chal-
lenge is to dissect the functions of the identified SNPs that 
have shown associations with diseases, and to illustrate the 
functional mechanisms underlying the associations. Con-
sidering that mRNA, miRNA, lncRNA serve as intermedi-
ate phenotypes linking functional SNPs and disease pheno-
types, exploring the relationship between SNPs and these 
intermediate phenotypes may facilitate understanding the 
identified associations. Expression quantitative trait locus 

(eQTL) analysis (Schadt et al. 2003) is a powerful method 
to detect the effects of genetic variation on gene expression 
or human transcripts (Borel et al. 2011; Huan et al. 2015; 
Kumar et al. 2013; Veyrieras et al. 2008). So far, most of 
the previous eQTL studies have focused on mRNA expres-
sion and only in two levels. Studies on lncRNA expression 
regulation, including lncRNA eQTL (lncR-eQTL) analysis, 
are rare, and no study on multi-omics levels. It has been 
recognized that the expression of lncRNA is under complex 
regulation (e.g., genetic variations), and lncRNAs can serve 
as important intermediate controllers in regulating down-
stream molecular and cellular functions, including mRNA 
expression. Therefore, revealing the genome-wide SNP-
lncRNA-mRNA (SLM) interaction patterns, in disease-
relevant cells or tissues, would facilitate uncovering func-
tional mechanisms underlying the associations, mediated 
by lncRNAs especially.

In this study, we conducted integrative analyses of mul-
tiple omics data to reveal genome-wide SLM interaction 
patterns in peripheral blood mononuclear cells (PBMCs), 
which consist of several important immunity cells (mono-
cyte, T and B lymphocyte), and play a decisive role in 
the process of immune response. First, we performed a 
comprehensive genome-wide lncR-eQTL analysis, and 
described the distribution characteristics, functional anno-
tation and enrichment for the regulatory SNPs (eSNPs). 
Second, to discover genome-wide SLM interaction pat-
terns, we applied an integrative network approach that 
combined eQTL analysis with network analysis. Third, 
we performed causal inference test (CIT) (Millstein et  al. 
2009) to assess the regulation chain of SLM. To the best 
of our knowledge, this is the first effort of dissecting the 
SLM interaction patterns in PBMCs by multi-omics inte-
grative network analysis and CIT. The results provide novel 
insights into the regulation patterns of lncRNA, and may 
facilitate investigations of PBMC-related immune physi-
ological process and immunological diseases in the future.

Materials and methods

Sample

A total of 43 female subjects from Chinese Han ethnicity 
were recruited. Peripheral blood (15 ml) was collected by 
phlebotomy and stored in sodium citrate supplemented vac-
uum tubes. PBMCs were isolated by density gradient cen-
trifugation using Lymphoprep (Sigma, life science, USA) 
within 4  h after phlebotomy. The isolated PBMCs were 
treated with TRIzol reagent (invitrogen, Carlsbad, Califor-
nia, USA) to avoid RNA degradation, and then stored at 
−80 °C. The study was approved by the ethical committee 
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of Soochow University. The written informed consent was 
obtained from all the subjects.

Genome‑wide genotyping and expression profiling

The experiment was performed in the laboratory of Capi-
talBio Corporation (Beijing, China). In the discovery stage, 
DNA was isolated from PBMCs using phenol–chloro-
form extraction and ultrapurification method. Affymetrix 
Genome-Wide Human SNP Array 6.0 chips were employed 
for SNP genotyping by following the protocol recom-
mended by the manufacturer. Systematic quality controls 
using the PLINK software and R statistics were applied 
on the raw genotyping data to filter out unqualified sam-
ples and SNPs. In particular, SNPs with a minor allele 
frequency less than 5%, or a call-rate less than 95% were 
excluded, finally resulting in 551,745 SNPs used in further 
analysis.

Total RNA was extracted using TRIzol reagent accord-
ing to the instructions recommended by the manufacture 
and then quantified by using NanoDrop ND-1000 (Thermo 
Scientific, Wilmington, Delaware, USA) spectrophotom-
eter. RNA integrity was determined with 1% formaldehyde 
denaturing gel electrophoresis. Genome-wide lncRNA and 
mRNA expression was profiled using lncRNA +  mRNA 
Human Gene Expression Microarray V4.0 (CaptialBio 
Corp, Beijing, China) according to the manufacturer’s 
instructions. The data was extracted by Agilent Feature 
Extraction (V10.7) and was summarized, normalized and 
controlled for quality using GeneSpring GX program 
(V12.0). Then, log2 transformation was applied to the data 
using the Adjust Data function of Multiexperiment Viewer 
(MeV) software. Finally, the data visualization was per-
formed with Java Treeview software. Subsequently, after 
further filtering out probes with detection rate less than 
80% and/or incomplete annotation information, a total of 
17,190 unique lncRNA probes and 21,323 unique mRNA 
probes were used for further analysis.

LncRNA‑eQTL analysis

When detecting cis-lncR-eQTL, SNPs were confined 
within 1 Mb distant from the transcription start site (TSS) 
or transcription end site (TES) of lncRNAs. For each 
lncRNA-SNP pair, a multivariate linear regression analy-
sis was conducted, after adjusting for disease states using 
DAS28 (van Riel and Fransen 2005) and age, to detect 
association between SNPs and lncRNA expression using 
R package MatrixeQTL (Huang and Cai 2013; Qi et  al. 
2014; Shabalin 2012). Benjamini-Hochberg false-discov-
ery rate (FDR) was used to correct for multiple testing. 
Under the FDR level of 5%, the significance threshold 
for association was 5.64E−06 and 3.51E−08 for cis- and 

trans-lncRNA-eQTLs, respectively. For significant probe-
SNP pairs, we defined the corresponding SNP, probe, and 
lncRNA as eSNP, eProbe, and elncRNA, respectively. 
The contribution to elncRNA expression variability (beta-
value) by each eSNP was calculated in the linear regression 
analysis.

LncRNA structure and classification

LncRNA Structure annotation was obtained from the 
ENSEMBL, UCSC, RNAdb, UCR, Human LncRNA Cata-
log, RefSeqlncRNA table, and so on, under human genome 
referenceversion37 (hg19). For each lncRNA, the chromo-
some physical locations of its TSS and TES were obtained 
from the fields “start” and “end” of the database annotation 
table, respectively.

To comprehensively display the distribution of cis-
eSNPs in lncRNA transcripts, we divided the cis-acting 
region into discrete bins as follows. First, since there is dra-
matic variation in gene size, three categories based on tran-
script length were generated: small lncRNAs (0–10  kb), 
medium lncRNAs (10–50 kb) and large lncRNAs (>50 kb). 
The cis-acting region is defined as spanning from TSS to 
TES. Transcribed regions were split into fixed numbers of 
bins: each small gene was split into 10 bins of equal size, 
medium genes into 25 bins and large genes into 15 bins 
(Veyrieras et  al. 2008). The regions outside the transcript 
were also assigned to bins based on their distance to the 
TSS (for the upstream region) or TES (downstream). The 
Bins outside the transcript were 1 kb as a unit for small and 
medium genes and 10 kb as a unit for large genes.

The lncRNAs were classified into five major types: inter-
genic, intronic, bidirectional (or divergent), antisense, and 
unknown, based on the referred categorization of lncRNAs 
in the GENCODE gene annotation (Derrien et al. 2012).

Annotation and enrichment analysis of eSNPs

To determine whether the significant lncRNA-eQTL 
SNPs were enriched within certain functional domains on 
the genome, we annotated the eSNPs using SNPInfo (Xu 
and Taylor 2009), which integrate multiple data resources 
[such as the ENCODE Project (Kellis et al. 2014), Ensembl 
(Hubbard et  al. 2002), PolyPhen (Adzhubei et  al. 2010), 
SNPs3D (Yue et al. 2006) and several miRNA databases]. 
PolyPhen is a software tool which predicts possible impact 
of amino acid substitution on the structure and function of 
human proteins using straightforward physical and evolu-
tionary comparison. SNPs3D is a website which assigns 
molecular functional effects of non-synonymous SNPs 
based on structure and sequence analysis. In particular, 
Svm structure means SNPs can affect protein function pri-
marily by decreasing protein stability; Svm profile means 
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SNP are disease association mutations. We used a random 
fraction of the total SNP data, which is 10-fold sized than 
the eSNP dataset, to generate a null distribution. Finally, 
we evaluated the enrichment for each functional category 
of eSNPs through comparing these two datasets using a 
Fisher’s exact test.

Network construction and module identification

Construction of the SNP‑lncRNA‑mRNA (SLM) interaction 
network

Combining the strength of eQTL analysis with network 
analysis, we build an integrative network to understand 
the complex relationship among SNP genotype, lncRNA 
expression, and mRNA gene expression. The integrative 
network is composed of various types of relationships 
among SNPs, lncRNAs and mRNAs, including SNP-
lncRNAeQTL association pairs, correlation networks of 
elncRNAs and mRNAs expression, and SNP-mRNA eQTL 
association pairs. First, we selected SNP-lncRNA pairs for 
cis-eQTL effects at a FDR level of 0.05. Second, to detect 
elncRNAs and mRNAs co-expression, we calculated the 
Pearson correlation coefficients (PCC) of each elncRNA 
paired with mRNA. The PCC < −0.9 or >0.9 was con-
sidered as statistically significant co-expression. Third, 
eQTL analysis was performed for eSNPs and mRNAs 
significantly coexpressed with elncRNAs (PCC < −0.9 or 
>0.9). Either cis- or trans-eQTLs with FDR <0.05 would 
be selected as SNP-mRNA association pairs. The network 
was constructed using open source bioinformatics software 
Cytoscape3.2.1 (Institute of Systems Biology in Seattle).

Linkage disequilibrium (LD) analysis

For eSNPs close to each other in physical locations along 
the chromosomes, we conducted LD analysis in HapView 
using the data of 1000 Genome Project (Abecasis et  al. 
2012).

Annotation and enrichment analysis of emRNA and module 
identification

The database for annotation, visualization, and integrated 
discovery (DAVID) (Huang et al. 2009) is an online anal-
ysis resource, which provides a comprehensive set of 
functional annotation tools for researchers to identify the 
enrichment characteristics of the identified genes. Gene 
ontology (GO) function and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analyses were 
conducted for emRNAs with DAVID online analysis. 
Then, the modules representing new sub-networks were 

constructed by combining the emRNAs with co-expressed 
lncRNAs and associated SNP.

Causal inference analysis of lncRNA‑mediated genetic 
risks for mRNAs

The SNP-lncRNA-mRNA regulation relationships were 
assessed using the causal inference test (CIT) (Mill-
stein et al. 2009) to test the regulation chain and to select 
the lncRNA-mediated trios. Briefly, the CIT has statisti-
cal tests for four conditions, all of which must be met for 
the lncRNA-mediated causal classification: (1) SNP and 
mRNA are associated, (2) SNP is associated with lncRNA 
after adjusting for mRNA, (3) lncRNA is associated with 
mRNA after adjusting for SNP, and (4) SNP is independent 
of mRNA after adjusting for lncRNA (Liu et al. 2013). The 
CIT p value was defined as the maximum of the component 
test p values, and a multivariate linear regression was used 
in the four component tests.

Results

Genome‑wide identification of lncRNA‑eQTLs

We systematically examined how SNPs regulate lncRNA 
expression through a genome-wide eQTL analy-
sis with 551,745 SNPs and 17,190 lncRNA transcripts 
in PBMC from 43 unrelated individuals. Of a total of 
9,484,496,550 tests, 6,206,063 were for cis-pairs (local) 
and 9,478,290,487 were for trans-pairs (distal) (Fig.  1). 
The QQ plot not only showed the high statistical power of 
the MatrixeQTL, but also indicated that biological func-
tional effects of cis-eQTL were more significant than trans-
eQTL. We identified 71,407 cis-SNP-probe combinations 
and millions of trans-SNP-probe combinations under a 
significant threshold of 0.01. After controlling the FDR at 
0.05 for cis- and trans-eQTLs, respectively, we identified 
707 significant cis-SNP-probe associations, corresponding 
to 498 unique cis-eSNPs and 187 unique cis-elncRNAs, as 
well as 6657 significant trans-SNP-probe associations cor-
responding to 1117 unique trans-eSNPs and 658 unique 
trans-elncRNAs.

Distribution characteristics of eSNPs

For all cis-eQTLs with p value <0.01, the p values were 
plotted against the distance between each eSNP and the 
TSS of its corresponding lncRNA transcript (Fig.  2). In 
general, top significant eSNPs were enriched around the 
TSS regions, and such a pattern is independent of the type 
of lncRNAs (Intergenic, intronic, divergent, antisense and 
unknown) (Fig. S1).
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Figure 3 shows the histograms of cis-eSNPs locations 
(p  <  0.01), as a function of lncRNA sizes. For lncR-
NAs of small size, the eSNPs were mainly located on 
the upstream adjacent to the TSS and the downstream 
near the TES regions. In contrast, there were fewer 
eSNPs in the body region of the transcripts. For lncR-
NAs of medium size, the eSNPs were enriched around 
the TSS and TES regions and formed a peak in the body 
region. For lncRNAs of large size, the distribution of 
eSNPs appeared to have no obvious peaks. Generally, 
when taking account various sizes of lncRNAs together, 
eSNPs are most densely located around the TSS and 
TES.

After running MatrixeQTL program, the beta-value 
for each eQTL pair represented the effect size for the 
influence of SNP variation on lncRNA expressions. Fig-
ure  4 shows the distribution of beta-value of cis-eQTLs 
and trans-eQTLs at FDR  =  0.05 level. We found that 
the beta-values of cis-effect were mainly concentrated 
at ±0.8 and formed two peaks. In contrast, the trans-
effect beta-values were mainly concentrated at ±2. The 

data suggest that the trans-eQTLs tend to have a greater 
impact on lncRNA expressions than cis-eQTLs.

Functional annotation and enrichment analysis for cis‑ 
and trans‑eSNPs

We also examined the functional properties of the eSNPs, 
including cis- and trans- eSNPs, respectively. We found 
that cis-eSNPs were significantly enriched for transcrip-
tion factor binding sites (TFBS), splicing sites, micro-
RNA binding sites, PolyPhen-, SNPs3D (svm profile)- 
and SNPs3D (svm structure)- positive regions (Fisher’s 
exact p < 0.05; Fig. 5a). In contrast to the diverse func-
tions for cis-eSNPs, trans-eSNPs were solely enriched 
for SNPs3D (svm profile) and SNPs3D (svm structure) 
with a mediocre fold enrichment (Fig.  5b), suggesting 
that trans-eQTLs tend to have more spatial structure 
regulation than the sequence regulation. In addition, to 
find if the 498 cis-eSNPs are overlapped with disease-
related GWAS SNPs, we also searched are two bioinfor-
matics tools(GWAS integrator and phenotype-genotype 

Fig. 1   Q-Q plots of local (cis-) 
and distal (trans-) eQTLs

Fig. 2   The distribution of 
eQTL association significance 
(−log10 p value) against the 
physical distance (kb) from 
elncRNA transcript start site 
for all eSNPs with p value less 
than 0.01
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integrator) that provide robust lookup and analytic func-
tionalities for published GWAS and meta-analysis stud-
ies. The results showed that 4 cis-eSNPs were associated 
with disease and traits (rs10263935 and rs801193 asso-
ciated with aortic root size; rs11081443 with heart fail-
ure, and rs1533948 closely related to the secretion of 
lipoprotein).

Network construction for eSNP, elncRNA, and emRNA

Our integrative approach that combines eQTL analysis 
with the network analysis generated an integrative network 
that incorporates the comprehensive relationship among 
SNP variations, lncRNA and mRNA expressions. First, 
using the strength of association for cis-lncRNA-eQTL 

Fig. 3   Distribution pattern of the significant cis-eSNPs (p  <  0.01) 
across the different lncRNA sizes (small, medium, and large). The 
x-axis refers to a typical region divided into a series of bins, as 
described in the “Materials and methods” section. The y-axis rep-
resents the number of eSNPs in bin(s). eSNPs inside lncRNAs are 

assigned to bins based on their physical location within the lncRNA. 
SNPs outside lncRNAs are assigned to bins based on their physical 
distance from the TSS (transcript start site). The distance from TSS 
to TES indicates the average transcript length for three types of lncR-
NAs
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Fig. 4   Frequency distribution 
against beta-value for eSNPs 
with cis- and trans-effects, 
respectively (FDR <0.05). The 
beta value, generated from lin-
ear regression model in Matrix 
eQTL package, represents the 
eSNP effect size for the degree 
of variation in lncRNA expres-
sion

Fig. 5   Annotation of cis- and trans- eSNPs: enrichment in func-
tional elements. The annotation was based on online tools SNPInfo 
that rely on the ENCODE Project. a Cis-eQTL SNPs are enriched for 
functional elements and database of Polyphen and SNPs3D. b Trans-
eQTL SNPs are enriched in Polyphen and SNPs3D databases. Poly-
Phen  (polymorphism phenotyping): an automatic tool for prediction 

of possible impact of an amino acid substitution on the structure and 
function of a human protein. SNPs3D: a web resource and database 
that provides and integrates as much information as possible on dis-
ease/gene relationships at the molecular level. Svm structure: SNPs 
can affect protein function primarily by decreasing protein stability. 
Svm profile: SNP are disease association mutations
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at FDR <0.05, we structured the connection between 498 
eSNPs and 187 elncRNAs; Second, based on the correla-
tion analysis (applying the PCC < −0.9 or >0.9 as a sig-
nificance threshold) between the 187 elncRNAs and 21,323 
mRNA probes, we constructed a noncoding-coding gene 
co-expression relationship including 16 elncRNAs and 54 
mRNAs. Last, after eQTL association analysis between 
498 eSNPs and the 54 selected mRNAs, we identified 
615 eSNP-mRNA pairs (cis- and trans-) consisted of 93 
eSNPs and 54 emRNAs. Finally the complex combined 
networks from the three levels were presented in Fig.  6a. 
The whole network consisted of a primary network and 
several small separate parts, which showed the com-
plex regulation among the SNP, lncRNA and mRNA. For 
example, rs2154339 connected to several lncRNA and 
mRNA (e.g., TCONS_0011260, ESPL1, STEAP2, and 
PPOX). In addition, these lncRNA and mRNAs also con-
nected to other SNP, lncRNA and mRNA. We also found 
an interesting module which consisted of one lncRNA (i.e., 
TCONS_00005196), one mRNA (i.e., XLOC_002198) and 
13 SNPs (Fig. 6c, d). These SNPs are located close to each 
other in chromosome 2. As expected, 11 of the 13 SNPs 
were in strong linkage disequilibrium with each other 
through HapView analysis (Fig. 6c).

Annotation and enrichment analysis of emRNA 
and module identification

For the above 54 (epi-) genetically regulated emRNAs, the 
results of GO and KEGG pathway annotations are shown 
in Table S1, and their module networks are shown in 
Fig. 6b. Module 1 contained three genes representing four 
GO terms including “sodium ion binding”, “alkali metal 
ion binding”, “sodium ion transport” and “monovalent 
inorganic cation transport”. Module 2 contained four genes 
representing two GO terms including “metal ion transport” 
and “cation transport”. Modules 3–5 contained three, five 
and five genes, representing “electron carrier activity”, 
“cell fraction” and “organelle membrane”, respectively. 
These identified GO terms showed that these (epi-) geneti-
cally regulated mRNA-coding genes execute fundamental 
molecular functions in PBMC.

Identification of the regulation chain of SLM

Since the above constructed complex networks for SNP, 
lncRNA, and mRNA (Fig. 6a) were based on the correla-
tion of each pair, the regulation relationships within the 
networks cannot be confidently inferred. Therefore, we per-
formed an in-depth CIT analysis to identify the regulation 
chain of SLM, i.e., the lncRNA-mediated genetic effect on 
mRNA expression. We identified 86 SLM trios, which have 
significant association or correlations for any within-trio 

pairs (Fig. 6d). The CIT filtering steps were performed for 
the 86 trios. Finally, we discovered 50 significant lncRNA-
mediated trios (Table 1), as well as some hotspots partici-
pating in multiple regulation chains. For example, eSNPs 
rs926370, rs7716167 and rs16880521 were involved in 
11, 10 and 10 regulation chains, respectively. Besides, two 
eLncRNAs (HIT000061975 and ENST00000579057.1) 
were involved in 20 and 11 chains, respectively. In total, 36 
unique genes were regulated by 9 unique elncRNA and 13 
eSNPs. As upstream regulation factors for mRNA expres-
sion, the number of identified nodes from the lncRNA (9) 
and SNP (13) levels are relatively less than that for mRNA 
(36).

Discussions

By using multi-omics integrative strategy, this study 
comprehensively investigated the (epi-) genetic architec-
ture underlying the variation of lncRNA expression, and 
illustrated SLM interaction/regulation patterns in human 
PBMCs. Our lncRNA eQTL analyses showed that the 
variation of lncRNA expression is under various extents of 
genetic regulation, and the cis-eSNPs tend to cluster around 
the TSS and be significantly enriched in various regula-
tion elements effecting on transcription. Combining eQTL 
analysis with network analyses, the integrative approach 
generated a complex network incorporating comprehensive 
interactions (associations and correlations) among SNP 
variations, lncRNA, and mRNA expressions. In-depth CIT 
analysis dissected lncRNA-mediated (epi-) genetic regula-
tion modules on mRNA expression. These results provide 
novel insights into molecular machinery in PBMC, and 
may shed light on PBMC-relevant human physiology and 
pathology.

Current accumulating evidence has shown that lncRNA 
appears to have similar regulation model with mRNA at the 
transcriptional stage. Similar with mRNA eQTLs reported 
by previous studies (Dimas et al. 2009; Murphy et al. 2010; 
Wen et al. 2015), this study discovered that cis-eSNPs for 
lncRNAs tends to cluster at the TSS, and be significantly 
enriched in various regulation elements that have effects 
on the transcription. Recent data from the ENCODE pro-
ject suggests that non-coding RNAs were more often regu-
lated by various transcription factors than others (Gerstein 
et  al. 2012). The polymorphisms in DNA regulation ele-
ments may alter the binding efficiency of DNA with the 
transcriptional factors, resulting in variation in lncRNA 
expression. Similar with cis-eSNPs for mRNA, cis-eSNPs 
for lncRNA were found significantly enriched at tran-
scription factor binding sites, splicing sites, microRNA 
binding sites, etc. The cis-eSNPs distribution profile for 
medium lncRNAs was also similar to mRNA (Veyrieras 
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et al. 2008). Meanwhile, there were several differences of 
cis-eSNPs between lncRNA and mRNA. For example, we 
can find that cis-eSNPs of mRNA were in the enrichment 

of splicing (abolish domain) and nsSNP (nonsynonymous 
SNP) that are two important regulations to ensure the diver-
sity of proteins coded by mRNA (Westra et al. 2013), but 

Fig. 6   Comprehensive network and regulation modules identi-
fication. Red nodes represent eQTL SNPs. Blue nodes represent 
lncRNA. Gray nodes represent mRNA. Red edges represent positive 
regulation between two nodes. Gray edges represent negative regu-
lation between two nodes. a The integrative network. This network 
incorporates the comprehensive relationship between SNP varia-
tions, lncRNA, and mRNA expressions. b Module identified from 
network using online tools DAVID. Module 1 represented four GO 
terms including “sodium ion binding”, “alkali metal ion binding”, 
“sodium ion transport” and “monovalent inorganic cation transport”. 

Module 2 represented two GO terms including “metal ion transport” 
and “cation transport”. Module 3–5 represented “electron carrier 
activity”, “cell fraction” and “organelle membrane”, respectively. 
c Linkage disequilibrium (LD) analysis for a cluster of 13 SNPs 
regulating expression a specific gene. As we expected, strong link-
age disequilibrium effects were emerged among 11 SNPs from the 
13 SNPs through HapView analysis. Each number in cell represents 
R2 between neighboring SNPs. d CIT-generated SLMs: networks  
of lncRNA-mediated genetic regulation on mRNA expression (color 
figure online)
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Table 1   Significant lncRNA-mediated genetic effects on mRNAs expression identified by causal inference test

SNP ID LncRNA ID Gene symbol S-G effect S-L effect L-G effect S1 p value S2 p value S3 p value CIT p value

rs2649179 TCONS_00022290 C8orf47 N N P 2.00E−04 4.63E−04 1.15E−12 4.63E−04

rs926370 ENST00000579057.1 NALCN P P P 5.94E−04 4.56E−04 3.60E−15 5.94E−04

rs926370 ENST00000579057.1 ZNF502 P P P 5.40E−04 6.91E−04 1.47E−14 6.91E−04

rs10753364 ENST00000420522.1 CCDC11 N N P 3.17E−04 7.39E−04 2.40E−13 7.39E−04

rs926370 ENST00000579057.1 DUSP26 P P P 7.71E−04 6.12E−04 4.59E−13 7.71E−04

rs2060256 ENST00000590159.1 LOC100505565 N N P 2.25E−04 1.06E−03 8.04E−10 1.06E−03

rs926370 ENST00000579057.1 NNMT P P P 1.06E−03 2.82E−04 1.38E−13 1.06E−03

rs16880521 HIT000061975 KRTAP4-1 P P P 5.20E−04 1.14E−03 5.34E−13 1.14E−03

rs7716167 HIT000061975 KRTAP4-1 P P P 5.20E−04 1.14E−03 5.34E−13 1.14E−03

rs926370 ENST00000579057.1 NEBL P P P 4.68E−04 1.47E−03 6.18E−13 1.47E−03

rs10753364 ENST00000420522.1 DEFB103B N N P 2.70E−04 1.58E−03 2.28E−11 1.58E−03

rs926370 ENST00000579057.1 PTPRS P P P 4.27E−04 1.86E−03 1.38E−12 1.86E−03

rs16880521 HIT000061975 LOC100131242 P P P 4.99E−04 1.86E−03 3.20E−11 1.86E−03

rs7716167 HIT000061975 LOC100131242 P P P 4.99E−04 1.86E−03 3.20E−11 1.86E−03

rs7957585 TCONS_00020592 XLOC_004341 P P P 6.80E−06 1.90E−03 3.83E−13 1.90E−03

rs9430019 ENST00000443636.1 XLOC_l2_001592 P P P 2.62E−05 2.03E−03 4.12E−15 2.03E−03

rs926370 ENST00000579057.1 FBXW4 P P P 3.88E−04 2.07E−03 9.31E−13 2.07E−03

rs6838795 ENST00000437514.1 BCR P P P 7.95E−05 2.10E−03 8.10E−13 2.10E−03

rs2649179 TCONS_00022290 XLOC_008349 N N P 6.07E−05 2.58E−03 4.02E−13 2.58E−03

rs926370 ENST00000579057.1 CYB5R2 P P P 3.00E−04 2.68E−03 2.17E−13 2.68E−03

rs926370 ENST00000579057.1 P39192 P P P 3.24E−04 2.80E−03 1.26E−12 2.80E−03

rs16880521 HIT000061975 Q952V6 P P P 3.53E−04 3.24E−03 1.05E−10 3.24E−03

rs7716167 HIT000061975 Q952V6 P P P 3.53E−04 3.24E−03 1.05E−10 3.24E−03

rs4580717 ENST00000437514.1 BCR N N P 3.22E−05 3.55E−03 4.68E−13 3.55E−03

rs7670282 ENST00000437514.1 BCR P P P 3.22E−05 3.55E−03 4.68E−13 3.55E−03

rs16880521 HIT000061975 IGSF3 P P P 2.98E−04 3.63E−03 1.74E−11 3.63E−03

rs7716167 HIT000061975 IGSF3 P P P 2.98E−04 3.63E−03 1.74E−11 3.63E−03

rs16880521 HIT000061975 PPOX P P P 2.93E−04 4.09E−03 9.20E−11 4.09E−03

rs7716167 HIT000061975 PPOX P P P 2.93E−04 4.09E−03 9.20E−11 4.09E−03

rs926370 ENST00000579057.1 KATNAL2 P P P 2.67E−04 4.14E−03 5.26E−12 4.14E−03

rs7011891 ENST00000521660.1 POLR2F N N P 1.58E−04 5.82E−03 1.26E−11 5.82E−03

rs10753364 ENST00000420522.1 XLOC_l2_014686 N N P 8.06E−05 6.25E−03 3.10E−13 6.25E−03

rs7011891 ENST00000521660.1 SLC17A7 N N P 1.44E−04 6.93E−03 4.75E−11 6.93E−03

rs926370 ENST00000579057.1 DUX4L4 P P P 1.74E−04 7.11E−03 2.66E−12 7.11E−03

rs16880521 HIT000061975 RAG2 P P P 1.47E−04 8.12E−03 1.47E−12 8.12E−03

rs7716167 HIT000061975 RAG2 P P P 1.47E−04 8.12E−03 1.47E−12 8.12E−03

rs16880521 HIT000061975 KLK2 P P P 1.27E−04 1.02E−02 4.75E−12 1.02E−02

rs7716167 HIT000061975 KLK2 P P P 1.27E−04 1.02E−02 4.75E−12 1.02E−02

rs1027168 TCONS_00022290 XLOC_008349 P P P 9.26E−05 1.03E−02 3.50E−13 1.03E−02

rs10753364 ENST00000420522.1 XLOC_000035 N N P 4.13E−05 1.27E−02 4.31E−15 1.27E−02

rs16880521 HIT000061975 VIPR2 P P P 1.03E−04 1.41E−02 3.61E−10 1.41E−02

rs7716167 HIT000061975 VIPR2 P P P 1.03E−04 1.41E−02 3.61E−10 1.41E−02

rs2060256 ENST00000590159.1 L1CAM N N P 2.06E−05 1.42E−02 6.41E−09 1.42E−02

rs16880521 HIT000061975 LAYN P P P 7.52E−05 1.95E−02 1.39E−10 1.95E−02

rs7716167 HIT000061975 LAYN P P P 7.52E−05 1.95E−02 1.39E−10 1.95E−02

rs2060256 ENST00000590159.1 FAM187B N N P 7.64E−06 3.27E−02 5.64E−09 3.27E−02

rs16880521 HIT000061975 PRSS46 P P P 4.05E−05 3.60E−02 9.02E−11 3.60E−02

rs7716167 HIT000061975 PRSS46 P P P 4.05E−05 3.60E−02 9.02E−11 3.60E−02
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the cis-eSNPs of lncRNA are not enrichment in the two 
functional elements. In addition, previous study has shown 
that lncRNA and 3′ untranslated regions (3′UTRs) in pro-
tein-coding RNAs are significantly similar in structural fea-
tures and sequence composition, which produce the miR-
NAs can combine target lncRNA in anywhere in body of 
lncRNA, rather than mRNA which only can be combined 
in the 3′ untranslated regions of mRNA (Niazi and Valad-
khan 2012).

Recent studies have revealed that abnormal expression 
of lncRNAs is correlated with various biological process 
and human diseases (Huarte and Rinn 2010; Spizzo et al. 
2012). LncRNA has then been considered to be one of 
the most important intermediate phenotype on regulat-
ing mRNA expression. However, as a relatively novel 
kind of transcripts, the genetic architecture underlying 
lncRNA variation and the regulation relationship between 
lncRNA and mRNA are barely known. With the develop-
ment of biotechnology, more and more researchers have 
paid attentions to multidimensional data, and explored 
complex regulation relationships between molecules 
in cells or tissues. This study showed that multi-omics 
integrative analysis is powerful and effective strategy in 
dissecting complex interactions. With the use of lncR-
eQTL results alone, it is very difficult to identify causal 
variant, causal gene, or underlying mechanism by which 
a SNP or lncRNA affects a phenotype. By integrating 
multi-level molecular data, we obtained evidences show-
ing that eSNP and elncRNA have strong associations 
with gene expression levels. Integrative network analyses 
together with CIT analyses have uncovered the lncRNA-
mediated genetic influences on gene expressions, i.e., a 
SNP regulates lncRNA expression, which in turn alters 
mRNA expression. Based on the results, attentions were 
drawn to several hotspots with interesting correlations. 
For example, eSNP rs926370 probably regulates lncRNA 
NST00000579057.1 expression, subsequently altering 
mRNA expressions of multiple genes, including FBXW4, 
CYB5R2, NALCN, etc. The wide variety of biological 
regulation patterns of lncRNA, such as modular scaffolds 
assembling diverse combinations of regulatory proteins 
(Schonrock et  al. 2012), make it possible to up-regulate 
or down-regulate the target gene expression. In addition, 

we found that lncRNA-mediated genes in PBMC are 
mainly involved in common physiological processes 
(e.g., “Sodium ion binding”, “Sodium ion transport”).

This study has several potential limitations. First, the 
inferred interaction patterns were based on multi-omics 
data, further cellular and molecular experiments will be 
helpful to validate the findings. Second, the results were 
derived from PBMC, thus the findings may not be applica-
ble to other cells or tissues.

In summary, we conducted a genome-wide SNP asso-
ciation study for PBMC lncRNA expression, identified sig-
nificant eSNPs and characterized their distribution patterns. 
Follow-up multi-omics integrative analyses identified com-
plex SLM interaction/regulation networks in PBMC. The 
findings provide novel insights into the molecular machin-
ery for PBMC gene expression, and shed lights on PBMC-
relevant human physiology and pathology.
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