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novel), including 19 million variants with a minor allele 
frequency (MAF) <0.5 %. Genotypes from the WGS data 
are highly concordant with genotypes obtained by exome 
array on the same individuals (99.8 %), even when restrict-
ing this analysis to rare variants (MAF <0.5, 99.9 %) or 
heterozygous sites (98.9 %). To further validate our data 
set, we showed that we can effectively use it to replicate 
several genetic associations with myocardial infarction risk 
and blood lipid levels. Furthermore, we analyze the util-
ity of our WGS data set to generate a French-Canadian-
specific imputation reference panel and to infer population 
structure in the Province of Quebec. Our results illustrate 
the value of low-pass WGS to study the genetics of human 
diseases in the founder French-Canadian population.

Introduction

The recent revolution in human complex trait genetics 
comes from the development of genome-wide genotyping 
platforms. These, when combined with genotype impu-
tation using reference haplotypes from the HapMap or 
1000 Genomes Project, have led to the identification of 
thousands of robust genetic associations between complex 
human phenotypes and single nucleotide polymorphisms 
(SNPs) (1000 Genomes Project Consortium 2010; 1000 
Genomes Project Consortium 2012; Altshuler et al. 2005, 
2010; Frazer et al. 2007; Welter et al. 2014). Under the 
genome-wide association study (GWAS) framework, geno-
type imputation is key: it improves power to find markers 
that are not directly genotyped and facilitate meta-analyses 
between studies that are genotyped on different arrays. 
Notwithstanding its success, the GWAS approach has sub-
optimal ability to capture low frequency and rare DNA 
sequence variants because of limited or absent linkage 
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disequilibrium (LD) between markers. The genetic commu-
nity is currently shifting part of its interest from common 
to rare genetic variants to study the aetiology of complex 
human diseases. To this end, it is seeking strategies to more 
comprehensively characterize rare genetic variation in 
large and diverse human populations. In particular, because 
rare genetic variants tend to be population specific, such 
comprehensive surveys need to be done by direct DNA 
sequencing in populations of interest.

Although feasible, high-coverage (30×) whole-genome 
sequencing (WGS) remains expensive, especially if we 
consider the large sample size required for rare-variant 
genetic association studies. One alternative strategy is to 
sequence at low coverage (4–6×) a large number of par-
ticipants, and then uses imputation methodology to recover 
missing genotypes within the sequenced individuals (Li 
et al. 2011). This method can also yield high-quality hap-
lotypes that are useful to impute individuals from the same 
population with genome-wide genotype data available. 
The 1000 Genomes Project implemented successfully this 
approach in individuals from several populations from 
across the globe (1000 Genomes Project Consortium 2010; 
1000 Genomes Project Consortium 2012). The SardiNIA 
and Genome of the Netherlands consortia also used low-
to-intermediate coverage WGS to find common and rare 
population-specific variants (Danjou et al. 2015; Genome 
of the Netherlands 2014; Sidore et al. 2015; Zoledziewska 
et al. 2015). Their analyses confirmed that low-pass WGS 
data sets are appropriate for genetic association studies, 
to create imputation panels, or to ask population genetics 
questions that are specific to these populations.

The population of the Province of Quebec in Canada 
now includes 8.1 million individuals, ~78 % of whom are 
French speaking. This French-Canadian population largely 
originates from the immigration of 8500 mostly French set-
tlers starting in 1608 and ending with the British Conquest 
of 1759. Following these events, the French-Canadian 
population of Quebec expanded rapidly, and an intense 
population growth was paralleled with the colonization of 
new geographical regions, such as Saguenay-Lac-St-Jean 
in the North-East and Gaspesia in the East (Supplemen-
tary Fig. 1). This rapid expansion and migration gave rise 
to regional populations with genetic features that can be 
explained by founder effects (Bherer et al. 2011; Gauvin 
et al. 2014; Moreau et al. 2011a; Roy-Gagnon et al. 2011). 
Geneticists have taken advantage of this genetic homoge-
neity in the French-Canadian founder population of Que-
bec to map genes involved in rare and common human 
diseases (Chami et al. 2014; Chetaille et al. 2014; Laprise 
2014; Scriver 2001). To date, however, no WGS project 
has explored the pattern of rare genetic variation in French 
Canadians from Quebec, as well as its contribution to dis-
ease aetiology.

In this study, we sequenced the whole genome of 1970 
French Canadians at 5.6× coverage. We identified ~29 
million high-quality bi-allelic variants, of which 31 % 
were not previously reported in public databases (dbSNP 
147). When stratifying by minor allele frequency (MAF), 
we found 6 million common (MAF > 5 %), 4 million low-
frequency (0.5 % < MAF ≤ 5 %), and 19 million rare 
(MAF ≤ 0.5 %) markers. The majority of the bi-allelic 
variants are intergenic, while 44 % are intronic and 3 % 
are exonic. The WGS data show 99.8 % concordance when 
compared to ExomeChip genotype data available in the 
same participants, suggesting very high quality. We further 
demonstrate the utility of this WGS data set for genetic 
association studies, to build a French-Canadian haplotype 
reference panel for imputation, and to begin to explore the 
genetic history of this specific population.

Results

Genetic variation in French Canadians

We sequenced at 5.6× coverage 1970 French Canadians 
recruited by the Montreal Heart Institute (MHI) Biobank 
(Supplementary Fig. 2). Demographic and clinical infor-
mation for the participants is available in Supplementary 
Table 1. After quality-control steps, we identified 29 M 
single nucleotide variants (SNVs) and small insertion dele-
tions (indels). Nearly, 31 % of these genetic variants are 
not present in public databases (dbSNP 147); this number 
is consistent with results from a low-pass WGS project 
in European Americans (Morrison et al. 2013). We anno-
tated all bi-allelic SNVs and indels identified (Table 1). As 
expected, likely detrimental mutations (nonsense, splice 
site, frameshift indel) are enriched at the rarer end of the 
allele frequency spectrum, consistent with purifying selec-
tion. For instance, whereas 17 % of synonymous SNVs are 
common, 5 % of nonsense and 11 % of frameshift indel 
variants have a frequency >5 % (Fig. 1).

The transition-to-transversion ratio, a metric used 
to assess the quality of DNA sequencing data, is 2.13, 
very close to the theoretical 2.1 ratio expected for WGS 
(DePristo et al. 2011). To further evaluate the quality of 
the WGS data, we calculated concordance with genotypes 
from an independent exome array experiment available for 
1967 individuals. Across 83,273 bi-allelic SNPs shared 
between the WGS and ExomeChip data sets, we calculated 
an overall concordance rate of 99.8 %. When restricting 
this analysis to heterozygous genotype calls, we found con-
cordance rate of 99.3, 95.2, and 85.3 % for common, low-
frequency, and rare SNVs, respectively (Supplementary 
Tables 2–5). The rediscovery rate (percentage of bi-allelic 
markers from the ExomeChip data set detected by WGS) 
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was 98, 97, and 76 % for common, low-frequency and rare 
SNVs, respectively.

Replication of GWAS findings

This WGS experiment is part of a larger research program 
that focuses on the genetics of coronary artery disease in the 
French-Canadian population. For this project, we explicitly 
selected 984 myocardial infarction (MI) patients and 980 
MI-free controls; additional clinical information on MI risk 
factors is also available for these participants (Supplemen-
tary Table 1). Although our sample size (and thus statistical 
power) is modest when compared to recent meta-analyses 
of GWAS results, we tested the association between known 
SNPs and MI status as well as high-density lipoprotein (HDL) 
cholesterol, low-density lipoprotein (LDL) cholesterol, total 
cholesterol (TC), and triglyceride (TG) levels to assess the 
quality of our data set to perform association testing.

For MI, 35 of the 44 known variants available in the 
WGS data set have an effect in the right direction (binomial 
P = 1 × 10−4) and five are nominally significant (Table 2 
and Supplementary Table 6) (CARDIoGRAMplusC4D 
Consortium 2013; Coronary Artery Disease (C4D) Genet-
ics Consortium 2011; Myocardial Infarction Genetics 
Consortium 2009; Schunkert et al 2011). This includes an 
intronic marker at the PHACTR1 locus, which we had previ-
ously shown to be associated with MI in the MHI Biobank 

Table 1  Number of bi-allelic variants per annotation type and minor allele frequency (MAF) class: common (MAF > 5 %), low frequency 
(0.5 % < MAF ≤ 5 %), and rare (MAF ≤ 0.5 %)

We used functional annotations from the software EPACTS to annotate variants

Annotation class Definition (EPACTS) All variants (%) Common  
(% novel)

Low-frequency  
(% novel)

Rare (% novel)

Exon Codon gain, codon loss, exon, 
frameshift, nonsynonymous, 
start gain, start loss, stop gain, 
stop loss, synonymous, 5′UTR, 
3′UTR

795,781 (2.70 %) 126,678 (0.07) 95,707 (0.53) 573,396 (35.63)

Frameshift indel Frameshift 3633 (0.01 %) 390 (9.74) 572 (7.34) 2671 (30.06)

Intergenic Intergenic, downstream, upstream 14,436,195 (49.01 %) 3,161,456 (1.91) 2,005,936 (6.18) 9,268,803 ((45.83)

Intron Intron, essential splice site, normal 
splice site

12,943,152 (43.94 %) 2,512,344 (0.01) 1,634,909 (0.44) 8,795,899 (45.59)

Insertion
Deletion

Insertion, deletion 1,278,660 (4.34 %) 379,998 (16.07) 335,883 (37.16) 562,779 (50.01)

Missense Nonsynonymous, stop loss, start 
gain

165,934 (0.6 %) 16,395 (0.01) 16,549 (0.02) 132,990 (21.73)

Nonsense Stop gain, start loss 4364 (0.01 %) 204 (0) 273 (0.37) 3887 (35.79)

Regulatory region Downstream (50 bp), upstream 
(50 bp), 5′UTR, 3′UTR

354,953 (1.21 %) 60,511 (0.02) 43,773 (0.49) 250,669 (45.04)

Splice site Essential splice site 3136 (0.01 %) 392 (0) 279 (0) 2465 (40.45)

Synonymous Synonymous 106,533 (0.36 %) 18,197 (0) 13,318 (0.06) 75,018 (16.88)

Fig. 1  Proportion of annotated variants in three minor allele fre-
quency (MAF) classes: common (MAF > 5 %), low frequency 
(0.5 % < MAF ≤ 5 %), and rare (MAF ≤ 0.5 %). The definition of 
each functional annotation is provided in Table 1. We note an enrich-
ment of missense, nonsense, and splice site variants among rare vari-
ants when compared to synonymous DNA sequence changes
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Table 2  Replication of a subset of markers associated with myocardial infarction, high-density lipoprotein (HDL) cholesterol, low-density lipo-
protein (LDL) cholesterol, total cholesterol, and triglyceride levels

SNP Chr Position (hg19) Effect 
allele

Other 
allele

Odds-ratio/beta (odds-ratio/
beta from the literature)

P value Locus

Myocardial infarction

 rs6725887 2 203745885 C T 1.245 (1.278) 2.40 × 10−2 WDR12

 rs12526453 6 12927544 G C 0.734 (0.788) 1.64 × 10−5 PHACTR1

 rs4977574 9 22098574 G A 1.222 (1.087) 3.42 × 10−3 CDKN2A/CDKN2B

 rs974819 11 103660567 C T 0.789 (0.860) 8.67 × 10−4 PDGFD

 rs46522 17 46988597 T C 1.214 (1.238) 4.10 × 10−3 UBE2Z

High-density lipoprotein (HDL)-cholesterol

 rs2290547 3 47061183 A G −0.074 (−0.030) 4.36 × 10−2 SETD2

 rs13326165 3 52532118 G A −0.074 (−0.029) 3.90 × 10−2 STAB 1

 rs9987289 8 9183358 G A 0.140 (0.082) 1.43 × 10−2 PPP1R3B

 rs12678919 8 19844222 G A 0.167 (0.155) 1.31 × 10−3 LPL

 rs1883025 9 107664301 T C −0.104 (−0.070) 2.29 × 10−3 ABCA1

 rs174546 11 61569830 T C −0.065 (−0.039) 4.28 × 10−2 FADS1-2-3

 rs7134594 12 110000193 T C 0.062 (0.035) 3.69 × 10−2 MVK

 rs1532085 15 58683366 G A −0.122 (−0.107) 7.13 × 10−5 LIPC

 rs3764261 16 56993324 A C 0.170 (0.241) 7.06 × 10−8 CETP

 rs11869286 17 37813856 C G 0.082 (0.032) 7.07 × 10−3 STARD3

 rs7241918 18 47160953 T G 0.098 (0.090) 1.59 × 10−2 LIPG

Low-density lipoprotein (LDL)-cholesterol

 rs2131925 1 63025942 T G 0.091 (0.049) 1.65 × 10−3 ANGPTL3

 rs629301 1 109818306 T G 0.093 (0.167) 5.77 × 10−3 SORT1

 rs2072183 7 44579180 C G 0.095 (0.039) 4.25 × 10−3 NPC1L1

 rs10102164 8 55421614 A G 0.073 (0.032) 3.48 × 10−2 SOX17

 rs3780181 9 2640759 G A −0.142 (−0.044) 6.39 × 10−3 VLDLR

 rs964184 11 116648917 C G −0.170 (−0.086) 8.06 × 10−6 APOA1

 rs2000999 16 72108093 A G 0.073 (0.065) 2.93 × 10−2 HPR

 rs6511720 19 11202306 T G −0.113 (−0.221) 5.99 × 10−3 LDLR

 rs4420638 19 45422946 G A 0.167 (0.225) 7.47 × 10−6 APOE

Total cholesterol (TC)

 rs1077514 1 23766233 T C 0.074 (0.030) 4.59 × 10−2 ASAP3

 rs2131925 1 63025942 T G 0.084 (0.075) 3.25 × 10−3 ANGPTL3

 rs629301 1 109818306 T G 0.097 (0.134) 3.38 × 10−3 SORT1

 rs1260326 2 27730940 C T −0.084 (−0.051) 1.44 × 10−3 GCKR

 rs2072183 7 44579180 C G 0.077 (0.036) 1.78 × 10−2 NPC1L1

 rs3780181 9 2640759 G A −0.165 (−0.044) 1.24 × 10−3 VLDLR

 rs964184 11 116648917 C G −0.187 (−0.121) 5.27 × 10−7 APOA1

 rs1532085 15 58683366 G A −0.065 (−0.054) 1.63 × 10−2 LIPC

 rs3764261 16 56993324 A C 0.096 (0.050) 5.72 × 10−4 CETP

 rs2000999 16 72108093 A G 0.085 (0.062) 8.93 × 10−3 HPR

 rs4420638 19 45422946 G A 0.131 (0.197) 3.47 × 10−4 APOE

Triglycerides

 rs2131925 1 63025942 T G 0.071 (0.066) 3.68 × 10−2 ANGPTL3

 rs1260326 2 27730940 C T −0.104 (−0.115) 1.05 × 10−3 GCKR

 rs6882076 5 156390297 C T 0.070 (0.029) 3.36 × 10−2 TIMD4

 rs1495741 8 18272881 A G −0.110 (−0.040) 3.01 × 10−3 NAT2

 rs12678919 8 19844222 G A −0.164 (−0.170) 2.87 × 10−3 LPL

 rs2954029 8 126490972 T A −0.090 (−0.076) 3.73 × 10−3 TRIB1
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using a different genomic technology for DNA genotyping 
(Beaudoin et al. 2015). For HDL-C, LDL-C, TC, and TG 
levels, respectively, 51 of the 69 (binomial P = 9 × 10−5), 
42 of the 57 (binomial P = 5 × 10−4), 56 of the 73 (bino-
mial P = 5 × 10−6), and 26 of the 40 (binomial P = 0.08) 
variants tested have effect alleles that modulate their respec-
tive phenotype in the right direction based on the literature 
(Supplementary Tables 7–10) (Global Lipids Genetics et al. 
2013). We found eleven, nine, eleven, and eight genetic asso-
ciations with HDL-C, LDL-C, TC, and TG levels that are in 
the correct direction and nominally significant at P < 0.05 
(Table 2). Overall, these results suggest that our WGS data 
set represents a robust resource to investigate a novel genetic 
association with coronary artery disease or its risk factor in 
the French-Canadian population.

Imputation

Motivated by recent reports that showed improvements in 
imputation quality when the target samples and reference 
haplotypes are from individuals of the same population 
(Genome of the Netherlands 2014; Pistis et al. 2015), we 
tested the utility of our WGS-derived haplotypes to impute 
genotypes in French Canadians. For this analysis, we imputed 
genotypes in 731 independent French Canadians previously 
genotyped on the Illumina Omni2.5 M array. To this end, 
we used three reference panels: (1) 5008 haplotypes from 
all the populations from the 1000 Genomes Project phase 
3, (2) 3940 French-Canadian haplotypes from our low-pass 
WGS experiment, and (3) the combined set of 1000 Genomes 
Project and French-Canadian haplotypes. We limited our 
analyses to 892,893 high-quality markers (HWE P value in 
WGS controls >1 × 10−5) on chromosome 1 that are shared 
between the 1000 Genomes Project and our WGS data set. 
To estimate imputation quality, we had each known genotype 
in turn and computed the squared correlation (r2) between 
the imputed dosages and the masked true genotypes. Over-
all, the three reference panels supported excellent imputation 
quality, with mean imputation r2 of 0.926, 0.942, and 0.944 
for the 1000 Genomes Project, French-Canadian, and com-
bined haplotypes, respectively (Fig. 2). We noted a slightly 
better imputation quality for rare variants using the French 

Canadian rather than the 1000 Genomes Project haplotypes, 
consistent with the previous report (mean r2 of 0.76 vs. 0.71) 
(Fig. 2). The estimated imputation accuracy, calculated on 
both known and imputed genotypes, behaves in a similar way 
(Supplementary Fig. 3). Practically, investigators often filter 
at an imputation quality score ≥0.3 to select imputed markers 
for association testing. Using this threshold, 59 % of the rare 
variants imputed with the French-Canadian haplotypes would 
be selected instead of 55 % of the rare variants imputed with 
the 1000 Genomes Project haplotypes only.

We present only nominally significant results (P ≤ 0.05) with phenotypic effect in the expected direction based on the literature. All replication 
results are available in Supplementary Tables 6–10. For myocardial infarction, we provide the effect size as odds ratio. For blood lipids levels, 
effect sizes are in the standard deviation units. We also report in parentheses the effect sizes and odds ratios from the literature (Beaudoin et al. 
2015; Global Lipids Genetics et al. 2013)

Table 2  continued

SNP Chr Position (hg19) Effect 
allele

Other 
allele

Odds-ratio/beta (odds-ratio/
beta from the literature)

P value Locus

 rs174546 11 61569830 T C 0.083 (0.045) 1.37 × 10−2 FADS1-2-3

 rs964184 11 116648917 C G −0.304 (−0.234) 8.29 × 10−12 APOA1

Fig. 2  Boxplots and mean of the squared correlation between 
masked genotypes and imputed dosages. For each of three haplo-
type reference panels, we report the imputation quality for ~10 K 
rare (MAF ≤ 0.5 %), ~20 K low-frequency (0.5 % < MAF ≤ 5 %), 
~46 K common (MAF > 5 %), and all ~76 K shared polymorphic var-
iants on chromosome 1. The number on each box corresponds to the 
mean EmpRsq quality score. 1000G, 5008 haplotypes from phase 3 
of the 1000 Genomes Project; FC, 3940 haplotypes from this whole-
genome DNA re-sequencing project in French Canadians; and com-
bined, combination of the 1000G and FC haplotypes
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The recently developed Haplotype Reference Consor-
tium (HRC, http://www.haplotype-reference-consortium.
org/) has combined 20 cohorts to obtain over 64,000 hap-
lotypes that cover ~39 M variants. We compared the impu-
tation performance of our French-Canadian panel to hap-
lotypes from HRC, restricting this comparison to 808,746 
shared variants on chromosome 1. Overall, the HRC panel 
performs slightly better than the French-Canadian panel 
(mean r2 of 0.96 vs. 0.94), and that is also true for rare 
variants (mean r2 of 0.79 vs. 0.76) (Supplementary Figs. 4 
and 5). Thus, for variants present in HRC, the large num-
ber of haplotypes outweighs the population specificity of 
the French-Canadian panel. However, this result does not 
question the relevance of our French-Canadian WGS, since 
nearly 30 % of the variants found in our project are absent 
from public databases and could not be imputed with HRC.

Population structure in Québec

Although all MHI Biobank participants were recruited in 
the cosmopolitan Montreal area, we have information on 
the geographical origin of their four grandparents. Using 
this data, we could assign each participant to the 17 admin-
istrative regions in Quebec (Supplementary Fig. 1). For the 
subsequent analyses, we focus our genetic analyses to four 
regions: Montreal, Quebec City, and the Saguenay-Lac-
St-Jean regions that are characterized by a strong founder 
effect and the Gaspesia region, which harbours higher 
genetic heterogeneity, caused by an influx of populations, 
namely, Acadians and Loyalists (Moreau et al. 2011b). For 
each region, the participants receive a score (0–4) that cor-
responds to the number of grandparents from this region. 
Thus, a participant with two grandparents from Montreal 
and two from Saguenay would get scores of 2 for these 
regions and scores of 0 for Quebec City and Gaspesia (Sup-
plementary Table 11).

We used multidimensional scaling (MDS) on partially 
independent bi-allelic variants (r2 < 0.5) with MAF > 1 % to 
project the data on the ten dimensions that preserve most of 
the genetic distance. Then, we determined how genetic vari-
ation captured by low-pass WGS reflects regional ancestry. 
The first two dimensions from MDS model are the regional 
structure of our population within Quebec. For instance, 
dimension C1 highlights individuals from Saguenay-Lac-
St-Jean—and to a lesser extent participants from Quebec 
City—from the rest of the sequenced participants (Fig. 3). 
Thus, C1 appears to capture the serial migration events that 
led to the peopling of the Northern regions of Quebec in 
the 19th century, consistent with the previous observations 
(Moreau et al. 2011a; Roy-Gagnon et al. 2011). The sec-
ond MDS dimension (C2) isolates individuals from Gasp-
esia (Fig. 3). Since a small number of the French Canadians 
in our data set (N = 28, Supplementary Table 11) do not 

originate from the province of Quebec, we derive similar 
scores for the other Canadian provinces. Interestingly, C2 
also captures ancestry from Canada’s Maritime provinces 
(Nova Scotia, New Brunswick, and Prince Edward Island) 
that are historically and geographically linked to Gaspesia 
(Supplementary Fig. 6). Supplementary Figure 7 shows the 
same projection, but restricted to 199 individuals, whose 
four grandparents are from the same region (Montreal, Que-
bec City, Saguenay, and Gaspesia). Dimensions C1 and C2 
capture the same patterns of population structure. Finally, 
we combined our French-Canadian data, restricted to vari-
ants with MAF > 5 %, with data from the 1000 Genomes 
Project to create a data set of 5 million shared genetic vari-
ants among 4474 individuals (2504 individuals from the 
1000 Genomes Project). We then performed a new MDS 
analysis using only 429,800 partially independent vari-
ants (r2 < 0.5). On C1 and C2, the French Canadians over-
lap mostly with individuals of northern European ancestry 
(CEU) (Supplementary Figs. 8 and 9).

Discussion

In this article, we present the first low-pass WGS effort to 
characterize the French-Canadian population. Our work 
builds on the previous studies that targeted specific sub-
populations to discover population-specific genetic vari-
ation. The resulting high-quality WGS data set reflects 
the regional structure of the French-Canadian population 
and is highly concordant with genotype data available for 
the same samples but obtained using a different technol-
ogy. Despite the relatively small sample size of our data 
set, we replicated genetic associations with myocardial 
infarction and lipid traits. Furthermore, the correspond-
ing population-specific haplotypes outperformed the 1000 
Genomes Project panel for the imputation of rare variants 
in French-Canadian samples. All these results illustrate the 
depth, quality, and future usefulness of this WGS resource 
to investigate the genetics of complex human diseases and 
other quantitative traits in this specific population.

Although the French-Canadian haplotypes were more 
efficient than the 1000 Genomes Project haplotypes to 
impute rare variants in French Canadians, the gain remains 
modest. This is particularly noticeable when compar-
ing with the gain in imputation quality of rare variants 
observed in other low-pass WGS projects, such as the 
Genome of the Netherlands and SardiNIA (Genome of the 
Netherlands 2014; Pistis et al. 2015). One major difference 
between these efforts and our WGS project is the absence 
of related individuals among the French Canadians that 
were sequenced. Related individuals would simplify the 
phasing of the genotypes and improve the quality of the 
haplotypes. An alternative approach to improve the quality 

http://www.haplotype-reference-consortium.org/
http://www.haplotype-reference-consortium.org/
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of our French-Canadian haplotypes would be to use inde-
pendent dense genotyping data (e.g., GWAS-type array) 
as a so-called “scaffold” to constrain the search space for 
imputation (Delaneau et al. 2014).

The development of very large imputation panels, such 
as the 64,976 haplotypes panel from HRC, has called into 
question the value of WGS to identify genetic risk factors 
for complex human diseases. In particular, we compared the 
performance of HRC and haplotypes from our WGS pro-
ject to impute rare variants in French Canadians, and noted 
slightly better imputation quality for the larger HRC panel 
(e.g., mean r2 of 0.79 vs. 0.76 for rare variants). As expected, 
this suggests that for variants common to both data sets, the 

number of haplotypes is the main predictor of imputation 
quality. However, this result does not undermine the impor-
tance to carry out population-specific WGS projects, since 
31 % of the variants identified in French Canadians are not 
currently available in public databases (and would not have 
been imputed using HRC alone). This is consistent with the 
discovery by low-pass WGS of population-specific variants 
of large effect size on human complex phenotypes (Danjou 
et al. 2015; Sidore et al. 2015; Zoledziewska et al. 2015). 
WGS data also provide the opportunity to explore other 
type of DNA sequence polymorphisms, such as structural 
and highly repetitive variants. As sequencing costs continue 
to drop, the sample size of WGS projects will increase, 

Fig. 3  Projection of 1970 French-Canadian individuals on dimen-
sions C1 and C2 from multidimensional scaling (MDS). Individuals 
are color-coded according to the number of their grandparents from 
Montreal (a), Quebec City (b), Saguenay-Lac-St-Jean (c), and Gasp-

esia (d). C1 isolates individuals with ancestry in Saguenay-Lac-St-
Jean and Quebec City, consistent with the historical migration wave 
in the Province of Quebec. C2 opposes individuals from Gaspesia to 
the rest of the population in Quebec
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allowing powerful association analyses between the entire 
human genome and complex diseases.

Online methods

Sample collection

984 cases and 986 controls for myocardial infarction (MI) 
(Supplementary Table 1) were recruited from the Montreal 
Heart Institute Biobank (Beaudoin et al. 2012). 980 controls 
were selected to be free of percutaneous coronary interven-
tion, coronary artery bypass surgery, transient ischemic attack 
or stroke, peripheral vascular disease, congestive heart failure, 
and angina. Cases and controls were matched on sex, hyper-
tension, diabetes, and dyslipidemia. All samples have French-
Canadian ancestry, and the origin (birthplace) of their grand-
parents is available. Clinical information (MI status, age, sex, 
statin use, nuclear magnetic resonance-based HDL cholesterol 
and triglyceride levels, biochemistry-measured LDL-choles-
terol and total cholesterol) is available for all participants.

Whole‑genome DNA sequencing

Samples were sequenced with Illumina HiSeq technology 
at the McGill and Genome Quebec Innovation Centre. The 
resulting reads were then aligned on the UCSC reference 
genome b37 and filtered using a bioinformatics pipeline 
combining the Burrows–Wheeler Aligner (BWA) (Li and 
Durbin 2009), SAMtools (http://samtools.sourceforge.net), 
Picard (http://picard.sourceforge.net), and the Genome Anal-
ysis Tool Kit (GATK) v1.8 (McKenna et al. 2010) (Supple-
mentary Note). Variant calling was performed across samples 
using GATK’s UnifiedGenotyper. We then applied GATK’s 
Variant QualityScore Recalibration to filter the resulting vcf 
file (Supplementary Note). GATK’s VariantEvaluation was 
used to compute statistics on the filtered variants. Sequences 
were phased, and sporadic missing genotypes were imputed 
with Beagle v4 (Browning and Browning 2007). For each 
sample, the algorithm took the genotype likelihoods as input 
and used the phased remaining sequences as a reference 
panel (Supplementary Note). We used PLINK 1.9 (Purcell 
et al. 2007) and vcftools 0.1.12 to control the quality of our 
sequence data (Supplementary Note). The resulting quality-
controlled bi-allelic variants were annotated using build 
hg19 of the reference human genome and the Efficient and 
Parallelizable Association Container Toolbox (EPACTS, 
http://genome.sph.umich.edu/wiki/EPACTS).

Concordance with the ExomeChip

All samples have been genotyped on the Illumina Exo-
meChip. Concordance on individuals and positions shared 

in common between the whole-genome sequence data set 
and the ExomeChip genotype data was calculated with 
PLINK using the option diff. We then recoded both files in 
additive components with PLINK and built the contingency 
table with R (Supplementary Note).

Genetic association analyses

The association analyses were performed using the Wald 
test from the software rvtest (http://genome.sph.umich.edu/
wiki/RvTests). The covariates for all phenotypes included 
age-squared, sex, statin usage, and the first ten dimensions 
from multidimensional scaling (MDS). The MI case–con-
trol status was also a covariate for the inverse-normal trans-
formed lipids phenotypes. We accounted for experimental 
batch effects for LDL-C and TC phenotypes.

Genotype imputation in French Canadians

We evaluated the imputation performance of our French-
Canadian reference panel on 751 French-Canadian samples 
genotyped on the Illumina Omni2.5 array. We excluded 20 
samples already present in the reference panel based on 
an identity-by-descent analysis with independent SNPs at 
MAF > 1 %. The following analyses were performed on 
chromosome 1 only: the remaining 731 samples were fil-
tered with PLINKseq and checkvcf, and phased with sha-
peit (Delaneau et al. 2012). The resulting haplotypes were 
imputed with minimac3 (http://genome.sph.umich.edu/
wiki/Minimac3) using four reference panels: the Haplotype 
Reference Consortium (HRC), 1000 Genomes Project ver-
sion 3 (1000G), our French-Canadian reference panel (FC), 
excluding variants out of Hardy–Weinberg equilibrium 
(P < 1 × 10−5), and a panel combining 1000G and FC hap-
lotypes. Imputation quality was measured with the metrics 
EmpRsq and Rsq produced by minimac3.

Population structure analysis

Multidimensional scaling (MDS) was performed with 
PLINK on partially independent (r2 < 0.5) variants with 
MAF > 1 %. The origin of the four grandparents of each 
patient is heterogeneous: it might be a city, an adminis-
trative region of Quebec, the global province of Quebec, 
or even other Canadian provinces or countries. To assign 
regional ancestry scores to individuals, we mapped their 
grandparents’ origin to the 17 Quebec administrative 
regions based on electoral data available at http://www.
electionsquebec.qc.ca/francais/provincial/carte-electorale/
municipalites-et-entites-administratives-2011.php.

Acknowledgments We thank all participants and staff of the André 
and France Desmarais Montreal Heart Institute (MHI) Biobank. 

http://samtools.sourceforge.net
http://picard.sourceforge.net
http://genome.sph.umich.edu/wiki/EPACTS
http://genome.sph.umich.edu/wiki/RvTests
http://genome.sph.umich.edu/wiki/RvTests
http://genome.sph.umich.edu/wiki/Minimac3
http://genome.sph.umich.edu/wiki/Minimac3
http://www.electionsquebec.qc.ca/francais/provincial/carte-electorale/municipalites-et-entites-administratives-2011.php
http://www.electionsquebec.qc.ca/francais/provincial/carte-electorale/municipalites-et-entites-administratives-2011.php
http://www.electionsquebec.qc.ca/francais/provincial/carte-electorale/municipalites-et-entites-administratives-2011.php


1221Hum Genet (2016) 135:1213–1221 

1 3

Sequencing of the MHI Biobank samples was performed at the 
McGill University and Génome Québec Innovation Centre. This work 
is funded by Génome Québec and Génome Canada, the MHI Founda-
tion, and the Canada Research Chair program. RAH is funded by a 
Foundation Award from the Canadian Institutes of Health Research 
and by the Jacob J. Wolfe Distinguished Medical Research Chair and 
Edith Schulich Vinet Medical Research Chair.

References

1000 Genomes Project Consortium (2010) A map of human 
genome variation from population-scale sequencing. Nature 
467:1061–1073

1000 Genomes Project Consortium (2012) An integrated map of 
genetic variation from 1,092 human genomes. Nature 491:56–65

Altshuler D, Brooks LD, Chakravarti A, Collins FS, Daly MJ, Don-
nelly P (2005) A haplotype map of the human genome Nature 
437:1299–1320

Altshuler DM et al (2010) Integrating common and rare genetic varia-
tion in diverse human populations. Nature 467:52–58

Beaudoin M et al (2012) Pooled DNA resequencing of 68 myocardial 
infarction candidate genes in French Canadians. Circ Cardiovasc 
5:547–554

Beaudoin M et al (2015) Myocardial infarction-associated SNP 
at 6p24 interferes with MEF2 binding and associates with 
PHACTR1 expression levels in human coronary arteries. Arte-
rioscler Thromb Vasc Biol 35:1472–1479

Bherer C, Labuda D, Roy-Gagnon MH, Houde L, Tremblay M, 
Vezina H (2011) Admixed ancestry and stratification of Quebec 
regional populations. Am J Phys Anthropol 144:432–441

Browning SR, Browning BL (2007) Rapid and accurate haplotype 
phasing and missing-data inference for whole-genome associa-
tion studies by use of localized haplotype clustering. Am J Hum 
Genet 81:1084–1097

CARDIoGRAMplusC4D Consortium (2013) Large-scale association 
analysis identifies new risk loci for coronary artery disease. Nat 
Genet 45(1):25–33

Chami N et al (2014) Nonsense mutations in BAG3 are associated 
with early-onset dilated cardiomyopathy in French Canadians. 
Can J Cardiol 30:1655–1661

Chetaille P et al (2014) Mutations in SGOL1 cause a novel cohesin-
opathy affecting heart and gut rhythm. Nat Genet 46:1245–1249

Coronary Artery Disease (C4D) Genetics Consortium (2011) A genome-
wide association study in Europeans and South Asians identifies 
five new loci for coronary artery disease. Nat Genet 43(4):339–344

Danjou F et al (2015) Genome-wide association analyses based on 
whole-genome sequencing in Sardinia provide insights into reg-
ulation of hemoglobin levels. Nat Genet 47:1264–1271

Delaneau O, Marchini J, Zagury JF (2012) A linear complexity phas-
ing method for thousands of genomes. Nat Methods 9:179–181

Delaneau O, Marchini J, Genomes Project C, Genomes Project C (2014) 
Integrating sequence and array data to create an improved 1000 
Genomes Project haplotype reference panel. Nat Commun 5:3934

DePristo MA et al (2011) A framework for variation discovery and 
genotyping using next-generation DNA sequencing data. Nature 
Genet 43:491–498

Frazer KA et al (2007) A second generation human haplotype map of 
over 3.1 million SNPs. Nature 449:851–861

Gauvin H, Moreau C, Lefebvre JF, Laprise C, Vezina H, Labuda D, 
Roy-Gagnon MH (2014) Genome-wide patterns of identity-by-
descent sharing in the French Canadian founder population. Eur 
J Hum Genet 22:814–821

Genome of the Netherlands (2014) Whole-genome sequence varia-
tion, population structure and demographic history of the Dutch 
population. Nat Genet 46:818–825

Global Lipids Genetics C et al (2013) Discovery and refinement of 
loci associated with lipid levels. Nat Genet 45:1274–1283

Laprise C (2014) The Saguenay-Lac-Saint-Jean asthma familial col-
lection: the genetics of asthma in a young founder population. 
Genes Immun 15:247–255

Li H, Durbin R (2009) Fast and accurate short read alignment with 
Burrows-Wheeler transform. Bioinformatics 25:1754–1760

Li Y, Sidore C, Kang HM, Boehnke M, Abecasis GR (2011) Low-
coverage sequencing: implications for design of complex trait 
association studies. Genome Res 21:940–951

McKenna A et al (2010) The Genome Analysis Toolkit: a MapReduce 
framework for analyzing next-generation DNA sequencing data. 
Genome Res 20:1297–1303

Moreau C, Bherer C, Vezina H, Jomphe M, Labuda D, Excoffier L 
(2011a) Deep human genealogies reveal a selective advantage to 
be on an expanding wave front. Science 334:1148–1150

Moreau C, Vezina H, Jomphe M, Lavoie EM, Roy-Gagnon MH, 
Labuda D (2011b) When genetics and genealogies tell differ-
ent stories-maternal lineages in Gaspesia. Ann Hum Genet 
75:247–254

Morrison AC et al (2013) Whole-genome sequence-based analysis of 
high-density lipoprotein cholesterol. Nat Genet 45:899–901

Myocardial Infarction Genetics Consortium (2009) Genome-wide 
association of early-onset myocardial infarction with common 
single nucleotide polymorphisms, common copy number. Nat 
Genet 41(3):334–341

Pistis G et al (2015) Rare variant genotype imputation with thousands 
of study-specific whole-genome sequences: implications for 
cost-effective study designs. Eur J Hum Genet 23:975–983

Purcell S et al (2007) PLINK: a tool set for whole-genome associa-
tion and population-based linkage analyses. Am J Hum Genet 
81:559–575

Roy-Gagnon MH et al (2011) Genomic and genealogical investiga-
tion of the French Canadian founder population structure. Hum 
Genet 129:521–531

Schunkert H et al (2011) Large-scale association analysis identifies 
13 new susceptibility loci for coronary artery disease. Nat Genet 
43(4):333–338

Scriver CR (2001) Human genetics: lessons from Quebec popula-
tions. Annu Rev Genomics Hum Genet 2:69–101

Sidore C et al (2015) Genome sequencing elucidates Sardinian 
genetic architecture and augments association analyses for lipid 
and blood inflammatory markers. Nat Genet 47:1272–1281

Welter D et al (2014) The NHGRI GWAS catalog, a curated resource 
of SNP-trait associations. Nucleic Acids Res 42:D1001–D1006

Zoledziewska M et al (2015) Height-reducing variants and selection 
for short stature in Sardinia. Nat Genet 47:1352–1356


	Whole-genome sequencing in French Canadians from Quebec
	Abstract 
	Introduction
	Results
	Genetic variation in French Canadians
	Replication of GWAS findings
	Imputation
	Population structure in Québec

	Discussion
	Online methods
	Sample collection
	Whole-genome DNA sequencing
	Concordance with the ExomeChip
	Genetic association analyses
	Genotype imputation in French Canadians
	Population structure analysis

	Acknowledgments 
	References




