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a multi-ethnic cohort of 342 GJB2 mutation-negative 
deaf probands from South Africa, Nigeria, Tunisia, Tur-
key, Iran, India, Guatemala, and the United States (South 
Florida). We detected causative DNA variants in 25 % of 
multiplex and 7 % of simplex families. The detection rate 
varied between 0 and 57 % based on ethnicity, with Gua-
temala and Iran at the lower and higher end of the spec-
trum, respectively. We detected causative variants within 27 
genes without predominant recurring pathogenic variants. 
The most commonly implicated genes include MYO15A, 
SLC26A4, USH2A, MYO7A, MYO6, and TRIOBP. Overall, 

Abstract Hearing loss is the most common sensory deficit 
in humans with causative variants in over 140 genes. With 
few exceptions, however, the population-specific distribu-
tion for many of the identified variants/genes is unclear. 
Until recently, the extensive genetic and clinical heteroge-
neity of deafness precluded comprehensive genetic analy-
sis. Here, using a custom capture panel (MiamiOtoGenes), 
we undertook a targeted sequencing of 180 genes in 
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our study highlights the importance of family history and 
generation of databases for multiple ethnically discrete 
populations to improve our ability to detect and accurately 
interpret genetic variants for pathogenicity.

Introduction

Hearing loss (HL) is one of the most common sensory impair-
ment in humans. It is estimated that one child in 1000 is born 
with a prelingual HL that can have a significant impact on 
normal speech and language skills (Yoshinaga-Itano 2000). 
Approximately 10 % of the population is affected with disa-
bling HL by the age of 60 years and ~50 % by the age of 
80 years (Davis 1995). HL can be due to environmental fac-
tors, genetic factors, or a combination thereof. However, 
genetic factors are now regarded as the leading cause of 
childhood HL in developed countries, since other causes are 
generally prevented by vaccines, antibiotics, and workplace 
regulations (Nance 2003). It is estimated that approximately 
30 % of all genetic HL is syndromic in nature, i.e., (syndro-
mic HL, SHL) (Online Mendelian Inheritance in Man; http://
www.ncbi.nlm.nih.gov/omim/), and approximately 70 % 
of genetic HL is non-syndromic (NSHL), wherein hearing 
impairment is the only feature observed (Gorlin et al. 1995). 
NSHL generally is due to mutations in single genes. Approxi-
mately 80 % of NSHL is autosomal recessive (ARNSHL), 
20 % is autosomal dominant (ADNSHL), 1 % is X-linked, 
and <1 % is mitochondrial. Most ARNSHL is prelingual 
severe-to-profound, whereas ADNSHL is often post-lingual 
and progressive (Angeli et al. 2012).

The genetic basis of HL is heterogeneous with numerous 
loci/genes already identified in humans. Over 140 loci have 
been described for NSHL (Hereditary Hearing Loss Home-
page; http://hereditaryhearingloss.org). Over 700 syndromes 
may feature HL (Online Mendelian Inheritance in Man; http://
www.ncbi.nlm.nih.gov/omim/). The same clinical syndrome 
can be caused by different genes and different mutations in the 
same gene may result in SHL and NSHL (Yan and Liu 2008). 
For some genes, there are both dominant and recessive alleles. 
Even the same variant in a single gene can be associated with 
quite variable phenotypes (Hutchin et al. 2000).

Recent technical advances have revealed new molecu-
lar mechanisms of HL and provided improved diagnostic 
methods. Molecular genetic testing for several HL-associ-
ated genes is now part of the standard protocol for the eti-
ologic diagnosis of HL (King et al. 2012). An immediate 
benefit is that the identification of the specific genetic vari-
ant responsible for HL can establish or confirm a clinical 
diagnosis, and allow the implementation of personalized 
approaches to medical management. The information also 
facilitates risk assessment for affected families and enables 
reproductive decision making.

Decades of experience have proven the diagnostic utility 
of Mendelian disorders by serial additive Sanger sequenc-
ing of candidate genes (Maddalena et al. 2005; Richards 
et al. 2008). However, this approach is labor intensive and 
not cost effective for a disorder as heterogeneous as HL. 
An array-based method has also been developed, but it con-
tains a limited number of genes, and is expensive, and only 
known mutations can be analyzed (Kothiyal et al. 2010). A 
disorder with high heterogeneity, such as HL, is often dif-
ficult to dissect with these techniques because of the neces-
sity of identifying the candidate genes for testing. Today, 
the revolutionary targeted capture and next-generation 
sequencing (NGS) technologies provide a viable alternative 
because of their massively parallel sequencing capability, 
which enables the simultaneous screening of multiple HL 
genes in multiple samples (Shearer et al. 2010; Brownstein 
et al. 2011; Yan et al. 2013; Tekin et al. 2016). Gene panels 
are useful when multiple genes are involved in a particu-
lar disorder or when there is extensive phenotypic over-
lap between different disorders. Panels are also more cost 
effective, and results can be obtained more rapidly than a 
traditional gene by gene approach. In this study, we under-
took a targeted sequencing of 180 known and candidate 
HL-causing genes in a multi-ethnic cohort of 342 GJB2-
mutation-negative probands.

Materials and methods

Subjects

This study was approved by the University of Miami Insti-
tutional Review Board (USA), the Madras ENT Research 
Foundation (P) Ltd (MERF) (India), the University Hos-
pital of Mahdia (Tunisia), the Growth and Development 
Research Ethics Committee (Iran), the Ethics Commit-
tee of University of Ibadan (Nigeria), the Ankara Univer-
sity Medical School Ethics Committee (Turkey), the Uni-
versity Hospital of Sfax Ethics Committee (Tunisia), 
University of Pretoria School of Medicine Ethics Commit-
tee (South Africa), and Institute for Research on Genetic 
and Metabolic Diseases, INVEGEM (Guatemala). A signed 
informed-consent form was obtained from each participant 
or, in the case of a minor, from the parents.

We have included in this study a total of 342 GJB2 
mutation-negative families of diverse ethnicity. Of these, 
185 were simplex and 157 were multiplex with at least 
two affected individuals. Since a three-generation pedi-
gree was not available in some cases, we did not group 
multiplex families according to inheritance pattern. The 
multi-ethnic cohort was comprised of 91 indigenous fami-
lies from South Africa, 90 from Nigeria, 53 from the USA 
(South Florida), 38 from Tunisia, 23 from India, 21 from 

http://www.ncbi.nlm.nih.gov/omim/
http://www.ncbi.nlm.nih.gov/omim/
http://hereditaryhearingloss.org
http://www.ncbi.nlm.nih.gov/omim/
http://www.ncbi.nlm.nih.gov/omim/
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Iran, 19 from Turkey, and 7 from Guatemala. The diagnosis 
of SNHL was established via the standard audiometry in a 
soundproofed room according to the current clinical stand-
ards. HL was congenital onset or prelingual onset with a 
severity ranging from mild to profound. Clinical evaluation 
included a thorough physical examination and otoscopy in 
all cases. Additional evaluations, including a high-resolu-
tion, thin-section computed tomography (CT) and magnetic 
resonance imaging (MRI) of the temporal bone, were per-
formed when possible. None of the recruited individuals 
were diagnosed with a syndrome. DNA was extracted from 
peripheral blood leukocytes of probands according to the 
standard procedures.

Sequencing

Using the Agilent SureDesign online tool (https://earray.
chem.agilent.com/suredesign/), a SureSelect custom kit 
(Agilent, Santa Clara, CA, USA, https://www.agilent.com) 
was designed to include all exons, 5′ UTRs and 3′ UTRs 
of 180 known and candidate deafness causing genes (Sup-
plementary Table S1) (Tekin et al. 2016). This custom cap-
ture panel (MiamiOtoGenes), with a target size of approxi-
mately 1.158 MB encompassing 3494 regions, covers 
genes associated with both syndromic and non-syndromic 
forms of HL. The targeted sequencing was processed at the 
Hussman Institute for Human Genomics (HIHG) Sequenc-
ing core, University of Miami. The Agilent’s SureSelect 
Target Enrichment (Agilent, Santa Clara, CA, USA) of 
coding exons and flanking intronic sequences in-solution 
hybridization capture system was used following the man-
ufacturer’s standard protocol. Adapter sequences for the 
Illumina HiSeq 2000 were ligated, and the enriched DNA 
samples were prepared using the standard methods for the 
HiSeq 2000 instrument (Illumina). Through the sample 
preparation, average insert size was 180 bp and paired end 
reads were used. Regions with lower coverage were not 
subjected to additional sequencing.

Bioinformatics analysis

The Illumina CASAVA v1.8 pipeline was used to assemble 
99 bp sequence reads. Burrows–Wheeler Aligner (BWA) 
was applied for alignment of sequence reads to the human 
reference genome (hg19) (Li and Durbin 2010), and vari-
ants were called using FreeBayes (Garrison and March 
2012). Genesis 2.0 (https://www.genesis-app.com/) was 
then used for variant filtering based on quality/score read 
depth and minor allele frequency (MAF thresholds of 
0.005 for ARNSHL and 0.0005 for ADNSHL variants) 
as reported in dbSNP141, the National Heart, Lung, and 
Blood Institute Exome Sequencing Project Exome Variant 

Server, Seattle, WA Project (Exome Variant Server 2012), 
Exome Aggregation Consortium (ExAC) browser (http://
exac.broadinstitute.org/), the 1000 Genome Project Data-
base and our internal database of >3000 samples from 
European, Asian, and American ancestries. Variants meet-
ing these criteria were further annotated based on their 
presence and pathogenicity information in Human Gene 
Mutation Database (HGMD; http://www.hgmd.cf.ac.uk), 
the Deafness Variation Database (DVD) (deafnessvariation-
database.org), and ClinVar (http://www.ncbi.nlm.nih.gov/
clinvar/). In the final step, all variants were re-classified 
based on the American College of Medical Genetics and 
Genomics (ACMG) and Association for Molecular Pathol-
ogy (AMP) guidelines (Richards et al. 2015). These guide-
lines recommend the use of specific standard terminology 
for DNA variants in five categories to include pathogenic, 
likely pathogenic, uncertain significance, likely benign, and 
benign. They describe criteria using evidence from popula-
tion data, computational data, functional data, and segrega-
tion data for variant interpretation. Copy number variation 
(CNV) calling was performed using an R-based tool (Nord 
et al. 2011). This method normalizes read-depth data by 
sample batch and compares median read-depth ratios using 
a sliding-window approach.

Sanger sequencing was used for the confirmation of 
variant calls and PCR for the CNVs. Family members, 
when available, were used for segregation, de novo status, 
and trans configuration of biallelic variants. During the 
interpretation, we also considered phenotypic correlations 
between the gene variants and their reported phenotypes.

Results

Targeted capture sequencing

Targeted capture genome enrichment (TGE) and mas-
sively parallel sequencing (MPS) were performed on all 
probands. An average of 99, 87, and 60 % of the targeted 
bases were covered at 10×, 50×, and 100×, respectively 
(Supplementary Fig. S1).

Molecular findings among probands in the multi‑ethnic 
cohort

After QC and filtration (read depth >8, Genotype Qual-
ity >35, and QUAL >20), we detected 151 variants in 119 
families that we classified as likely pathogenic, pathogenic, 
or variant of uncertain significance based on ACMG guide-
lines. Of these, 44 % (66/151) have been reported in at least 
one of the following three databases: ClinVar, HGMD, and 
DVD (Supplementary Table S2).

https://earray.chem.agilent.com/suredesign/
https://earray.chem.agilent.com/suredesign/
https://www.agilent.com
https://www.genesis-app.com/
http://exac.broadinstitute.org/
http://exac.broadinstitute.org/
http://www.hgmd.cf.ac.uk
http://www.ncbi.nlm.nih.gov/clinvar/
http://www.ncbi.nlm.nih.gov/clinvar/
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HL causative genes in the cohort

When only pathogenic and likely pathogenic variants were 
taken into consideration, the underlying genetic cause was 
identified in 53 families, providing an etiologic diagnostic 
rate of 15 % (53/342) in the cohort. The detection rates in 
different groups were 0 % (0/7, Guatemala), 4 % (4/91, 
South Africa), 4 % (4/90, Nigeria), 17 % (9/53, South 
Florida), 26 % (10/38, Tunisia), 26 % (6/23, India), 42 % 
(8/19, Turkey), and 57 % (12/21, Iran) (Table 1; Fig. 1a). 
Causative variants were detected in 7 % (13/185) of the 
simplex families and 25 % (40/157) of the multiplex fami-
lies (Fig. 1a). 

Of the 119 families, 66 (55 %) were classified as uncer-
tain families. Those uncertain families had at least one 
allele with a variant of unknown significance (VUS) even 
if they had another allele classified as likely pathogenic 
or pathogenic. The uncertain family rates in the multiplex 
families were 22 % (6/27) in Nigeria, 38 % (8/21) in South 
Africa, 21 % (8/38) in Tunisia, 22 % (2/9) in India, 33 % 
(1/3) in Guatemala, 12 % (2/17) in Turkey, 8 % (1/13) in 
Iran, and 26 % (7/27) in USA (Supplementary Table S3).

In this multi-ethnic cohort, sequence variants were iden-
tified in a total of 48 genes (Supplementary Table S2), while 
27 different genes had variants in solved families. Genes 
identified in at least three solved families include MYO15A 
(MIM 602666) (13 %; 7/53), SLC26A4 (MIM 605646) 
(9 %; 5/53), USH2A (MIM 608400) (9 %; 5/53), MYO7A 
(MIM 276903) (8 %; 4/53), TRIOBP (MIM 609761) (6 %; 
3/53), and MYO6 (MIM 600970) (6 %; 3/53) (Fig. 1b).

Of the 57 unique HL-causing variants identified in 
solved families, 26 have previously been reported in the lit-
erature (Table 1). The remaining 31 novel variations were 
considered pathogenic or likely pathogenic according to 
ACMG guidelines (Table 1). Of note in solved families, 
81 % (43/53) of the 53 probands found to carry causative 
variants were homozygous for the identified HL-causing 
variant (autosomal recessive), 11 % (6/53) were compound 
heterozygous (autosomal recessives), 6 % (3/53) were het-
erozygous for a single causative variant (autosomal domi-
nant), and 1 individual was hemizygous for an X-linked 
variant (Table 1).

Two novel homozygous CNVs were identified in Tuni-
sian families, one consisted of a large deletion of approxi-
mately 86.3 kb with breakpoints within exons 21 and 22 of 
USH2A, and one deletion of approximately 12.3 kb, span-
ning exons 12 and 13 of the PCDH15 gene (Supplementary 
Table S4). Deleted exons did not amplify with confirmatory 
PCR in probands.

While we specifically queried parental consanguin-
ity when obtaining family history, we did not incorporate 
it into the analysis due to concerns regarding the reliabil-
ity of self-reported consanguinity in different populations. 

When we reviewed the variants, we noted that all Indian 
and Iranian and most Turkish and Tunisian probands were 
homozygous for pathogenic, likely pathogenic, and VUS, 
indicating shared ancestry between their parents.

Discussion

In the present study, we have used a panel of 180 genes 
sequenced by NGS for variant detection in a multi-ethnic 
group of 342 probands. We identified causative variants 
in 27 genes without predominant recurring pathogenic 
variants in the identified genes. The most commonly impli-
cated genes include MYO15A, SLC26A4, USH2A, MYO7A, 
MYO6, and TRIOBP. As expected, most of the identified 
variants are autosomal recessive.

Use of the MiamiOtoGene panel established a genetic 
diagnosis for 28 % of all probands from non-sub-Saharan 
African countries, including Guatemala, USA, Tunisia, 
India, Turkey, and Iran. On the other hand, the etiologic 
diagnostic rate for families from sub-Saharan Africa (Nige-
ria, South Africa) is 4 %. All the variants detected in the 
Guatemalan probands were classified as VUS resulting 
in a “solved” rate of 0 % in this ethnic group. Molecular 
diagnostic rates for Turkish and Iranian probands are very 
similar to those reported by Shearer et al. (2013) using Oto-
SCOPE and Bademci et al. (2016) using the whole exome 
sequencing. It should be noted that a positive family history 
of deafness is an important indication for a genetic etiol-
ogy. In our cohort, the distribution of simplex and multi-
plex cases was remarkably diverse in different ethnicities. 
Moreover, parental consanguinity is traditionally common 
in Turkey, Iran, and Tunisia, which increases the chance 
of having rare autozygous mutations. The current study 
found solved rates of around 7 % for the simplex families 
compared to 25 % for multiplex families. Across a variety 
of studies utilizing NGS, the diagnostic rate overall aver-
aged 41 % and ranged from a low of 10–83 % (Shearer 
and Smith 2015). In an analysis of simplex cases, Gu et al. 
(2015) found a diagnostic rate of 13 %. Direct compari-
son between studies is difficult because of the fundamen-
tal differences in study design. These include prescreening 
for GJB2 variations, and the number of genes included on 
a “comprehensive” test, ranging from 34 to 246 different 
genes (Shearer and Smith 2015). In addition, the genes 
selected for each platform vary based on whether only 
NSHL genes or also SHL genes are included (and which 
syndromes), and also whether candidate genes identified 
though animal models or human studies as in the case of 
our platform, the MiamiOtoGenes panel, are included. 
Overall, our data highlight the importance of family history 
and generation of databases with ethnically diverse sam-
ples to improve our ability to detect and accurately evaluate 
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genetic variants for pathogenicity. The type of mutations 
evaluated should also be taken into account when consid-
ering a comprehensive genetic test. While all platforms 
include the analysis of point mutations and small deletions, 
not all the studies screened for large CNVs (Shearer et al. 
2013, 2014). In the current study, CNVs account for 4 % 
of causative alleles, yet rates as high as 13–19 % have been 
reported.

As NGS technology is becoming more widespread in 
the diagnostic setting, interpreting the clinical meaning of 
newly discovered variants will be one of the major chal-
lenges of ‘genomic’, or ‘precision’, medicine (Tsai and Liu 
2014; Aronson and Rehm 2015). Classifying variants is an 
important issue. The online prediction programs, such as 
PolyPhen2 and SIFT, can provide an indication of whether 
a variant that changes the amino acid at a certain position 
could be deleterious; but they are unreliable, can be incorrect 
and alone should not be used to determine whether a vari-
ant is likely to be disease causing (Tchernitchko et al. 2004; 
Thusberg and Vihinen 2009). HGMD, ClinVar, and DVD 
are commonly checked to decide about the pathogenicity of 
a detected variant for HL. However, these databases are not 
always in agreement for the classification of DNA variants. 
While the recent ACMG-AMP Guidelines provide a solution 

to this problem, some criteria suggested are subjective that 
would lead to disagreement between different labs (Richards 
et al. 2015). Recently nine molecular diagnostic laborato-
ries which involved in the Clinical Sequencing Exploratory 
Research (CSER) tested ACMG-AMP guidelines for the 
variant interpretation. Interestingly concordance across labo-
ratories was only 34 % and after consensus discussions and 
detailed review of the ACMG-AMP criteria, authors men-
tioned that concordance increased to 71 % (Amendola et al. 
2016).

In our study, the overall diagnostic rate is 15 %. 19 % 
of the families were classified as uncertain, because the 
probands in these families had at least one VUS. To solve 
these families, more functional, computational, or literature 
evidence is needed.
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