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base-pair resolution in cells, requires homologous recombi-
nation (HR) between the target region of the genome and a 
donor template molecule with the desired sequence, but typ-
ically occurs in less than 1:1000 treated cells (Smithies et al. 
1985; Thomas et al. 1986). Nonetheless, the development of 
powerful selection strategies to isolate edited cells, and tech-
niques to generate mice from embryonic stem (ES) cells, 
enabled successful germline editing to create gene-targeted 
mice (Thompson et al. 1989) which opened up a new field 
of in vivo modelling of genetic disorders. The first impact 
of gene editing on the study of CF was the development of 
knockout mice in which a whole exon was removed (Snou-
waert et  al. 1992; Dorin et  al. 1992; Ratcliff et  al. 1993), 
or precisely-edited with a 3-bp deletion equivalent to the 
most common CF-causing mutation, ∆F508 (Colledge et al. 
1995; van Doorninck et  al. 1995; Zeiher et  al. 1995). As 
discussed in detail below, these models recapitulated many 
features of this human disease; a notable exception was that 
these mice have a very mild lung phenotype, a stark con-
trast to the progressive deterioration of lung function which 
is the cause of death in the vast majority of CF individuals. 
The exact cause of this difference was not known, and an 
inability to derive ES cell lines from other mammalian spe-
cies effectively blocked the development of other models to 
study lung function for over a decade.

One small step—shorter templates for editing

A considerable limitation to widespread use of gene-edit-
ing techniques at the time was the need to create very large 
(>10 kb) and complicated template molecules or targeting 
constructs (Koller et al. 1989; Zijlstra et al. 1989). A signif-
icant breakthrough in editing for CF was the demonstration 
that short (≪1 kb) DNA fragments (SDFs) could precisely 

Abstract  Cystic fibrosis (CF) is a chronic and progressive 
autosomal recessive disorder of secretory epithelial cells, 
which causes obstructions in the lung airways and pancre-
atic ducts of 70,000 people worldwide (for recent review 
see Cutting Nat Rev Genet 16(1):45–56, 2015). The find-
ing that mutations in the CFTR gene cause CF (Kerem 
et  al. Science 245(4922):1073–1080, 1989; Riordan et  al. 
Science 245(4922):1066–1073, 1989; Rommens et al. Sci-
ence 245(4922):1059–1065, 1989), was hailed as the very 
happy middle of a story whose end is a cure for a fatal dis-
ease (Koshland Science 245(4922):1029, 1989). However, 
despite two licensed drugs (Ramsey et  al. N Engl J Med 
365(18):1663–1672, 2011; Wainwright et al. N Engl J Med 
373(3):220–231, 2015), and a formal demonstration that 
repeated administration of CFTR cDNA to patients is safe 
and effects a modest but significant stabilisation of disease 
(Alton et  al. Lancet Respir Med 3(9):684–691, 2015), we 
are still a long way from a cure, with many patients tak-
ing over 100 tablets per day, and a mean age at death of 
28  years. The aim of this review is to discuss the impact 
on the study of CF of gene-editing techniques as they have 
developed over the last 30  years, up to and including the 
possibility of editing as a therapeutic approach.

Introduction

Precise editing of the mammalian genome, the abil-
ity to manipulate the DNA sequence at the level of single 
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modify the human CFTR gene in both transformed and 
non-transformed primary normal airway epithelial cells 
(Kunzelmann et al. 1996; Goncz et al. 1998), proving the 
principle that isogenic human cells could be created. The 
small fragment homologous replacement (SFHR) approach 
was also used to stably introduce a 3-bp deletion (equiva-
lent to ∆F508) in the Cftr gene of mouse embryonic stem 
(ES) cells (Sangiuolo et  al. 2008). However, it was the 
fusion of two different techniques exploiting the recombi-
nogenic properties of adeno-associated virus (AAV) tem-
plate molecules (Cathomen 2004) and somatic cell nuclear 
transfer (Campbell et al. 1996), that facilitated the develop-
ment of CF-null ferrets (Sun et al. 2008) and CF-null and 
∆F508 pigs (Rogers et al. 2008).

A key feature of CF pigs and ferrets was the develop-
ment of lung disease similar to that seen in CF patients, 
a pathological feature that had not been observed in any 
of the CF mouse models. The availability of three gene-
edited species placed CF researchers in a unique position 
for a genetic disease to undertake comparative pathophysi-
ological studies which have revealed a number of less well-
characterised features of the disease, such as abnormalities 
in alveolar macrophages, bone, and cartilage (reviewed 
by Wilke et al. 2011; Keiser and Engelhardt 2011). These 
models will also be critical to optimization of delivery of 
editing machinery (Cao et  al. 2013, 2016) and/or edited 
cells (Butler et al. 2016).

A giant leap in editing efficiency—targeted 
double‑stranded breaks by programmable 
and RNA‑guided nucleases

For nearly 20  years, gene editing relied solely upon the 
donor to mediate changes to the genome, even though early 
plasmid recombination studies indicated that a targeted 
double-stranded break (DSB) in the genomic DNA close to 
the site to be edited would boost repair efficiency by at least 
one order of magnitude (Kucherlapati et  al. 1984). Proof 
of principle for this idea was established with the intron-
encoded meganuclease I-SceI (Rouet et  al. 1994), but to 
make DSBs at custom sites in the genome, an endonucle-
ase with a programmable recognition site of at least 16 bp 
would be required (see Table 1). The first step towards this 
was the creation of zinc finger nucleases (ZFNs), obligate 
dimers of concatemerised zinc finger transcription fac-
tor domains fused to the nuclease domain of FokI which 
together recognised and cut a unique 18-bp sequence (Kim 
et al. 1996). The second step was a decade-long search to 
determine the rules to program ZFNs to bind any desired 
target site in the genome, culminating in the use of ZFNs 
to boost the efficiency of template-mediated editing to as 
many as 1 in 5 transfected mammalian cells (Urnov et al. 

2005). With a relatively simple set of rules in place, the 
ability to make targeted DSBs at any point in the genome 
marked the start of a revolution in gene editing with the 
demonstration that ZFNs could be used to edit fertilised 
eggs and, thus, create models of disease in a broad range 
of species other than mice, and with the speed of transgenic 
techniques (Geurts et  al. 2009). The therapeutic potential 
for in vivo editing was elegantly demonstrated by deliver-
ing ZFNs and donor using virus vectors to effectively cure 
haemophilia A in a mouse model (Li et al. 2011).

The widespread uptake of ZFN editing was relatively 
slow, partly due to the finding that robust programming 
of ZFNs was harder than originally anticipated, with the 
first CFTR-specific designer nucleases only capable of 
DSB formation in 1.2 % of transfected cells (Maeder et al. 
2008). Using different design rules (Dreier et al. 2001; Liu 
et  al. 2002), we created a ZFN pair based on the original 
nuclease scaffold (Kim et al. 1996) to successfully target a 
different site in the human CFTR gene and edit and repair 
the ∆F508 mutation (Lee et  al. 2012) in patient-derived 
tracheal epithelial cells (Kunzelmann et al. 1993). Around 
this time, a second programmable nuclease system, TAL-
effector nucleases (TALENs), was described, with human 
CFTR-specific TALENs reported to show good activity 
in a yeast-based assay, but not tested in human cells (Cer-
mak et al. 2011). However, the breakthrough that brought 
gene editing to the public attention and to thousands of 
labs around the world was CRISPR Cas9/gRNA (Jinek 
et al. 2012). This RNA-guided DNA-specific nuclease sys-
tem was quickly shown to be capable of doing essentially 
everything that ZFNs and TALENs could do, but via much 
simpler, quicker and cheaper protocols (Cong et al. 2013; 
Mali et al. 2013).

Isogenic models to study CF

The first published report of Cas9/gRNA to study CF was 
conducted in the gut stem cell organoid model (Sato et al. 
2009); gut stem cells from a patient with the ∆F508 muta-
tion were repaired using Cas9/gRNA and a donor plasmid 
containing a selectable marker. Correctly edited cells were 
selected and subsequently expanded in culture to form 
organoids; when exposed to cyclic AMP, a CFTR agonist, 
the gene-edited organoids rapidly swelled confirming that 
genetic correction results in a concomitant functional cor-
rection of the CFTR ion channel (Schwank et  al. 2013). 
A host of other strategies to generate isogenic human cell 
models quickly followed, the first of which used ZFNs to 
integrate a CFTR transcription unit into a potential safe-
harbour locus within inducible pluripotent stem (iPS) cells 
(Ramalingam et  al. 2013). Direct repair of the ∆F508 
mutation in iPS cells using ZFNs (Crane et  al. 2014), 
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followed by differentiation of corrected cells into epithe-
lia, resulted in the full restoration of Cl− channel function, 
though the excision of the selection marker to enrich edited 
cells left a single 34-bp loxP site in the genome. Truly scar-
less gene editing of CFTR in iPS cells was achieved using 
Cas9/gRNA and a selection marker flanked by PiggyBac 
transposon sequences (Firth et al. 2015), whereas a cyclic 
enrichment strategy involving allele-specific PCR enabled 
the isolation of edited cells generated using SDFs with 
TALENs with significantly fewer genetic manipulations 
(Suzuki et al. 2016). Upon differentiation, these cells also 
showed fully restored CFTR function as assessed by sev-
eral different assays.

Study of CF with isogenic models

These isogenic models provide the opportunity for a sys-
tematic evaluation of the 2000 mutations in the CFTR2.org 
database, only 127 of which have been definitively shown 
to cause CF (Castellani and CFTR2 team 2013); the dis-
ease-causing status is of particular relevance where preg-
nant women and their partners are offered testing for muta-
tions in CFTR and one or both shown to carry a mutation of 
unknown status (see Pearson 2009). These models may also 
uncover novel targets for drug development (Farinha and 
Matos 2016), and could also be adapted for high throughput 

screening (Verkman et al. 2015) to identify lead compounds 
for clinical evaluation, analogous to the strategy (van Goor 
et al. 2009) which gave rise to Ivacaftor (Kalydeco), a drug 
that has radically improved lung function and quality of life 
for CF patients with the G551D mutation (Ramsey et  al. 
2011; Harrison et al. 2013). The iPSc models may also be 
useful in identifying other mutations which may respond to 
existing medications, an approach which has already been 
successful with the stem cell organoid model (Mini guts for 
Cystic Fibrosis). The therapeutic potential of corrected iPS 
cells is explored below.

Third generation CF animal models—rats, rabbits 
and more mice

As mentioned above, the demonstration that the program-
mable nucleases or RNA-guided nucleases can be used 
to edit the nuclei of a fertilised egg, radically altered the 
way in which germline editing can be used to make gene-
modified animal models. One of the first examples was the 
development of CF knockout rats using ZFNs (Tuggle et al. 
2014). These animals showed many of the features seen 
in CF patients including abnormalities in the ileum and 
airway surface liquid height. A robust system to generate 
knockout rabbits from Cas9/gRNA-edited pronuclear-stage 
rabbit embryos has also been described, and the generation 

Table 1   Gene editing with ZFNs, TALENs and Cas9—comparison of the three technologies

Schematic representations are not to scale

Schematic representation Features

• Synthetic nuclease made of zinc finger (ZF) domains fused to FokI nuclease domain
• Each ZF domain binds 3 bp, total recognition site 18–24 bp, depending on number of ZF domains 

in each ZFN
• Cuts DNA as obligate dimer with 5′ overhang
• High level of specificity, easy to assemble
• Easy to deliver with range of non-viral and viral vectors

• Synthetic nuclease made of repeat variable di-residue (RVD) domains fused to FokI nuclease 
domain

• Each RVD domain binds 1 bp, total recognition site of ≥30 bp, depending on number of RVDs in 
each TALEN

• Cuts DNA as obligate dimer with 5′ overhang
• Very high level of specificity, reasonably easy to assemble
• Easy to deliver with non-viral and viral vectors, but cDNA encoding TALENs exceeds packaging 

limit for AAV vectors, and highly repetitive nature of RVDs complicates use with lentivirus vectors

• Bacterial RNA-guided nuclease with 20-bp recognition site modified to work in eukaryotic cells
• Cuts as monomer with blunt end double-stranded break
• Early versions of Cas9 showed high level of off-target effects, but modified versions available with 

almost undetectable levels of off-target binding
• Requires a short PAM sequence which varies depending on source of Cas9—synthetic variants 

available which recognise different PAM sequences
• Very easy to target with single guide RNA
• Easy to deliver as DNA (viral or non-viral vectors), mRNA/gRNA or protein/gRNA complex
• Cas9 variants available that lack nuclease activity but retain DNA-binding activity which enables 

them to act as targeted activators or repressors of gene expression
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of Cftr-null embryos (Yang et  al. 2014) should provide a 
rabbit model of CF disease.

Whilst existing mouse models continue to give mecha-
nistic insight into the various aspects of CF disease such 
as mucoviscidosis, the production of viscous mucus in the 
glands and ducts of affected organs (Liu et  al. 2015), the 
next generation of models, a suite of humanised CF mice 
in development by this group where the endogenous Cftr 
gene is replaced with the complete human CFTR gene, will 
be particularly useful for the evaluation of small molecule 
drugs and gene-editing therapies that are being developed 
in human isogenic cell models.

Editing as a therapeutic approach

Within a year of cloning the CFTR gene, a number of stud-
ies demonstrated that the CFTR cDNA could functionally 
complement the genetic defect (Drumm et al. 1990; Greg-
ory et  al. 1990; Rich et  al. 1990) and served as proof of 
concept for cDNA addition as a therapeutic approach to 
treat CF. After more than 20 clinical trials, the safety of 
DNA delivery to the CF lung is now well established, but 
the best clinical outcome so far is a small but significant 
stabilisation of lung function during a multiple-dose proto-
col (Alton et al. 2015).

So, given that the editing machinery can be delivered 
by similar size DNA molecules to those used in the com-
plementation trials, is it now appropriate to try editing as 
a therapeutic approach? The feasibility of site-specific 
lung editing was originally demonstrated using SFHR 
(Goncz et al. 2001), and whilst programmable and/or RNA-
guided nucleases in combination with template molecules 
or SFHR have not yet been reported in  vivo for CF, two 
alternative approaches have demonstrated editing in the CF 
lung cells in situ.

Using triplex-forming peptide nucleic acids and donor 
DNA delivered by nanoparticles, efficient correction of 
the ∆F508 mutation with concomitant restoration of Cl− 
efflux was observed in up to 25 % of human cells in vitro 
(McNeer et al. 2015). When the same triplex-forming pep-
tide nucleic acids were used with a different donor (due to 
sequence differences between human CFTR and mouse 
Cftr genes), deep sequencing analysis revealed correct 
editing of the ∆F508 in ~1 % of mouse lung cells in vivo 
(McNeer et al. 2015).

The development of strategies to correct the ∆F508 
CFTR mutation at the RNA level has also been reported. 
Proof of principle for mRNA editing was established using 
a complex of two modified RNA molecules to insert the 

three missing bases, possibly via an RNaseH-dependent 
process, resulting in restored ion channel activity in a CF 
cell line (Zamecnik et  al. 2004). Following on from this 
work, two clinical trials are now in progress (ProQR clini-
cal trials), evaluating the ability of a single antisense oligo-
nucleotide to correct the ∆F508 mRNA. The mechanism of 
repair is not clear, although the use of a single oligonucleo-
tide appears to rule out a role for RNaseH in the repair pro-
cess (De Boer and Ritsema, 2014). Identity across a 35-bp 
region centred almost exactly on the ∆F508 mutation in the 
human and mouse genes means that the same editing tools 
can be used provided they bind within this region. How-
ever, until humanised animal models of CF become avail-
able, the correction of mutations outside this region will 
require the creation of species-specific reagents.

Alternatives to editing—characterisation 
and alteration of CFTR gene expression

The regulation of the CFTR gene is critical to understand-
ing the pathophysiology of CF, and studies of gene expres-
sion using Cas9/gRNA to remove control elements have 
already revealed much about the role of cis-acting elements 
in terms of CFTR expression, its chromatin landscape, and 
higher order organisation (Yang et al. 2016). Further studies 
should also reveal the identity of proteins involved in tis-
sue-specific levels of CFTR expression and post-transcrip-
tional regulation by microRNAs (Gosalia and Harris 2015). 
Such studies could lead to the use of editing to increase 
expression levels sufficient to address the pathophysiologi-
cal effects of a small subset of specific CF-causing muta-
tions, for example, the premature stop codon (PTC) class of 
CF-causing mutants which generally show reduced mRNA 
levels due to nonsense-mediated decay (NMD), so a strat-
egy to increase the mRNA levels in combination with PTC 
suppression strategies may provide a critical breakthrough 
for this group of mutations (see Cutting 2015). The option 
also exists to use non-editing CRISPRa (activation) strate-
gies to regulate levels of gene expression (Dominguez et al. 
2016). In the case discussed here, gRNA could be used 
to guide dCas9 variants fused to transcriptional activators 
such as VP64 to boost gene expression. Alternatively, one 
could evaluate the CRISPRi (interference) approach which 
used gRNA to guide dCas9 variants fused to transcriptional 
repressors such as KRAB to block expression of, for exam-
ple, ATP12A, in an attempt to ameliorate lung disease. For 
cell models, inducible regulation of gene regulation via the 
doxycycline-inducible system is also possible (Mandegar 
et al. 2016).
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Outstanding questions on the road to a cure

Are there still better ways to edit?

A concern about off-target effects of gene editing, that is 
the creation of DSBs at other regions of the genome which 
may have deleterious effects, has been assuaged by a num-
ber of developments that have gradually increased nuclease 
specificity. Shortly after the first mammalian use of ZFNs 
for gene correction, two new scaffolds with substantial 
reductions in off-target effects were described (Miller et al. 
2007; Szczepek et  al. 2007), and TALENs have an inher-
ently high level of specificity as elegantly demonstrated by 
their ability to discern between two closely related human 
genes, CCR2 and CCR5, at a site which differs by a single 
base pair (Mussolino et al. 2011). There have been numer-
ous advances to increase the specificity of Cas9/gRNA, 
most recently the rational design of enhanced-specificity 
Cas9 (Slaymaker et al. 2016) and Cas9-high fidelity (Klein-
stiver et al. 2016) which show almost undetectable levels of 
off-target DSB formation, even with exquisitely sensitive 
detection assays. Small-scale clinical studies using cells 
edited by ZFNs (Tebas et  al. 2014) and TALENs (Poirot 
et al. 2015) have shown no serious adverse reactions, and 
it is likely that Cas9/gRNA will be evaluated in humans in 
the near future. The use of asymmetric donors (Richardson 
et al. 2016) and careful choice of target locus, nuclease, and 
cell type (Miyaoka et  al. 2016) can substantially improve 
the efficiency of on-target editing by increasing the ratio 
of precision repair events by template-directed HR relative 
to imperfect non-homologous end joining (NHEJ) events. 
One other challenge is to conquer the low efficiency of HR-
dependent editing in cells that are terminally differentiated 
or divide slowly, with obligate ligation-gated recombination 
(ObLiGaRe) currently offering the most promise (Maresca 
et al. 2013). Though feasible with ZFNs and TALENs, the 
blunt end DSB generated by Cas9/gRNA has meant this 
strategy has not found widespread use. However, the dis-
covery that CRISPR Cpf1/gRNA generates a DSB with a 5′ 
overhang suggests that Obligare may be feasible using this 
newly identified RNA-guided endonuclease (Zetsche et al. 
2015).  The use of microhomology-mediated end-joining 
(MMEJ) techniques such as PITCh may also be feasible 
with TALENs and Cas9/gRNA (Sakuma et al. 2016).

Why don’t mice get lung disease?

As mentioned above, a significant obstacle in CF research 
for many years was the lack of an animal model for lung 
disease, solved only with the availability of pig and fer-
ret models. Possibly the most exciting finding from 

comparative studies is the recent discovery that humans 
and pigs express a H+/K+-ATPase (ATP12A) in the lung, 
such that when CFTR is absent, the ensuing loss of bicar-
bonate secretions [CFTR is a bicarbonate and Cl− channel 
(Gray et al. 1993; Poulsen et al. 1994; Quinton 2001)] leads 
to an unchecked H+ secretion resulting in acidified airway 
surface liquid which subsequently impairs airway defence 
mechanisms. In stark contrast, mouse airways express very 
low levels of ATP12A, and so, there is minimal H+ secre-
tion even when CFTR was absent, thus, the airway surface 
liquid in CF and wild-type mice has similar pH (Shah et al. 
2016). When CF mice were analysed 3 days after infection 
with an adenovirus vector expressing ATP12A, their air-
ways had become acidified which impaired defences and 
increased bacterial load in the lungs. These findings sug-
gest that CF mice engineered to upregulate or overexpress 
ATP12A would most likely have a significant lung pheno-
type. If combined with the humanisation strategy described 
above, this could create a very powerful in vivo model to 
study CF.

How many cells need to be edited to correct disease?

Two key studies from the last century suggested that only 
a relatively small number of cells would need to be cor-
rected to restore, at least in part, lung function. The first 
study established that the overall Cl− transport proper-
ties of an epithelial layer comprising mainly homozygous 
∆F508 cells with just 6–10 % functionally corrected cells 
were essentially indistinguishable from an epithelial layer 
where all the homozygous ∆F508 cells had been function-
ally corrected (Johnson et al. 1992). The second, a study of 
healthy non-CF volunteers, showed that as little as 8 % of 
the normal level of bronchial CFTR transcripts are needed 
to maintain normal airway function (Chu et  al. 1992). 
With the increase in editing technology, it should be pos-
sible to revisit this problem in a number of novel ways, 
particularly if a mouse model with significant lung disease 
becomes available (see above). One option could be to mir-
ror the recent approach used to study Duchenne muscular 
dystrophy (DMD), an X-linked progressive muscle disor-
der caused by mutations in the gene encoding dystrophin, 
by simply using Cas9/gRNA to edit single cell mouse 
embryos. The F1 generation of animals produced were 
genetically mosaic containing 2–100  % correction of the 
DMD gene, allowing a correlation between genetic correc-
tion and disease severity to be robustly established (Long 
et al. 2014). A similar approach could shed new light on the 
number of cells required to cause, or prevent CF, depend-
ing on whether the starting cells are wild-type or CF, 
respectively.
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Functional studies of modifier genes

A long-standing and open question is which genes con-
tribute to the variability of disease symptoms and drug 
responsiveness amongst different CF individuals. A recent 
genome-wide association analysis of over 6000 CF patients 
identified five loci that display significant association with 
variation in lung disease (Corvol et  al. 2015). Given that 
Cas9/gRNA tools are now available to simultaneously edit 
multiple genes in cells or in vivo (Wang et al. 2013), it is 
now feasible to generate biological models to test these 
predictions.

Delivery challenges for therapeutic application

For therapeutic use, essentially two options exist: direct 
editing of lung cells in vivo, or adminstration of gene-mod-
ified cells. The repeated delivery of plasmids expressing the 
CFTR cDNA to stablise lung function in patients (Alton 
et al. 2015) suggests that plasmids of a similar size could be 
used to deliver gene-editing nucleases, and clinical trials to 
assess the safety and efficacy of direct RNA-editing deliv-
ered by non-viral vectors are underway (ProQR clinical 
trials). Nanocomplex formulation of lipids and peptides to 
efficiently deliver minicircle DNA-encoding reporter genes 
to mouse lung also provides proof of principle for deliv-
ery of the cDNAs encoding gene-editing nucleases (Munye 
et al. 2016). Adeno-associated virus (AAV) has been used 
to deliver cDNA encoding ZFNs (Li et al. 2011) and Cas9 
derived from S. aureus (Ran et  al. 2015), and adenovirus 
has been used to deliver cDNA encoding TALENs (Holk-
ers et  al. 2014). Lentivirus vectors have even been used 
to deliver the ZFN or TALEN proteins and edit cells (Cai 
et  al. 2014), and more recently, direct delivery of Cas9/
gRNA ribonucleoprotein complexes has been described 
(Choi et al. 2016). Of particular interest for CF, the com-
bination of non-viral and viral delivery, specifically the 
use of chemically modified mRNA encoding site-specific 
nucleases delivered with chitosan nanoparticles, and AAV 
to deliver the donor, resulted in precise editing in the lungs, 
within a notable phenotypic change in a well-established 
transgenic mouse model of surfactant protein B deficiency 
(Mahiny et  al. 2015). The availability of large animal CF 
models has also established the feasibility of delivery of 
aerosolised virus vectors intratracheally into pigs under 
bronchoscopic guidance (Cao et al. 2013; Yan et al. 2015). 
With regard to cell-based therapies for CF, there are less 
data at present, but a recent proof-of-concept study in mice 
showed successful lung reconstitution by canicular-stage 
lung cells (Rosen et al. 2016) raising the possibility of test-
ing some of the recently described gene-edited iPSc models 
in conjunction with CF animal models as an alternative to 
direct editing of the lung.

In conclusion

Gene editing has had a long-standing impact on the study of 
CF, and as new techniques have been developed, many by 
CF researchers, they have been fully exploited to increase 
our understanding of the disease and develop new treat-
ments. The CF field now has a surfeit of human and ani-
mal models at its disposal which will only add to the grow-
ing number of mutation-specific therapeutic approaches 
already available. CF is already a shining example of per-
sonalised medicine (Corvol et al. 2016), and the transition 
from classifying DNA variants by disease-causing proper-
ties to theratypes, a classification according to the molecu-
lar-based treatment to which they respond (Cutting 2015) is 
now well under way.
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