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approaches. Ultimately, as sequencing costs continue to 
decline, larger sequencing studies will yield clearer insights 
into the biological consequence of rare mutations and may 
reveal which genes play a role in the etiology of complex 
traits.

Introduction

GWAS, common variants and complex traits

Complex traits such as height, type II diabetes or schizo-
phrenia are those for which both genetics and environ-
ment contribute to the variance in the population. For 
most complex traits, a large number of distinct genetic loci 
influence the phenotypic variability. Over the past decade, 
genome-wide association studies (GWAS) have become 
the standard approach to assess the genetic contribution 
of complex traits. With the continued drop in genotyping 
costs, meta-analysis of GWAS have reached hundreds of 
thousands of samples enabling sufficient power to detect 
small effects at common single nucleotide variants [i.e., 
those with a minor allele frequency (MAF) ≥ 5 %]. These 
hypothesis-free genome-wide scans have delivered many 
novel discoveries, including some particularly unexpected 
results such as implicating the hippocampus and limbic 
system in BMI (Locke et al. 2015), autophagy in Crohn’s 
Disease (Rioux et al. 2007), and the complement system in 
age-related macular degeneration (Edwards et al. 2005). To 
date, GWAS have been used to study over 1500 traits such 
as post-traumatic stress disorder (Ashley-Koch et al. 2015), 
hoarding (Perroud et al. 2011), and type II diabetes (Rep-
lication et al. 2014) and the catalog of genome-wide sig-
nificant associations contains over 23,000 variants (Welter 
et al. 2014).
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Rare variants

Current genotyping arrays commonly used in GWAS 
capture most common variants through imputation, but 
have limited capture of variants below MAF of 5 %. With 
increasing sample sizes coupled with advancements in 
sequencing both the exome (~1 % of the genome that cov-
ers protein coding genes; [WES]) and the entire genome 
(WGS), the definition of rare variation has tended to shift 
from 5 % for the earliest GWAS to 0.5 % or even 0.1 %. 
Part of the initial motivation for looking at rare variants for 
complex traits, as opposed to Mendelian disorders, came 
from targeted candidate gene studies that discovered rare 
coding variants of large effects. For example, rare coding 
variants in NOD2 were linked to risk of Crohn’s Disease 
(Rivas et al. 2011), and rare variants in PCSK9 and ABCA1 
were found to have large effects on low-density lipoprotein 
(LDL) cholesterol and high-density lipoprotein (HDL) lev-
els, respectively (Cohen et al. 2004, 2005, 2006). Further-
more, successfully translating the discovery of PCSK9 to a 
therapeutic intervention has demonstrated the potential of 
taking rare variant association through to clinical applica-
tion (Roth et al. 2012; Stein et al. 2012). We expect that as 
querying rare variants becomes increasingly feasible, their 
findings will continue to help identify genes and regions 
that contribute to the etiology of complex traits. In this 
review, we discuss methods for the analysis of rare vari-
ants, study design considerations, and various technologies 
that capture rare variation. It is intended to touch on a broad 
range of topics, rather than delve into specific detail; where 
possible we point the curious reader to additional reviews 
for further reading if desired.

Association testing of rare variants

Study designs

Here, we delve into the specific considerations for rare var-
iants association studies (RVAS), covering decisions made 
with regards to sample ascertainment, choice of variants 
and statistical tests, concerns regarding population strati-
fication, and replication. RVAS typically have one of two 
designs—a case–control (or cohort studies), or a family-
based approach. We start by describing the analytic con-
siderations for case–control association studies and then 
extend these considerations to family-based rare variant 
studies. For the cohort studies, we will describe the meth-
ods for case–control studies, but these methods are also 
largely applicable to studies of quantitative traits such as 
height or blood glucose levels.

Why you have to group

For rare variants, we do not observe enough copies of the 
minor allele to achieve sufficient levels of evidence to be 
convincingly associated in single marker analysis (Mano-
lio et al. 2009). To address this issue, grouping and bur-
den tests have long been proposed in the analysis of rare 
variants (Cohen et al. 2004; Li and Leal 2008; Madsen and 
Browning 2009; Neale et al. 2011; Neale and Sham 2004; 
Terwilliger and Ott 1992). These groupings aim to ensure 
that there are enough individuals carrying a rare variant to 
perform an association test. There are two main classes of 
group-wise tests: burden tests, where the rare variants in 
a region are assumed to have the same direction of effect, 
and variance component tests which allow for effects in 
opposite directions.

Burden tests

Burden tests function by comparing the number or bur-
den of variants in cases and controls, and are the most 
straightforward of the gene-based tests (Li and Leal 2008; 
Madsen and Browning 2009; Asimit et al. 2012; Mor-
genthaler and Thilly 2007; Morris and Zeggini 2010). 
These tests collapse variants within a gene or a defined 
region of the genome into a single score and test for asso-
ciation between the score and the trait of interest. One can 
simply consider all variants in a gene and apply either a 
threshold (0 or 1) or a weight based on their functional 
category and/or allele frequency in the model. However, 
burden tests are limited by the assumption that all variants 
act in the same direction (i.e., all risk or all protective). 
Consequently, burden tests lose power if there is a mix-
ture of both protective and risk-conferring variants in the 
same gene.

Variance components tests

Variance component tests (Auer and Lettre 2015; Bansal 
et al. 2010), most notably the sequence-based kernel associ-
ation test (SKAT) (Wu et al. 2011) or C-alpha (Neale et al. 
2011) (which is a special case of SKAT), were designed to 
address the issue in which a gene may possess a mixture 
of risk and protective variants. By assessing the distribu-
tion of variants, rather than their combined additive effect, 
these tests are robust to instances where the rare variants 
affect phenotype in different directions (Moutsianas et al. 
2015). Thus, variance component tests are more powerful 
than burden tests if there is a mixture of both risk and pro-
tective variation. However, variance component tests lose 
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power (in comparison to burden tests) when the majority of 
variants act in the same direction. For readers interested in 
a comprehensive examination of RVAS tests, see the exten-
sive review by Lee and colleagues (Lee et al. 2014).

Which region to test

One of the central questions in RVAS, especially for WGS, 
is what regional definitions should be used to group rare 
variants in an association-testing framework. The most 
common choice, and arguably the most intuitive, is to 
aggregate variants across a gene. This is particularly appeal-
ing in exome sequencing studies where genetic variation is 
being measured specifically within genes. This gene-based 
approach can be expanded to include particular functional 
classes (e.g., DNase hypersensitivity sites, or all nonsense 
variants), all genes within a pathway, or all genes within 
a gene set. In the context of WGS, however, the majority 
of rare variants will fall outside of genes and the decision 
of which regions to group them over for testing becomes 
less clear. In this case, one could group variants by class 
of regulatory elements such as promoter, enhancer, or tran-
scription factor binding site. One challenge with grouping 
in this manner is that regulatory elements tend to be small 
(100–200 bp) and thus require more samples to achieve the 
same power as when testing a whole gene (Zuk et al. 2014). 
Another way to consider aggregating rare variants, espe-
cially in the case of the noncoding region, is to use a sliding 
window of a specified genomic length (Psaty et al. 2009). 
However, determining the optimal size for a sliding window 
is tricky, as there is a tradeoff between using a few large 
windows which incurs a smaller multiple hypothesis test-
ing burden, but comes at the cost of including variants that 
might be functionally unimportant or have negligible effect 
sizes, to using many small windows with a higher multiple 
testing burden. The UK10K study applied the sliding win-
dow technique with a window size of 3 kb to test 31 dif-
ferent traits for noncoding associations, but this analysis did 
not return any significant associations (The U.K.K.C. 2015).

Which variants to include

Once a specified region is chosen, one must determine 
which variants within that region to include in the analysis. 
Each individual variant will either increase the probability 
of having the disease (risk conferring), decrease it (protec-
tive), or have no effect on risk (neutral). Ideally, we would 
only include the risk-conferring variants, or alternatively 
only the protective variants, since including neutral vari-
ants will reduce power. However, this information is typi-
cally not known, so the challenge is to balance the chance 
of including the risk-conferring (or protective) variants and 
excluding neutral variants.

Gene level testing

When considering gene level analyses, one of the most 
natural approaches is to restrict to only variants predicted 
to truncate the protein (MacArthur et al. 2012) or ablate it 
through nonsense-mediated decay (Rivas et al. 2015). Four 
different functional categories fit in this group: frameshift, 
splice donor, splice acceptor, and nonsense variants. Col-
lectively, these variants are referred to by a variety of 
descriptions: loss-of-function (LoF), likely gene disrupt-
ing (LGD), or protein truncating variants [PTVs (Rivas 
et al. 2015)]; we will use the term PTV for the remainder 
of this paper. One of the most attractive features of PTVs 
is the expectation that all the variants will act in the same 
direction. However, most genes in the genome are strongly 
conserved, meaning that natural selection keeps PTVs rare, 
and thus large sample sizes are necessary to observe a suf-
ficient number of rare alleles to test for association with the 
trait of interest.

Another possible way to increase power without increas-
ing sample size is to also include missense variants. How-
ever, the classification of missense variants into risk, neu-
tral, and protective is challenging. A variety of different 
computational approaches for pathogenicity prediction of 
missense mutations have been proposed, such as SIFT (Ng 
and Henikoff 2001), PolyPhen2 (Adzhubei et al. 2010), 
MutationTaster (Schwarz et al. 2014), among others (Suny-
aev 2012; Grimm et al. 2015). Each of these tools leverages 
different indicators of deleteriousness for missense muta-
tions; some measure conservation [e.g., GERP++ (Davy-
dov et al. 2010), SIFT (Ng and Henikoff 2001), phyloP 
(Cooper and Shendure 2011)], while others evaluate the 
functional effect of alternate amino acids on protein struc-
ture [PolyPhen2 (Adzhubei et al. 2010)]. Given the differ-
ent sources of information of these methods, the predictions 
of deleteriousness often differ. Additionally, the various 
datasets used for training and testing these tools differ in 
how they define pathogenic or neutral variants, which fur-
ther contributes to the inconsistency across tools (Grimm 
et al. 2015). We direct the reader to reviews (Grimm et al. 
2015) and (Cooper and Shendure 2011) for further details 
regarding the variety of computational predictors of delete-
rious missense variants and the challenges in their utility. 
Regardless of the particular annotation method adopted, 
the resulting set of variants will likely contain a mixture of 
both risk and neutral variants.

Noncoding analysis

For WGS, regional definitions are considerably more chal-
lenging. Projects such as Encyclopedia of DNA Elements 
(ENCODE) Consortium (2012) and Epigenomics Road-
map have mapped not only genes, but also other functional 
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elements such as promoters, enhancers, repressors, tran-
scription factor binding sites, and methylation sites (Roma-
noski et al. 2015). However, many of these individual 
functional elements are small and unlikely to harbor suf-
ficient numbers of rare variants for testing. Consequently, 
grouping together functional elements for a given gene 
might provide sufficient variation to perform association 
testing. Recently, some in silico prediction tools for assess-
ing the deleteriousness of non-coding variants have been 
developed such as GWAVA (Ritchie et al. 2014), CADD 
(Kircher et al. 2014), and Eigen (Ionita-Laza et al. 2016). 
These tools provide a means to prioritize non-coding vari-
ants based on their predicted deleteriousness, in a similar 
fashion to what PolyPhen2 (Adzhubei et al. 2010) provides 
for coding variation. Such predictions can be used to define 
both groups of variants and the weight each variant should 
receive in the analysis.

For WES and WGS, a key element for selecting which 
variants to include and what weights to assign is to lever-
age frequency information. Such information can be incor-
porated from the sample being analyzed, as proposed in 
Madsen and Browning (Madsen and Browning 2009), or 
from a diverse population reference sample. Recently, the 
Exome Aggregation Consortium (ExAC) (Lek et al. 2015) 
has made all variants from 60,706 exomes publically avail-
able, creating an unparalleled opportunity to interrogate 
rare coding variants. Not only is the sample size of ExAC 
almost an order of magnitude larger than what was previ-
ously the biggest reference database, the NHLBI Exome 
Sequencing Project (N = 6515) (Fu et al. 2013), but the 
genetic diversity of ExAC provides a better representation 
of rare variants across a variety of ancestries. Leveraging 
external frequency information has the potential to restrict 
case–control analysis to extremely rare variation.

Population stratification

For case–control and cohort association studies, popula-
tion stratification is a major source of type I error (Lander 
and Schork 1994; Pritchard and Donnelly 2001; Knowler 
et al. 1988); principle components analysis (PCA) and lin-
ear mixed models (LMMs) have been applied with great 
success in correcting for these confounders (Price et al. 
2006). PCA-based correction assumes a smooth distribu-
tion of MAF over ancestry or geographical space, which 
is appropriate in the space of common variation. However, 
this approach is not appropriate for rare variation as the 
MAFs may be sharply localized and geographically clus-
tered due to the fact that they have recently arisen, thus vio-
lating this assumption (Mathieson and McVean 2012). One 
proposed method to correct for stratification in RVAS is 
Fast-LLM-Select (Listgarten et al. 2013), which performs 
feature selection on the variants, retaining only those that 

are phenotypically informative to use in constructing the 
generalized relationship matrix (GRM). Nevertheless, Fast-
LLM-Select loses power when causal variants are geo-
graphically clustered (Listgarten et al. 2013; Mathieson and 
McVean 2013).

Family studies

The tests described above focus mainly on case-control 
sequencing studies. An alternate approach is to use family-
based studies including trios (i.e., father, mother, and child) 
and/or pedigree studies. Pedigree studies may provide a 
cost-effective way to capture rare variation through famil-
ial imputation as well as providing opportunities to aid in 
the interpretation of rare variants. For family-based studies, 
two main analytic approaches are available: de novo (i.e., 
newly arising mutations) and within-family tests, such as 
the transmission disequilibrium test. Here we describe the 
analytic considerations of these two components.

De novo tests

Studying de novo mutations is most effective under sce-
narios in which the selective pressure against mutations 
is extremely strong and the effect size for those de novo 
variants is large. Strong selective pressure means that when 
mutations arise they are rapidly removed from the popula-
tion, keeping the frequency of those mutations in the popu-
lation extremely low.

The key to analyzing de novo variation is to understand 
the mutability of each potential mutation site. The muta-
tion rate across the genome varies due to a variety of fac-
tors including, but not limited to, local base context (Cou-
londre et al. 1978; Samocha et al. 2014), replication timing 
(Hardison et al. 2003; Hellmann et al. 2005; Lercher and 
Hurst 2002), and other large-scale phenomena (Ellegren 
et al. 2003). While the chance of mutation at any one gene 
is extremely rare (typically 2 × 10−4), across the genome 
we are all expected to carry ~75–100 de novo variants on 
average (Conrad et al. 2011; Kondrashov 2003; Vogel and 
Rathenberg 1975). Thus to have sufficient power to test 
such de novo variants for association, very large sample 
sizes would be required. To illustrate, ~100,000 samples 
are required to detect a gene in which de novo PTVs con-
fer a 20-fold increase in risk (Zuk et al. 2014). Building a 
mutation rate model for de novo mutation analysis dramati-
cally improves the power to detect genes.

Studying de novo variation for gene discovery has 
proved very successful for genes with large effect sizes 
for traits under heavy selection such as ASD (Samocha 
et al. 2014; De Rubeis et al. 2014; Iossifov et al. 2012, 
2014; Neale et al. 2012; O’Roak et al. 2012; Sanders 
et al. 2012), intellectual disability (de Ligt et al. 2012), 
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developmental delay (Deciphering Developmental Disor-
ders S 2015). An early example of this was seen in a study 
of Achondroplasia, in which 153 out of 154 patients had 
the exact same de novo variant at a CpG site in FGFR3 
(Bellus et al. 1995). De novo variants have also impli-
cated more than ten genes in ASD (De Rubeis et al. 2014; 
Iossifov et al. 2014) through the observation of multiple 
de novo PTVs in the same gene. For example, seven de 
novo PTVs in CHD8 have been observed in 3871 cases, 
a highly significant enrichment (P = 5.51 × 10−13) com-
pared to the 0.06 that would be expected based on the 
mutation rate. Similar results were observed in ARID1B, 
SYNGAP1, DYRK1A, and other genes (De Rubeis et al. 
2014).

TDT

In addition to de novo variation, rare standing variation can 
be analyzed for family study designs. The most commonly 
used association test in family designs (He et al. 2014) is 
the transmission disequilibrium test (TDT) (Spielman et al. 
1993). The TDT can be thought of as a family-based case–
control association procedure, in which the control is not 
a random unaffected individual but the alleles the affected 
child could have inherited but did not (a pseudo-control). 
The TDT boils down to testing whether the frequency of 
transmitted alleles (case) is the same as alleles not trans-
mitted to the affected child (control) from a heterozygous 
parent. Because a parent who is homozygous for the variant 
must transmit the allele, their transmission is guaranteed 
and thus uninformative to the test.

Arguably the greatest advantage of the TDT is that it 
is free from population stratification, as the control (i.e., 
the untransmitted allele) is sampled from within the same 
family as the case. The TDT assumes Mendelian inherit-
ance (i.e., that each allele is equally likely to be transmit-
ted), and that a variant more often transmitted than not to 
the affected offspring indicates a disease-associated locus 
that is linked with the marker. Thus, both linkage and asso-
ciation are required to reject the null hypothesis; this dual 
hypothesis shields the TDT from population stratification. 
A recent study by Elansary and colleagues found that the 
TDT can produce false-positive associations with X-linked 
variants near the pseudo-autosomal region for traits with 
sex-limited expression and when the allele frequencies 
of the locus differs between the X and Y chromosomes. 
These false-positive associations arise because transmis-
sion is not equally likely in both sexes: fathers transmit 
the Y allele to their sons and the X allele to their daugh-
ters. These false positives can be fixed by considering 
only maternal transmissions and removing trios in which 
the father and mother are both heterozygous at these sites 
(Elansary et al. 2015).

TADA

Thus far, in focusing on only cases/control, inherited, or 
de novo variation, all of the association study designs dis-
cussed have utilized only partial information that can be 
gained from a sequencing study. This is especially true for 
trio-based studies, where both inherited and de novo vari-
ation can be cataloged. When multiple forms of data are 
available, combining them can increase power to detect 
association and allow for a more complete interrogation 
of potential disease loci. TADA (transmission and de novo 
association) (He et al. 2013) was developed to address this 
issue and integrates de novo, transmitted, and case–control 
variation into a unified Bayesian statistic that maximizes 
power to detect risk-associated genes. In terms of gene dis-
covery, the advantage of TADA compared to using solely 
de novo variation scales exponentially with increasing sam-
ple size. At a sample size of 5000 trios, TADA has close to 
five times the power to identify associated genes compared 
to using only de novo variants (He et al. 2013). TADA has 
accelerated the pace of gene discovery in ASD, identifying 
33 and 107 genes with a FDR <0.1 and <0.3, respectively 
(De Rubeis et al. 2014).

Additional design and analytic issues

Here we turn our attention to a range of additional issues 
inherent in conducting association analyses of complex 
traits. These issues include the relative benefits of exome 
versus genome sequencing, statistical considerations such 
as the asymptotic properties of the association tests (which 
relate to statistical power) as well as approaches to boosting 
power such as extreme phenotypic selection or the value of 
bottleneck populations.

Exome vs. genome

Briefly, NGS works by shearing the genome into billions of 
short sequence reads and aligning them to the human refer-
ence genome. Locations where the sequence differs from 
the reference genome are called variants. Consistent with 
previous reports, population-based whole genome sequenc-
ing (WGS) studies such as the 1000 Genomes (Genomes 
Project, C. et al. 2010) and UK10K Project (The U.K.K.C. 
2015) have verified that most variants are rare. What is 
more, at current sample sizes the majority of variants are 
singletons, meaning that only one copy of the minor allele 
is observed in the entire sample (Fig. 1). Beyond captur-
ing SNPs, NGS technologies also capture insertions/dele-
tions (indels) of nucleotides, as well as more complicated 
structural variation such as copy-number variants (CNVs) 
and large-scale inversions or deletions. Current sequencing 
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technologies capture almost all SNPs, but accurate detec-
tion of indels and structural variants still poses a challenge.

With the falling cost of WGS, rare variants are now 
being included in large association studies, allowing 
researchers to ask what role they play in complex pheno-
types. While WGS is a powerful approach that enables the 
unbiased survey of genetic variants located genome wide, 
it has two main limitations. First, the costs of sequencing 
are still considerable, resulting in smaller samples for any 
one study. Second, as described above, interpreting the 
functional consequences of non-coding variants remains 
an ongoing challenge. Nevertheless, as costs continue to 
decline and technologies improve, WGS will likely be the 
standard approach for genetic investigation. However, the 
single most important factor in driving discovery in genetic 
studies is sample size, meaning that more cost-effective 
approaches for large samples may successfully identify sig-
nificant loci more rapidly.

In contrast to WGS, whole exome sequencing (WES) 
targets the capture of the protein coding regions (~1.5 % 
of the genome). While WES is more expensive than geno-
typing arrays, it remains considerably less expensive than 
WGS. This cost-reduction enables larger sample sizes and, 
therefore, higher powered studies. Furthermore, our ability 
to interpret the functional impact of coding variants far out-
strips our understanding of noncoding variation, meaning 

that extracting biological insight is much more straightfor-
ward (although not without its challenges). All together, 
these properties of the coding region increase power to 
identify novel associations as well as provide a better inter-
pretation of those associations. Nevertheless, WGS projects 
likely have a longer shelf life than WES projects.

Extreme phenotyping

Regardless of the chosen study design, strategic choices 
in sample ascertainment can improve power to detect true 
genetic associations. This is especially important as one 
of the main challenges confronting RVAS is simply cap-
turing enough rare variants to achieve sufficient observa-
tions for testing. Thus, to increase the probability that the 
sampled individuals will have the rare variants of interest, 
one popular approach is to study individuals with extreme 
presentations of the trait of interest (Zuk et al. 2014). The 
intuition behind this is that individuals at the tails of the 
distribution have a higher load of variants than someone 
in the middle. For quantitative traits, focusing on the tails 
of the phenotypic distribution can improve power to detect 
rare variant effects (Guey et al. 2011; Kryukov et al. 2009). 
For example, if studying the genetic drivers of height, one 
might gather individuals who are either very tall or very 
short. One can apply the same methodology to binary traits 
by sampling individuals with early onset of the disease. For 
example, an exome sequencing study of early-onset cases 
of chronic P. aeruginosa infection and older individuals 
who had not suffered infection leads to the implication of 
the DCTN4 in infection risk in cystic fibrosis (Emond et al. 
2012).

Isolated populations and consanguineous families

Another sample ascertainment strategy is to study popu-
lations that have undergone population bottlenecks while 
remaining isolated for many generations (Helgason et al. 
2000, 2001). These extreme bottlenecks and continued iso-
lation (especially if followed by rapid population growth, 
such as in Finland) create a unique population to focus on 
the effects of rare variants on health. Isolated populations 
often have elevated allele frequencies for rare variants com-
pared to other populations that have not experienced such 
events due to reduced genetic diversity from the bottlenecks 
and increased genetic drift from the isolation (Hatzikotou-
las et al. 2014). Furthermore, population isolation results in 
substantial cultural and environmental homogeneity, which 
further increases power to find genetic factors (Auer and 
Lettre 2015; Hatzikotoulas et al. 2014). Restrictive and 
consanguineous marriage practices also produce a similar 
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effect of elevated frequencies of variants that are rare in 
most other populations.

Study designs that target isolated populations have 
resulted in numerous successful findings. A recent study 
in Iceland discovered a low-frequency, non-coding variant 
associated with prostate cancer that was considerably more 
common in Iceland than in the Spanish replication cohort 
(3 % in cases and 1 % in controls in Iceland versus 0.4 % in 
cases and 0.1 % in controls in Spain) (Gudmundsson et al. 
2012). Similar success, also using Icelandic individuals, 
has been seen for T2D (Steinthorsdottir et al. 2014). One 
of the most famous examples of discovery in a consanguin-
eous group was that of BRCA1 and BRCA2 in breast and 
ovarian cancer in individuals of Ashkenazi Jewish descent 
(Levy-Lahad et al. 1997).

Asymptotics and multiple hypothesis testing

Exome sequencing has enabled RVAS to progress from 
candidate gene studies, where a particular gene is of inter-
est a priori, to unbiased analyses that consider all genes 
in the genome. When testing all ~20,000 genes in the 
genome it is critical to account for multiple testing. Under 
the same logic of Lander and Kruglyak, given that we can 
test for all genes, we ought to correct for doing so (Lander 
and Kruglyak 1995). A Bonferroni correction for all genes 
brings the p value threshold required for statistical signif-
icance to 2.5 × 10−6 per gene. However, this assumes a 
single testing framework, which in practice is not realis-
tic as tests of PTVs and missense mutations, either jointly 
or separately, are going to be conducted. Consequently, it 
is important to account for the diverse set of tests in such 
a framework, to ensure that identified associations are 
robust. Another possibility to correct for false discoveries 
in multiple tests is to use permutation. Permutations are 
less stringent than Bonferroni in controlling type I error 
rates, but can suffer from confounding when improperly 
done such as permuting case–control labels when the cases 
and controls are not ethnically matched or permuting indi-
vidual genotypes (rather than phenotypes), which would 
fail to control for linkage disequilibrium (Kiezun et al. 
2012). The use of permutation, however, can capture the 
total testing burden performed from the different analytic 
choices.

A related consideration is whether there is sufficient var-
iation in each gene to achieve dimensionality (i.e., whether 
there are enough carriers of minor alleles to perform a 
statistical test). One way to evaluate this was proposed by 
Kiezun and colleagues where the data being analyzed is 
used to calculate what they term the i-stat, an estimate of 
the minimum p value achievable for a gene (Kiezun et al. 
2012). Applying a threshold on i-stat-can aid in evaluating 
whether the gene tests are well distributed.

Factors influencing replication strategies for rare 
variant discovery

One of the lessons learned from GWAS was the standardi-
zation of statistical evidence required for association to 
avoid the failures of replication that plagued GWAS in the 
early years. Any GWAS now requires an initial association 
of P < 5 × 10−8 and independent replication for findings 
to be published (Barsh et al. 2012). Such standardization is 
necessary in the realm of RVAS as well. However, replica-
tion is far more difficult due to the fact that rare variants are 
by definition rare, and many times are specific to certain 
populations and geographic regions. Despite these difficul-
ties, there are proposed replication strategies for whether it 
is a single variant, or a gene, that is being implicated.

For the former, much as in a GWAS, a cohort independ-
ent of the one in which the variant was discovered is sam-
pled for the replication stage of the study. There are then 
three strategies to get at the discovered locus: directly gen-
otype the associated variant, genotype a SNP in LD with 
the variant, or impute the associated variant (this being the 
least ideal). If the association is significant in the replica-
tion cohort, then the replication is successful.

The latter, more common design is to aggregate multiple 
rare variants across a gene and to test whether the gene is 
associated with the trait of interest. Liu and Leal describe 
the different ways one can go about replication in this case. 
Briefly, one can either resequence the gene or genotype 
each of the variants initially discovered in the gene in an 
independent population. Under the assumption that every-
thing is equal (e.g., cost and error rates), they demonstrate 
that resequencing is consistently more powerful than geno-
typing across a number of scenarios (Liu and Leal 2010). 
One of the advantages of resequencing the gene is that it 
allows for the discovery of additional rare variants that 
were not present in the initial cohort. Yet in reality, geno-
typing and resequencing are not equal in terms of cost or 
accuracy. As sample size is the most important determi-
nant of power in replication, whatever method provides the 
most samples would be the ideal approach (Auer and Lettre 
2015).

As was the case with GWAS, we expect that continuing 
meta-analysis of rare variant association studies will even-
tually yield robust associations that continue to strengthen 
in significance as additional data are added. Tools such as 
MASS (Tang and Lin 2013, 2014), MetaSKAT (Lee et al. 
2013), RAREMETAL (Liu et al. 2014; Feng et al. 2014), 
and seqMeta (Chen et al. 2014) have been designed to 
facilitate meta-analyses of rare variant association studies 
using summary statistics. In general, rare variant meta-
analyses go through two steps: (1) calculate study-specific 
summary statistics, and (2) combine the summary statis-
tics in the specified gene level association test. However, 
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because rare variants tend to be population specific (i.e., 
present in only some populations), and the association 
analysis of these variants is conducted at the gene level, 
different populations and studies will contain different sets 
of rare variants within each gene. As a consequence, the 
per-study effect sizes for the gene will differ. This effect is 
compounded by any differences in the sequencing technol-
ogy used across sites. For example, different exome capture 
technologies vary with respect to the efficiency of capture 
across different portions of the exome. Further complicat-
ing meta-analysis of rare variants is the observation that 
depending on the genetic architecture, a fixed-effects or 
random-effects model can be more powerful (Tang and Lin 
2015). Of course, this is less of an issue when one is testing 
true loss-of-function variants in aggregate, as they should 
theoretically have similar or the same effect size within the 
same gene.

Extensions

Pathway/gene set

A natural extension of grouping rare variants together is 
to extend from genes to gene sets or pathways. Such tests 
may boost power to detect association, but necessitates 
accurate models of pathways and gene sets. Furthermore, 
the interpretation of gene set analyses can be challeng-
ing given that many gene sets tend to overlap. Neverthe-
less, a recent RVAS of schizophrenia (Purcell et al. 2014) 
reported three significant findings all with an odds ratio >5 
using pathways in a cohort of 2536 cases and 2543 con-
trols: ARC complex genes, PSD-95 complex, and voltage-
gated calcium ion channel genes. Taken together, these 
results, along with their lack of signal at the level of single 
genes, suggest a polygenic architecture for schizophrenia, 
in which rare, disruptive variants contribute to risk (Purcell 
et al. 2014).

One of the complications with gene sets is that the 
background frequency of mutation is not the same across 
all genes (Samocha et al. 2014). Thus, genes with a 
higher rate of mutation (because of length and/or muta-
bility) will contribute more heavily to the test statistic. 
Furthermore, the choice of which genes to include in the 
gene set is another question. One possibility is to use 
genes that have been implicated from GWAS as it has 
been established that genes harbor both common and 
rare variants that both affect the disease [e.g., SLC30A8 
in T2D (Flannick et al. 2014)]. However, rejecting the 
null hypothesis does not specify which gene or genes 
are driving the association, thus requiring additional 
follow-up.

Conclusion

RVAS of complex traits are beginning to identify risk genes 
and causal variants, building upon the findings of GWAS 
that pointed to broad regions of the genome contributing to 
risk but that did not have the resolution that can be obtained 
through rare variant studies. The successes of RVAS, such 
as those in ASD and Inflammatory Bowel Disorder, are just 
the beginning of exploring the role of rare variation in com-
plex traits. With sequencing costs dropping, new analytical 
methods being developed, and with the creation of large 
reference databases of both exomes and genomes such as 
the Exome Aggregation Consortium (Lek et al. 2015) and 
the UK10K project (The U.K.K.C. 2015), our ability to 
query rare variants accurately and reliably is dramatically 
improving. We expect to see larger and more powerful 
rare variant association studies continue to help hone in on 
underlying causal variants and inform our understanding of 
the genetic etiology of many common traits.

Acknowledgments We would like to thank all members of the 
ATGU and the Wall lab for their insightful discussions and assistance 
in writing this manuscript. We also acknowledge 1R01MH101244-02.

References

Adzhubei IA et al (2010) A method and server for predicting damag-
ing missense mutations. Nat Methods 7:248–249

Ashley-Koch AE et al (2015) Genome-wide association study of post-
traumatic stress disorder in a cohort of Iraq-Afghanistan era vet-
erans. J Affect Disord 184:225–234

Asimit JL, Day-Williams AG, Morris AP, Zeggini E (2012) ARIEL 
and AMELIA: testing for an accumulation of rare variants using 
next-generation sequencing data. Hum Hered 73:84–94

Auer PL, Lettre G (2015) Rare variant association studies: considera-
tions, challenges and opportunities. Genome Med 7:16

Bansal V, Libiger O, Torkamani A, Schork NJ (2010) Statistical anal-
ysis strategies for association studies involving rare variants. Nat 
Rev Genet 11:773–785

Barsh GS, Copenhaver GP, Gibson G, Williams SM (2012) Guidelines 
for genome-wide association studies. PLoS Genet 8:e1002812

Bellus GA et al (1995) Achondroplasia is defined by recurrent G380R 
mutations of FGFR3. Am J Hum Genet 56:368–373

Chen H et al (2014) Sequence kernel association test for survival 
traits. Genet Epidemiol 38:191–197

Cohen JC et al (2004) Multiple rare alleles contribute to low plasma 
levels of HDL cholesterol. Science 305:869–872

Cohen J et al (2005) Low LDL cholesterol in individuals of African 
descent resulting from frequent nonsense mutations in PCSK9. 
Nat Genet 37:161–165

Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH (2006) Sequence 
variations in PCSK9, low LDL, and protection against coronary 
heart disease. N Engl J Med 354:1264–1272

Conrad DF et al (2011) Variation in genome-wide mutation rates 
within and between human families. Nat Genet 43:712–714

Cooper GM, Shendure J (2011) Needles in stacks of needles: find-
ing disease-causal variants in a wealth of genomic data. Nat Rev 
Genet 12:628–640



633Hum Genet (2016) 135:625–634 

1 3

Coulondre C, Miller JH, Farabaugh PJ, Gilbert W (1978) Molecular 
basis of base substitution hotspots in Escherichia coli. Nature 
274:775–780

Davydov EV et al (2010) Identifying a high fraction of the human 
genome to be under selective constraint using GERP ++. PLoS 
Comput Biol 6:e1001025

Deciphering Developmental Disorders S (2015) Large-scale discov-
ery of novel genetic causes of developmental disorders. Nature 
519:223–228

de Ligt J et al (2012) Diagnostic exome sequencing in persons with 
severe intellectual disability. N Engl J Med 367:1921–1929

De Rubeis S et al (2014) Synaptic, transcriptional and chromatin 
genes disrupted in autism. Nature 515:209–215

Edwards AO et al (2005) Complement factor H polymorphism and 
age-related macular degeneration. Science 308:421–424

Elansary M et al (2015) On the use of the transmission disequilibrium 
test to detect pseudo-autosomal variants affecting traits with sex-
limited expression. Anim Genet 46:395–402

Ellegren H, Smith NG, Webster MT (2003) Mutation rate variation in 
the mammalian genome. Curr Opin Genet Dev 13:562–568

Emond MJ et al (2012) Exome sequencing of extreme phenotypes 
identifies DCTN4 as a modifier of chronic Pseudomonas aerugi-
nosa infection in cystic fibrosis. Nat Genet 44:886–889

ENCODE Project Consortium (2012) An integrated encyclopedia of 
DNA elements in the human genome. Nature 489:57–74

Feng S, Liu D, Zhan X, Wing MK, Abecasis GR (2014) RAREM-
ETAL: fast and powerful meta-analysis for rare variants. Bioin-
formatics 30:2828–2829

Flannick J et al (2014) Loss-of-function mutations in SLC30A8 pro-
tect against type 2 diabetes. Nat Genet 46:357–363

Fu W et al (2013) Analysis of 6515 exomes reveals the recent origin 
of most human protein-coding variants. Nature 493:216–220

Genomes Project C et al (2010) A map of human genome variation 
from population-scale sequencing. Nature 467:1061–1073

Grimm DG et al (2015) The evaluation of tools used to predict the 
impact of missense variants is hindered by two types of circular-
ity. Hum Mutat 36:513–523

Gudmundsson J et al (2012) A study based on whole-genome 
sequencing yields a rare variant at 8q24 associated with prostate 
cancer. Nat Genet 44:1326–1329

Guey LT et al (2011) Power in the phenotypic extremes: a simula-
tion study of power in discovery and replication of rare variants. 
Genet Epidemiol 35:236–246

Hardison RC et al (2003) Covariation in frequencies of substitution, 
deletion, transposition, and recombination during eutherian evo-
lution. Genome Res 13:13–26

Hatzikotoulas K, Gilly A, Zeggini E (2014) Using population isolates 
in genetic association studies. Brief Funct Genom 13:371–377

He X et al (2013) Integrated model of de novo and inherited genetic 
variants yields greater power to identify risk genes. PLoS Genet 
9:e1003671

He Z et al (2014) Rare-variant extensions of the transmission disequi-
librium test: application to autism exome sequence data. Am J 
Hum Genet 94:33–46

Helgason A et al (2000) Estimating Scandinavian and Gaelic ancestry 
in the male settlers of Iceland. Am J Hum Genet 67:697–717

Helgason A et al (2001) mtDna and the islands of the North Atlantic: 
estimating the proportions of Norse and Gaelic ancestry. Am J 
Hum Genet 68:723–737

Hellmann I et al (2005) Why do human diversity levels vary at a 
megabase scale? Genome Res 15:1222–1231

Ionita-Laza I, McCallum K, Xu B, Buxbaum JD (2016) A spectral 
approach integrating functional genomic annotations for coding 
and noncoding variants. Nat Genet 48:214–220

Iossifov I et al (2012) De novo gene disruptions in children on the 
autistic spectrum. Neuron 74:285–299

Iossifov I et al (2014) The contribution of de novo coding mutations 
to autism spectrum disorder. Nature 515:216–221

Kiezun A et al (2012) Exome sequencing and the genetic basis of 
complex traits. Nat Genet 44:623–630

Kircher M et al (2014) A general framework for estimating the 
relative pathogenicity of human genetic variants. Nat Genet 
46:310–315

Knowler WC, Williams RC, Pettitt DJ, Steinberg AG (1988) 
Gm3;5,13,14 and type 2 diabetes mellitus: an association in Ameri-
can Indians with genetic admixture. Am J Hum Genet 43:520–526

Kondrashov AS (2003) Direct estimates of human per nucleotide 
mutation rates at 20 loci causing mendelian diseases. Hum Mutat 
21:12–27

Kryukov GV, Shpunt A, Stamatoyannopoulos JA, Sunyaev SR (2009) 
Power of deep, all-exon resequencing for discovery of human 
trait genes. Proc Natl Acad Sci U S A 106:3871–3876

Lander E, Kruglyak L (1995) Genetic dissection of complex traits: 
guidelines for interpreting and reporting linkage results. Nat 
Genet 11:241–247

Lander ES, Schork NJ (1994) Genetic dissection of complex traits. 
Science 265:2037–2048

Lee S, Teslovich TM, Boehnke M, Lin X (2013) General framework 
for meta-analysis of rare variants in sequencing association stud-
ies. Am J Hum Genet 93:42–53

Lee S, Abecasis GR, Boehnke M, Lin X (2014) Rare-variant asso-
ciation analysis: study designs and statistical tests. Am J Hum 
Genet 95:5–23

Lek M et al (2015) Analysis of protein-coding genetic variation in 
60,706 humans. bioRxiv

Lercher MJ, Hurst LD (2002) Human SNP variability and mutation 
rate are higher in regions of high recombination. Trends Genet 
18:337–340

Levy-Lahad E et al (1997) Founder BRCA1 and BRCA2 mutations in 
Ashkenazi Jews in Israel: frequency and differential penetrance 
in ovarian cancer and in breast-ovarian cancer families. Am J 
Hum Genet 60:1059–1067

Li B, Leal SM (2008) Methods for detecting associations with 
rare variants for common diseases: application to analysis of 
sequence data. Am J Hum Genet 83:311–321

Listgarten J, Lippert C, Heckerman D (2013) FaST-LMM-Select for 
addressing confounding from spatial structure and rare variants. 
Nat Genet 45:470–471

Liu DJ, Leal SM (2010) Replication strategies for rare variant com-
plex trait association studies via next-generation sequencing. Am 
J Hum Genet 87:790–801

Liu DJ et al (2014) Meta-analysis of gene-level tests for rare variant 
association. Nat Genet 46:200–204

Locke AE et al (2015) Genetic studies of body mass index yield new 
insights for obesity biology. Nature 518:197–206

MacArthur DG et al (2012) A systematic survey of loss-of-function 
variants in human protein-coding genes. Science 335:823–828

Madsen BE, Browning SR (2009) A groupwise association test 
for rare mutations using a weighted sum statistic. PLoS Genet 
5:e1000384

Manolio TA et al (2009) Finding the missing heritability of complex 
diseases. Nature 461:747–753

Mathieson I, McVean G (2012) Differential confounding of rare and 
common variants in spatially structured populations. Nat Genet 
44:243–246

Mathieson I, McVean G (2013) Reply to: “FaST-LMM-Select for 
addressing confounding from spatial structure and rare variants”. 
Nat Genet 45:471

Morgenthaler S, Thilly WG (2007) A strategy to discover genes that 
carry multi-allelic or mono-allelic risk for common diseases: a 
cohort allelic sums test (CAST). Mutat Res, Fundam Mol Mech 
Mutagen 615:28–56



634 Hum Genet (2016) 135:625–634

1 3

Morris AP, Zeggini E (2010) An evaluation of statistical approaches to 
rare variant analysis in genetic association studies. Genet Epide-
miol 34:188–193

Moutsianas L et al (2015) The power of gene-based rare variant meth-
ods to detect disease-associated variation and test hypotheses 
about complex disease. PLoS Genet 11:e1005165

Neale BM, Sham PC (2004) The future of association studies: gene-
based analysis and replication. Am J Hum Genet 75:353–362

Neale BM et al (2011) Testing for an unusual distribution of rare vari-
ants. PLoS Genet 7:e1001322

Neale BM et al (2012) Patterns and rates of exonic de novo mutations 
in autism spectrum disorders. Nature 485:242–245

Ng PC, Henikoff S (2001) Predicting deleterious amino acid substitu-
tions. Genome Res 11:863–874

O’Roak BJ et al (2012) Sporadic autism exomes reveal a highly 
interconnected protein network of de novo mutations. Nature 
485:246–250

Perroud N et al (2011) Genome-wide association study of hoarding 
traits. Am J Med Genet B Neuropsychiatr Genet 156:240–242

Price AL et al (2006) Principal components analysis corrects for 
stratification in genome-wide association studies. Nat Genet 
38:904–909

Pritchard JK, Donnelly P (2001) Case-control studies of associa-
tion in structured or admixed populations. Theor Popul Biol 
60:227–237

Psaty BM et al (2009) Cohorts for Heart and Aging Research in 
Genomic Epidemiology (CHARGE) Consortium: design of pro-
spective meta-analyses of genome-wide association studies from 
5 cohorts. Circ Cardiovasc Genet 2:73–80

Purcell SM et al (2014) A polygenic burden of rare disruptive muta-
tions in schizophrenia. Nature 506:185–190

Replication DIG et al (2014) Genome-wide trans-ancestry meta-anal-
ysis provides insight into the genetic architecture of type 2 dia-
betes susceptibility. Nat Genet 46:234–244

Rioux JD et al (2007) Genome-wide association study identifies new 
susceptibility loci for Crohn disease and implicates autophagy in 
disease pathogenesis. Nat Genet 39:596–604

Ritchie GR, Dunham I, Zeggini E, Flicek P (2014) Functional annota-
tion of noncoding sequence variants. Nat Methods 11:294–296

Rivas MA et al (2011) Deep resequencing of GWAS loci identifies 
independent rare variants associated with inflammatory bowel 
disease. Nat Genet 43:1066–1073

Rivas MA et al (2015) Human genomics. Effect of predicted protein-
truncating genetic variants on the human transcriptome. Science 
348:666–669

Romanoski CE, Glass CK, Stunnenberg HG, Wilson L, Almouzni G 
(2015) Epigenomics: roadmap for regulation. Nature 518:314–316

Roth EM, McKenney JM, Hanotin C, Asset G, Stein EA (2012) Ator-
vastatin with or without an antibody to PCSK9 in primary hyper-
cholesterolemia. N Engl J Med 367:1891–1900

Samocha KE et al (2014) A framework for the interpretation of de 
novo mutation in human disease. Nat Genet 46:944–950

Sanders SJ et al (2012) De novo mutations revealed by whole-
exome sequencing are strongly associated with autism. Nature 
485:237–241

Schwarz JM, Cooper DN, Schuelke M, Seelow D (2014) Mutation-
Taster2: mutation prediction for the deep-sequencing age. Nat 
Methods 11:361–362

Spielman RS, McGinnis RE, Ewens WJ (1993) Transmission test 
for linkage disequilibrium: the insulin gene region and insu-
lin-dependent diabetes mellitus (IDDM). Am J Hum Genet 
52:506–516

Stein EA et al (2012) Effect of a monoclonal antibody to PCSK9 on 
LDL cholesterol. N Engl J Med 366:1108–1118

Steinthorsdottir V et al (2014) Identification of low-frequency and 
rare sequence variants associated with elevated or reduced risk of 
type 2 diabetes. Nat Genet 46:294–298

Sunyaev SR (2012) Inferring causality and functional significance of 
human coding DNA variants. Hum Mol Genet 21:R10–R17

Tang ZZ, Lin DY (2013) MASS: meta-analysis of score statistics for 
sequencing studies. Bioinformatics 29:1803–1805

Tang ZZ, Lin DY (2014) Meta-analysis of sequencing studies 
with heterogeneous genetic associations. Genet Epidemiol 
38:389–401

Tang Z-Z, Lin D-Y (2015) Meta-analysis for discovering rare-variant 
associations: statistical methods and software programs. Am J 
Hum Genet 97:35–53

Terwilliger JD, Ott J (1992) A haplotype-based ‘haplotype rela-
tive risk’ approach to detecting allelic associations. Hum Hered 
42:337–346

The UKKC (2015) The UK10K project identifies rare variants in 
health and disease. Nature 526:82–90

Vogel F, Rathenberg R (1975) Spontaneous mutation in man. In: Har-
ris H, Hirschhorn K (eds) Advances in human genetics. Springer 
US, Boston, pp 223–318

Welter D et al (2014) The NHGRI GWAS Catalog, a curated resource 
of SNP-trait associations. Nucleic Acids Res 42:D1001–D1006

Wu MC et al (2011) Rare-variant association testing for sequencing 
data with the sequence kernel association test. Am J Hum Genet 
89:82–93

Zuk O et al (2014) Searching for missing heritability: design-
ing rare variant association studies. Proc Natl Acad Sci USA 
111:E455–E464


	Discovery of rare variants for complex phenotypes
	Abstract 
	Introduction
	GWAS, common variants and complex traits
	Rare variants

	Association testing of rare variants
	Study designs
	Why you have to group
	Burden tests
	Variance components tests
	Which region to test
	Which variants to include
	Gene level testing
	Noncoding analysis
	Population stratification
	Family studies
	De novo tests
	TDT
	TADA

	Additional design and analytic issues
	Exome vs. genome
	Extreme phenotyping
	Isolated populations and consanguineous families
	Asymptotics and multiple hypothesis testing
	Factors influencing replication strategies for rare variant discovery

	Extensions
	Pathwaygene set

	Conclusion
	Acknowledgments 
	References




