Hum Genet (2016) 135:685-698
DOI 10.1007/s00439-016-1666-6

CrossMark

@

REVIEW

Determining the role of skewed X-chromosome inactivation
in developing muscle symptoms in carriers of Duchenne muscular

dystrophy

Emanuela Viggiano' - Manuela Ergoli! - Esther Picillo! - Luisa Politano’

Received: 4 November 2015 / Accepted: 29 March 2016 / Published online: 21 April 2016

© Springer-Verlag Berlin Heidelberg 2016

Abstract Duchenne and Becker dystrophinopathies
(DMD and BMD) are X-linked recessive disorders caused
by mutations in the dystrophin gene that lead to absent or
reduced expression of dystrophin in both skeletal and heart
muscles. DMD/BMD female carriers are usually asympto-
matic, although about 8§ % may exhibit muscle or cardiac
symptoms. Several mechanisms leading to a reduced dys-
trophin have been hypothesized to explain the clinical man-
ifestations and, in particular, the role of the skewed XCI is
questioned. In this review, the mechanism of XCI and its
involvement in the phenotype of BMD/DMD carriers with
both a normal karyotype or with X;autosome transloca-
tions with breakpoints at Xp21 (locus of the DMD gene)
will be analyzed. We have previously observed that DMD
carriers with moderate/severe muscle involvement, exhibit
a moderate or extremely skewed XCI, in particular if pre-
senting with an early onset of symptoms, while DMD car-
riers with mild muscle involvement present a random XCI.
Moreover, we found that among 87.1 % of the carriers with
X;autosome translocations involving the locus Xp21 who
developed signs and symptoms of dystrophinopathy such
as proximal muscle weakness, difficulty to run, jump and
climb stairs, 95.2 % had a skewed XCI pattern in lympho-
cytes. These data support the hypothesis that skewed XCI
is involved in the onset of phenotype in DMD carriers,
the X chromosome carrying the normal DMD gene being
preferentially inactivated and leading to a moderate—severe
muscle involvement.
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Introduction

Duchenne and Becker dystrophinopathies (DMD, OMIM
#310200 and Becker, BMD, OMIM #300376) are X-linked
recessive disorders that affect, respectively, 1 in 3500 or
1:18,500 male births (Emery 1991). Both diseases are
caused by mutations in the dystrophin (DMD) gene located
on Xp21.2. Dystrophin plays an important role in the mus-
cle structure, as it links the cytoskeleton to the extracellular
matrix. In particular, the amino terminus of the dystrophin
binds to F-actin in the cytoskeleton, while the carboxyl ter-
minus binds to the dystrophin-associated protein complex
(dystroglycans, sarcoglycans, integrins and caveolin) in
the extracellular matrix (Nowak and Davies 2004). Dys-
trophin is expressed in striated skeletal and smooth mus-
cles, heart and in the brain. Deletions and duplications are
the most frequent mutations in the DMD gene and account
for 70-75 % and 5-10 % of cases, respectively (Emery
et al. 1991); the remaining cases are determined by sin-
gle point mutations or small rearrangements (Piké et al.
2009). According to the Haldane theory, one-third of cases
are de novo mutations (Davie and Emery 1978). Muta-
tions not leading to the production of dystrophin determine
Duchenne muscular dystrophy phenotype (DMD; OMIM
300377), while mutations leading to a reduced amount
or an altered size of the dystrophin protein cause Becker
muscular dystrophy (BMD; OMIM 300376). In both
cases, a destabilization of the sarcolemma is determined
due to reduction of the dystrophin-associated protein com-
plex (Matsumura et al. 1993; Nigro et al. 1995). In DMD
patients, the lack of dystrophin causes a progressive proxi-
mal muscle weakness associated with respiratory involve-
ment and/or cardiomyopathy that represent the most com-
mon causes of death. In BMD patients, the maintenance
of some amount of dystrophin causes a less severe muscle
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weakness and prolonged functional abilities, but cardiomy-
opathy is more frequent and represents the most common
cause of death.

DMD/BMD female carriers are usually asymptomatic,
although several studies report that about 2.5-7.8 % may
manifest skeletal muscle symptoms. The age of onset of
muscle symptoms is variable; however, an onset before
15 years usually leads to severe clinical manifestations,
similar to those observed in males (Moser and Emery 1974;
Nigro et al. 1995; Politano et al. 1996; Palmucci et al. 1999;
Romero et al. 2001; Ceulemans et al. 2008). Moreover,
BMD/DMD carriers may show myocardial involvement
(18 %; 16 % in DMD and 7 % in BMD) and in particular
dilated cardiomyopathy, characterized by significant left
ventricular dilatation and decreased shortening fraction
(7-8 % in DMD or 6.6 % in BMD carriers, (Politano et al.
1996; Hoogerwaard et al. 1999; Grain et al. 2001).

Myocardial involvement such as hypertrophy, arrhyth-
mias and left ventricular dilatation increases with age and
has the same occurrence in both DMD and BMD carri-
ers, with a prevalence of dilated cardiomyopathy after the
age of 50. (Hoogerwaard et al. 1999). DMD/BMD carriers
can develop isolated muscle or cardiac involvement (Comi
et al. 1992; Nigro et al. 1995; Politano et al. 1996; Nigro
et al. 2004), or both. However, cardiac symptoms develop
usually later than muscle symptoms (Politano et al. 1986).
Several mechanisms have been hypothesized to explain the
clinical manifestations in BMD/DMD carriers, such as: (1)
DMD gene mutation on both Xp21 alleles (Fujii et al. 2009;
Soltanzadeh et al. 2010); (2) loss of one X chromosome
(Turner syndrome) (Chelly et al. 1986; Satre et al. 2004);
(3) polymorphisms in other non-DMD genes, such as oste-
opontin, recently associated with an early loss of ambula-
tion in DMD males (Kyriakides et al. 2011); (4) skewed
X-chromosome inactivation (XCI), with preferential inacti-
vation of the normal dystrophin allele (Azofeifa et al. 1995;
Yoshioka et al. 1998; Soltanzadeh et al. 2010; Seemann
et al. 2011; Viggiano et al. 2013a); (5) women carrying
X;autosome translocations involving the DMD gene (Boyd
et al. 1986; Viggiano et al. 2013b); (6) uniparental disomy
(Quan et al. 1997). All these mechanisms determine as final
effect a reduction of dystrophin expression in the skeletal
and cardiac muscles. In the present review, we will analyze
the mechanism of XCI and its involvement in determining
the onset of symptoms in DMD carriers.

X-chromosome inactivation

XCI is an epigenetic mechanism that equalizes X-linked
gene dosage between men and women through the inacti-
vation of one X chromosome in women. At the end of the
process, women are a mosaic of two cell types expressing
the maternal or the paternal X chromosome.
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A random XCI indicates that cells present an equal
(50:50) inactivation of the maternal or the paternal X chro-
mosome. On the other hand, a skewed XCI indicates an
unequal (>50 %) inactivation of the maternal or the pater-
nal X chromosome.

However, there is no agreement on the cutoff for XCI
to be considered skewed, as some authors consider 65:35
(Orstavik et al. 1996; Satoh et al. 2008), while others 70:30
(Matthews et al. 1995; Amos-Landgraf et al. 2006) or
80:20 (Orstavik 2009). Usually, the term extremely skewed
XCT indicates the preferential inactivation of one X chro-
mosome in 90-95 % of cells (Orstavik 2009).

Mechanism of XCI

The mechanism of XCI is not completely known. Several
studies in mice demonstrated that the X-chromosome inac-
tivation center (Xic)—a single cis-acting control locus at
Xq13.2—is necessary for: (1) initiation of XCI by counting
the number of X chromosomes and choosing one X chro-
mosome to be inactivated; (2) spreading the inactivation
in cis the X chromosome; and (3) maintaining the inactive
state (Gartler et al. 1992). The non-coding X inactive-spe-
cific transcript (Xist)—a non-coding RNA (ncRNA)—is
transcribed by the Xic (Kind and van Steensel 2010). Xist
has different functions: (1) gene silencing in cis with Xic
(Brown et al. 1991; Brockdorff et al. 1992; Brown et al.
1992); (2) spatial reorganization of X chromosome inacti-
vated (Xi) (Splinter et al. 2011; Nora et al. 2012); (3) initia-
tion of chromatin changes (Csankovszki et al. 2001; Plath
et al. 2003). The mechanism induced by Xist to silence
genes is not clear. It is suggested that the upregulation of
Xist in the Xi, forms a sub-nuclear compartment or domain
where the RNA polymerase II and transcription factors are
sequestered, so that the genes in this region are not tran-
scribed (Okamoto et al. 2004; Chaumeil et al. 2006; Dixon
et al. 2012). This domain presents dense regions of inter-
spersed nuclear elements (LINE) suggested to be involved
in the silencing and/or silencing maintenance (Chaumeil
et al. 2006). A recent work on mouse embryonic fibro-
blasts, embryoid bodies and trophoblast stem cells shows
that genes and LINES-dense regions are present in sepa-
rate nuclear territories, in particular adjacent to the Xist
gene, suggesting a role of the LINE dense regions in Xist
mediating silencing, but not a colocalization between genes
inactivated and LINES (Calabrese et al. 2012). The spatial
reorganization of Xi consists in modifications of the inter-
action between genes in cis and/or in trans with genes on
autosome chromosomes. In particular, the active X chro-
mosome (Xa) presents more gene interactions both in cis
and in trans, whereas Xist upregulation determines in the
Xi few gene interactions in cis but not in trans. Only genes
that escape the inactivation show interaction in cis or in
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trans with other active genes (Splinter et al. 2011; Nora
et al. 2012). Moreover, Xic presents several regulatory ele-
ments of Xist, in particular down-regulator elements (Tsix,
Linx, Dxpas34 and Xite, Oct4, Sox2, Nanog and Rex1) and
up-regulator elements (Ftx, Jpx, Rnfl2) (Debrand et al.
1999; Lee 2005; Cohen et al. 2007; Barakat et al. 2011;
Chureau et al. 2011; Masui et al. 2011; Gontan et al. 2012).
About 15 % of human X-linked genes escape the silenc-
ing, and an additional 10 % of genes present a variable
pattern of inactivation (Carrel and Willard 2005). Some of
these genes are pseudo-autosomal regions (PARs), homolo-
gous sequences of nucleotides on the X and Y chromosome
(Lyon 1961). In particular, all genes of the PAR1 escape the
XCI, while only some genes of PAR2 are silenced (Ciccod-
icola et al. 2000). Alu repetitive elements and ncRNAs are
enriched around genes that escape XCI (Wang et al. 2006a,
b; Reinius et al. 2010). Few mechanisms have been sug-
gested to explain skewed XCI and its correlation with age:

1. The stochastic mechanism (Gale et al. 1997), accord-
ing to which the XCI pattern depends on the pattern of
stem cell expressing the maternal or paternal X chro-
mosome at the time of lyonization. With age, there is
a stochastic reduction of stem cells as some of them
will be lost through the terminal differentiation of both
daughter cells.

2. The genetic mechanisms (Vickers et al. 2001; Kris-
tiansen et al. 2005) Previous studies reported cases
of familial skewed XCI, leading to severe symptoms
(Bicocchi et al. 2005; Renault et al. 2007) or cases of
discordant phenotype (Orstavik et al. 1999; Tanner
et al. 1999). Furthermore, a mutation in the XIST was
reported that causes a familial skewed XCI (Plenge
et al. 1997), and linkage analysis studies on XCI phe-
notype in normal human families found a linkage to
the Xql13 trait that contains the XIC locus including
the XIST gene. The authors hypothesized two types
of XIC alleles—strong and weak—and suggested that
“strong” XIC alleles have a higher probability of stay-
ing active. In turn, only subjects carrying alleles of dif-
ferent ‘strength’ will present skewed XCI (Naumova
et al. 1998). It is also postulated that some polymorphic
X-linked genes can influence cell division, growth or
apoptosis, and in turn the selection of cell population
expressing the maternal or the paternal X chromosome.
Furthermore, cells with high turnover, such as hemat-
opoietic or skin cells, seem to have a higher probability
of skewed XCI compared with cells with lower mitotic
activity (Knudsen et al. 2007).

3. The selection mechanism, according to which skewed
XCI derives in elderly women from a growth or sur-
vival advantage conferred by one of the parental X
chromosomes. In general, selection will favor cells

expressing the normal allele (Migeon 2006), thus
explaining the limited number of symptomatic carri-
ers of X-linked diseases. However, in some cases, as
X;autosome translocations, the cells can also express
the mutant allele.

Skewed XCI in normal women

Several studies analyzed the prevalence of skewed XCI in
unaffected women in the general population with contro-
versial results, probably due to the different (a) methods
of analysis (Gale et al. 1991; Fey et al. 1992), (b) age of
women, or (c) type of tissue analyzed. Amos-Landgraf
et al. (2006) reported a normal distribution of XCI pattern
in the vast majority of the general population of women and
an extremely skewed XCI in only 5 % of them, data con-
firmed by other authors (Migeon 2007; Bolduc et al. 2008).
A correlation of skewed XCI with age (Fey et al. 1994) and
type of tissue (Azofeifa et al. 1995; Gale et al. 1997) has
also been reported. An increase of extremely skewed XCI
with age up to 100 years (Lanasa et al. 2001; Kristiansen
et al. 2005) has been reported by studies on blood, using
the PCR-based androgen receptor gene (AR) analysis.
Skewed XCI occurs in about 16-37 % of women >60 years
and in 49 % of centenarians, while it occurs in 14 % of
women aged <25 years and in 4.9-14.2 % of newborns
(Kristiansen et al. 2005; Christensen et al. 2000; Bolduc
et al. 2008). An extremely skewed XCI occurs in about
16-27 % of women >60 years and in 18 % of centenarians
(Busque et al. 1996; Christensen et al. 2000; Sharp et al.
2002), while it occurs in 7 % of women <25 years and in
0.7-2.7 % of newborns (Busque et al. 1996; Lanasa et al.
2001; Bolduc et al. 2008). However, a higher percentage of
skewing (27.9 %) and extreme skewing (4.9 %) XCI has
been reported in mothers compared to their newborns, sug-
gesting that hematopoietic cells suffer from age-associated
skewing in early adulthood (Bolduc et al. 2008). Moreover,
XCI pattern correlates with age-associated skewing occur-
rence in both hematopoietic and non-hematopoietic cells
(e.g., buccal epithelial cells or urine samples) (Knudsen
et al. 2007; Bolduc et al. 2008). However, this correlation
is lost after the age of 60 years, suggesting that while the
occurrence of skewing in hematopoietic cells continues to
increase, in non-hematopoietic cells there is a plateau.
Moreover, there is no agreement among researchers
on the correlation of the XCI pattern in different tissues.
In fact, some authors report a good correlation between
blood and epithelial tissue of the same individual (Gale
et al. 1991; Sharp et al. 2002; Knudsen et al. 2007; Bolduc
et al. 2008), and others between thyroid gland and muscle,
or leucocytes and muscle, suggesting that tissues deriving
from the same embryogenic layer have the same XCI pat-
tern (Azofeifa et al. 1995). However, Bittel et al. (2008)
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reported a good correlation also between haematopoietic
(blood and/or spleen) tissue and tissues deriving from dif-
ferent embryogenic layers, brain, skin, heart, lungs, mus-
cles, kidneys, and gastrointestinal tract included.

X chromosome inactivation in X;autosome
translocations

Studies in animal models demonstrated that the spread of
inactivation in X;autosome translocations is discontinu-
ous, so that the autosomal genes in cis to the Xic gene are
inactivated less efficiently than the normal X-linked genes
(Russell 1963; Cattanach 1974). This suggests that autoso-
mal chromatin lacks important signals in the spread and/
or maintenance of X inactivation (Bailey et al. 2000; Ross
et al. 2005). The spread of inactivation on the autosome is
high near the breakpoint, although some inactivation is also
observed distant from it while the spread across the cen-
tromere is more limited than in euchromatic regions (Cot-
ton et al. 2014).

It is suggested that the LINEs frequency at the break-
point may influence the degree of inactivation spread in the
autosomal chromosome (Stankiewicz et al. 2006).

Skewed XCI in DMD carriers

Previous studies demonstrated a correlation between
skewed XCI and onset of symptoms in carriers of X-linked
diseases such as hemophilia B (Espinés et al. 2000; Oku-
mura et al. 2008), dyskeratosis congenita (Devriendt et al.
1997), Wiskott—Aldrich syndrome (Wenger et al. 1992),
and focal dermal hypoplasia (Gorski 1991). No agree-
ment exists on DMD muscular dystrophies, as some AA
report a good correlation between symptomatic carriers
and skewed XCI (Azofeifa et al. 1995; Satoh et al. 2008;
Jonas Juan-Mateu 2012; Sandra Mercier 2013; Viggiano
et al. 2013a) while others deny this correlation. (Sumita
et al. 1998; Soltanzadeh et al. 2010; Brioschi et al. 2012).
Table 1 shows the pattern of XCI in symptomatic DMD
carriers. Although the number of subjects for each pheno-
type (mild, moderate and severe) is limited, skewed XCI
seems to better correlate with severe rather then mild phe-
notype. However, further studies on a larger number of
carriers are necessary to confirm this observation. Only
one study analyzed XCI analysis in symptomatic carriers
at muscular vs cardiac level and showed the highest degree
of XCw inactivation in carriers manifesting at the muscu-
lar level. Moreover, the AA found a correlation between
the degree of XCw inactivation and onset of symptoms,
because all subjects presenting a severe muscle phenotype
and a higher skewed XCI were younger (<40 years) com-
pared with carriers showing cardiomyopathy (Viggiano
et al. 2013a).
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Possible explanations for the conflicting data on the cor-
relation between skewed XCI and clinical symptoms in
DMD carriers are:

1. To have analyzed as a sole group not homogeneous
BMD and DMD carriers, or symptomatic and asymp-
tomatic carriers (Bushby et al. 1993; Sumita et al.
1998).

2. Patient age: to have considered only the younger car-
riers that may manifest symptoms later and neglected
that XCI increases with age (Sharp et al. 2002).

3. The failure in identifying the allele that carries the wild
or the mutant DMD gene (Bushby et al. 1993; Mat-
thews et al. 1995; Seemann et al. 2011) and in turn
which X chromosome is highly inactivated.

4. The recombination between the androgen receptor
locus (used for the STR analysis) and the DMD loci
that confuses the linkage analysis for the identification
of the mutant allele.

5. The different cutoff value to define a skewed XCI:
>65:35 (Yoon et al. 2011), >70:30 (Bushby et al. 1993;
Pegoraro et al. 1994; Matthews et al. 1995; Azofeifa
et al. 1995), or >80:20 (Soltanzadeh et al. 2010; See-
mann et al. 2011; Brioschi et al. 2012; Viggiano et al.
2013a).

6. The presence of alleles not located on the X chro-
mosome that may modify the phenotype (modifiers
alleles): in this respect, only one study analyzed the
polymorphism in the osteopontin promoter (SPP1)
that is involved in a more rapid progression of DMD
(Pegoraro et al. 1995; Kyriakides et al. 2011), but both
authors did not find any statistically significant differ-
ence.

7. The type of mutation: only few studies on XCI analysis
in DMD carriers mentioned the type of causative muta-
tion; furthermore, the only study that performed a sta-
tistical analysis was unable to show significant results
(Soltanzadeh et al. 2010).

8. The type of tissue analyzed: some researchers suggest
that the XCI analyzed in blood does not reflect the XCI
pattern observed in the muscle, and in turn the XCI per-
formed in the blood does not correlate with the pheno-
type. However, only few studies analyzed the pattern
of XCI in muscle cells, because muscle biopsy is not
a diagnostic test for BMD/DMD carriers. Moreover,
a concordance of the XCI pattern between lympho-
cytes and muscles, tissues of same embryonic origin
(Fialkow 1973; Azofeifa et al. 1995), has been proven.
In addition, symptoms in BMD/DMD carriers seem to
correlate better with the XCI pattern in blood than in
the muscle cells (Matthews et al. 1995; Pegoraro et al.
1995; Brioschi et al. 2012). Finally, the XCI analyzed
in cells from a single muscle does not reflect the XCI
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5 -§D'g = £3% _uzi 3|8 E mice for a null mutation of dystrophin gene (mdx/+)
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E ZRCN P — — E‘, % a different patt(?m of XCI (Weller et al. 1991; Blttner
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) (Hall et al. 2002; Gupta et al. 2006). However, several cases
g ? of a preferential inactivation of the normal X have been
§ & f:; reported in unbalanced X;autosome translocations, proba-
=2 a ) s & :5 bly to confer a survival advantage to the fetus (Palmer et al.
“2 z 3 ) § & ~ ) = 1980; Gupta et al. 2006). In the balancs:d.X;autosome .trs.ms-
EET b —d-; = g = E locations disrupting the DMD gene, this is usually split into
w £ g ; ® c\g/ ; ; 5 |E two parts and joined with a segment of the autosome; as a
g éﬁ 2 s e %D S Z |2 consequence, no functional dystrophin can be' produced by
L.% B § E é N § % _é _:} the derivative X chromosome. Previous studies suggested
& < a2 N" FE = that the part of the X chromosome on the autosome, sep-
E arated from the Xic, will not be silenced. In addition, the
z p § inactivation of the derivative X chromosome Wil.l sp?ead
g 5 § g into the translocated autosomal sequences .resqltmg in a
2 = 22Y¢ ¢ N silencing of the autosomal genes. The derivative mono-
& somy of the autosome genes determines the apoptosis (_)f
2 the cells with X-derivative inactivated in early embryonic
:5 stages, resulting in the selection of the cells: only cells with
~= 2 E: the normal X chromosome inactivated survive.
3) E v%w/ 5 o G o g g‘ In Table 2, we report 43 cases with X;autosqme trans-
> 88 =<2 < 218 location involving the locus Xp21 so far published. All
= g cases reported are de novo translocations. Thirty-four of
%? o § them (79 %) showed a mild or moderate—severe DMD
= § < g phenotype, while 5 (11 %) did not show symptoms and./or
§ § % _éo signs of muscle involvement. However, the age at feportllng
B 5 é 8 was <5 years in four of these cases. In five cases in Whlch
g E’ § § chromosomes 2, 3, 5 or 9 were involved in translocahons,
i k3 2 neurological symptoms, such as mental retardation and epi-
é é“ E = lepsy, were also associated.
Eg 2 5 %: In the only one fetus with 46,X,t(X;1)(p21.2;p36) in
£ £ 3 T which muscle biopsy was performed in utero, normal dys-
z é L; § @ g § trophin immunostaining was found (Evans et al. .1 993). The
% = L ig) % g % analysis of the autosomes involved in translocations shows
= < § : g 2 é 5 that the highest percentage involved the chromosome 9
§ gog % 5 T‘} . % N (16 %), followed by chromosome 4 and 22 (11.3 %), chro-
3 E = - é S 2 S % 72 mosomes 1, 2, 3 (9 %) and chromosomes 5, 6, 11 (6.8 %).
= Chromosomes 7, 8, 12, 15, 17 and 21 were involved in only
o |a i one case, respectively, and never chromosomes 10, 13, 14,
EREA P D N 16, 18 and 20.
§~ % 22 § % % § E =:s @ The analysis of XCI, performed on 20/34 symptomat.ic
&8 (2 feA <= _“:’ g patients, on lymphocytes, showed a skewed XCI pattern in
50 § E all cases. In particular, the XCIdwz;s3 e;;trlemzely ls)l.«:v;/ed 12
£ e 15/20, near to extremely skewed (93:7) in 2 subjects an
% @ » @ g skewed in 3. XCI was analyzed in both muscle and lym-
% :i ijﬁ % ) % ) E) :. phocytes in three symptomatic DMD carriers, and only in
< & VA A :§ @ one the pattern was the same in the two tissues. In two out
gz of five asymptomatic cases of X(p21);autosome transloca-
a 2] P ; g g tions, in which the XCI was performed, this was skewe.d
o | = E‘ E“ %l % g g@ and extremely skewed, respe?ctlvely.. However, it is impossi-
§ % i & <§ 4 ag -“8’ L; ble to exclude that these S}lb]ects will present muscle symp-
212 |Z Saa aalEs toms later, because of their young age (under 4 years) at the
. § %) YR E xu|E g time of investigation. A summary of the phenotype—DMD,
:’ c = === =7 ‘g é Mild DMD, Absent, or Not reported—associated with a
E & 28T §9 E = skewed or extremely skewed XCI, is shown in Table 3.
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Table 3 Association of skewed and extremely skewed XCI with phe-
notype in women carrying X;autosome translocation involving the
Xp21 locus

Phenotype DMD mild DMD  Absent n.d.
Subjects n (%) 29 (67.4) 5(11.6) 5(11.6) 4(9.3)
XCI analysis (1) 17 4 2 2

XCI lymphocytes 16 4 2 2
Skewed (%) 3 2 1 0
Extremely skewed (%) 13 2 1 2

Discussion

The present review shows that skewed XCI is the main fac-
tor determining the appearance of symptoms in DMD carri-
ers or in women with X;autosome translocations involving
the locus Xp21, and in particular in women with an early
onset of symptoms.

The data reported support the hypothesis that a ran-
dom XCI can cause only mild symptoms (Pegoraro et al.
1995), while a skewed XCI plays an important role in the
moderate—severe phenotypes. In the case of skewed XCI,
the preferential inactivation of the X chromosome carry-
ing the normal allele determines in muscles an aberrant
dystrophin expression—likely, near to zero—avoiding
any biochemical and/or genetic normalization and favor-
ing the onset of a DMD-like phenotype. The mecha-
nism that leads to a skewed XCI, including the cases of
X;autosome translocations, is not completely clear. Sev-
eral mechanisms have been suggested, including stochas-
tic factors (Gale et al. 1997; Brown and Robinson 2000),
genetic mechanisms (Vickers et al. 2001; Kristiansen
et al. 2005) or developmental post-inactivation selec-
tion, particularly in cells with a high turnover (Knud-
sen et al. 2007). Though familial cases of skewed XCI
presenting mutations in the XIST gene promoter have
been reported (Plenge et al. 1997; Tomkins et al. 2002),
however, the analysis of XIST promoter in DMD symp-
tomatic carriers did not show any variant in this region
(Jonas Juan-Mateu 2012). Moreover, no correlation
between the XCI pattern and mother—daughter pairs was
found, suggesting that the pattern of XCI is not inher-
ited (Abrams and Cotter 2004; Viggiano et al. 2013a, b).
However, it is not possible to exclude a genetic control,
because the paternal inheritance was not investigated. In
cases of X;autosome translocations, the functional dis-
omy for the segment of X chromosome translocated or the
monosomy for the autosomal translocated segment play
a crucial role; in fact only cells expressing the derivative
X chromosome can survive (Schmidt and Du Sart 1992;
Waters et al. 2001).

@ Springer

A limitation of this review is that the groups of DMD
and BMD carriers in which the correlation between XCI
and phenotype was analyzed in the different studies were
not homogeneous. In fact, only few analyzed DMD versus
BMD carriers, or symptomatic versus asymptomatic carri-
ers, or identified correctly the mutant versus the wild allele
and reported exactly the clinical symptoms. Moreover, the
cases of X;autosome translocations so far published are
usually symptomatic, and XCI analysis was performed
only in 20 subjects, thus preventing to perform a statistical
analysis to validate the data. However, the hypothesis that
X;autosome translocation involving the Xp21 determines a
skewed XCI associated with the clinical phenotype is sup-
ported by previous studies demonstrating that the normal
X chromosome is preferentially inactivated in balanced
X;autosome translocations to confer survival to the fetus
(Emery 1991; Gupta et al. 2006; Giliberto et al. 2014). Our
experience in the field of muscular dystrophies empha-
sizes the problem of a correct communication on the risk
of a possible DMD phenotype in women prenatally diag-
nosed as DMD carriers or X;autosome translocated, with
breakpoint at the Xp21 locus. In fact, such a possibility is
usually underestimated in prenatal genetic counseling and
families are not informed about this risk. In our opinion,
information should be given, even in cases in which the
mothers are asymptomatic carriers. However, further stud-
ies on a larger group of subjects are necessary to confirm
this hypothesis.

In everyday clinical practice, XCI analysis should be
recommended a) in the case of adult women with report-
ing muscle symptoms to exclude a skewed XCI and b) in
young girls (<18 years of age)—symptomatic at the mus-
cle level and related to DMD patients—to evaluate skewed
XClI as the potential cause of their symptoms, without the
use of genetic testing for carrier status.
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