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>400 allele-specific candidate SNPs, 141 of which were 
highly relevant in our cell types. Functionally validated 
SNPs support identification of an SNP in SYNGR1 which 
may expose to the risk of rheumatoid arthritis and primary 
biliary cirrhosis, as well as an SNP in the last intron of 
COG6 exposing to the risk of psoriasis. We propose that 
by repeating the ChIP-seq experiments of 20 selected tran-
scription factors in three to ten people, the most common 
polymorphisms can be interrogated for allele-specific bind-
ing. Our strategy may help to remove the current bottleneck 
in functional annotation of the genome.

Introduction

To date, more than 15,000 single nucleotide polymor-
phisms (SNP) and insertion/deletions have been associ-
ated with diseases and other phenotypes as summarized 
in the NIH GWAS catalog (Hindorff et  al. 2011). It is 
often assumed that the genetic variant with the highest 
association is functional; however, this is usually diffi-
cult to prove due to linkage disequilibrium (LD) between 
SNPs (The 1000 Genomes Project. 2012). Only 15  % of 
the anticipated functional variants are located in coding 
regions, and many are believed to act through the regula-
tion of gene expression, which is in agreement with the 
notion that gene activity is largely genetically controlled 
(Schadt et al. 2008; Lappalainen et al. 2013). Identifying 
the SNP with the strongest association to gene expression 
(eSNP) on a haplotype was proposed as a means to finding 
the variant driving the association to disease, and conse-
quently the NIH started the Genotype Tissue Expression 
project (GTEX) to correlate a person’s genotype with gene 
expression in many tissues. However, eSNPs are also gen-
erally in LD with other SNPs leaving the question of direct 
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functionality often unanswered. The Encyclopedia of 
DNA Elements (ENCODE) project (The ENCODE Project 
Consortium 2012) was initiated with the aim of finding all 
functional elements in the genome. Data on chromatin and 
transcribed genes were generated in cell lines and tissues 
and, based on these, candidate regulatory elements were 
suggested. These regulatory elements have been shown 
to harbor an enrichment of GWAS-SNPs (The ENCODE 
Project Consortium 2012), but despite all efforts, to our 
knowledge, the functionality of around 20 SNPs have been 
described, e.g., the ones regulating SORT1 (Musunuru 
et  al. 2010), RFX6 (Huang et  al. 2014) and TOX3 (Cow-
per-Sal et  al. 2012). In these cases, a common feature is 
that the functional SNP is located in a motif for a tran-
scription factor where the alleles differ in their ability to 
bind the transcription factor (TF) and thus their capacity 
to regulate one or more genes. After our initial discov-
ery that signals in DNA enriched by chromatin immuno-
precipitation (ChIP) may differ between alleles (Ameur 
et  al. 2009), the strategy has been applied genome wide 
using next-generation sequencing (ChIP-seq) data gener-
ated by us (Motallebipour et  al. 2009; Wallerman et  al. 
2009) and others (Kasowski et  al. 2010; Rozowsky et  al. 
2011; Reddy et  al. 2012). SNPs with allele-specific (AS) 
TF binding are likely to be functional and in this project 
we systematically searched for them. We have character-
ized AS-SNPs in four major ENCODE cell lines and made 
functional validations. This has resulted in a collection of 
9962 candidate functional SNPs.

Materials and methods

Genome sequencing

The genomes of K562 and SK-N-SH were sequenced with 
paired-end reads to 30× coverage. Illumina sequenced 
reads were aligned to human reference genome hg19 and 
duplicates were marked with Picard. The reads then went 
through GATK preprocessing including indel realign-
ment (DePristo et al. 2011). Variants were called following 
GATK Best Practices (https://www.broadinstitute.org/gatk/
guide/best-practices) using HaplotypeCaller, followed by 
GVCF file combination and recalibration of variants.

ChIP‑seq sequences

Raw ChiP-seq reads (.fastq) were obtained from the 
ENCODE project database (ftp://hgdownload.cse.ucsc.edu/
goldenPath/hg19/encodeDCC/) selecting all the TF ChIP-
seq data available at the time of download for four differ-
ent cell lines: GM12878 (Nov. 2013), H1-hESC (Jan 2014), 
K562 (Mar 2014) and SK-N-SH (Mar 2014).

Genomic features

AS-SNPs collections were intersected and filtered with 
several publicly available databases: NHGRI GWAS cata-
log (Jan 2014), collection of signal artifact blacklisted 
ENCODE regions (The ENCODE Project Consortium 
2012), 1000 Genomes SNPs collection (1000 Genomes 
project, phase1_release_v3.20101123) and lymphoblastoid 
cell lines eQTLs collections (Lappalainen et al. 2013).

The reference genome (G1) used was the UCSC hg19 
assembly based on the Genome Reference Consortium 
Human genome build 37 (GRCh37), but excluding random 
and unplaced contigs. The alternative genomes (G2), when 
not available, were built for the different cell lines using the 
FastaAlternateReferenceMaker GATK utility that gener-
ates an alternative reference sequence replacing the refer-
ence bases at variation sites with the bases supplied by a 
cell-specific SNPs collection. The genomes of K562 and 
SK-N-SH were sequenced at the Broad Institute as part of 
this project and the sources for cell-specific SNPs collec-
tions and alternative genomes were: 1. GM12878: SNPs 
from 1000 Genomes pilot project official release and HiSeq 
from Broad and diploid sequence of NA12878 genome 
from M.Gerstein laboratory. 2. H1-hESC: SNPs calls were 
obtained from B.Ren laboratory (January 2014) and G2 
built via GATK. 3. K562: WGS and SNP calls from Broad 
Institute (June 2014) and G2 built via GATK. 4. SK-N-SH: 
WGS and SNP calls from Broad Institute (June 2014) and 
G2 built via GATK.

AS‑SNPs selection pipeline

A graphical overview of the AS-SNPs selection process 
is presented in the flowchart in Fig. S1 in Supplementary 
material 1. The pipeline follows these steps: (1) each sets of 
ChIP-seq reads is aligned to the reference (G1) and alter-
native (G2) genome using ASAP (http://www.bioinformat-
ics.babraham.ac.uk/projects/ASAP/). ASAP uses bowtie 
with the following flags: best-l 35-n 1, returning hits with 
a maximum number of one mismatch permitted in the 
seed (in this case 35  bp). (2) Reads mapped specifically 
to G1 or G2 are counted at the heterozygous SNPs. SNPs 
with “0” reads mapped on G1 or G2 are discarded. (3) To 
determine whether the G1/G2 read counts difference is sta-
tistically significant, a binomial test is applied against the 
null hypothesis of an equal G1:G2 coverage. After correct-
ing for multiple testing (Benjamini & Hochberg or FDR), 
AS-SNPs with P < 0.05 are selected. (4) AS-SNPs are then 
intersected with the whole 1000 Genomes SNPs collection 
to retrieve AFs. AS-SNPs with AF ≥1  % are considered 
common; AS-SNPs with AF  <1  % are considered rare as 
well as AS-SNPs not present in the 1000 Genomes SNPs 
collection. (5) Extensive filtering of the selected AS-SNPs 
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is performed to remove AS-SNPs that are in centromeric 
or telomeric regions (UCSC Gap table ±1 Mb), blacklisted 
ENCODE regions (±100  bp) or not genotyped CNVs. If 
the AS-SNPs are in CNVs with established allelic copy 
numbers, they are re-evaluated for statistical significance 
with adjusted probabilities in the binomial test. Collections 
of annotated CNV were obtained from literature and pub-
licly available databases:

•	 H1—CNVs defined in Närvä et  al. (2010) (not haplo-
type resolved).

•	 GM12878—ENCODE annotated CNVs via Illumina’s 
Human 1M-Duo Infinium HD BeadChip assay and 
CNV analysis by circular binary segmentation (CBS) 
(not haplotype resolved).

•	 SK-N-SH—CNVs defined from Nexus Copy Num-
ber (BioDiscovery) analysis of SNP array data 
(GSM888680) using SNPRank segmentation algorithm 
with default settings followed by TAPS (Mayrhofer 
et al. 2013) (haplotype resolved).

•	 K562—CNVs defined from Nexus Copy Number (Bio-
Discovery) analysis of SNP array data (GSM888266) 
using SNPRank segmentation algorithm with default 
settings followed by TAPS (Mayrhofer et  al. 2013) 
(haplotype resolved).

In the cases where haplotype-resolved CNVs were 
available, the null hypothesis in the binomial tests 
to determine a statistically significant difference in 
reads count at different alleles (H0: p1 = p2 = 1/2) was 
adjusted to take into account the extra chromosomal 
copies, e.g., if a region was defined as a three-copy CNV 
and no haplotype info was available, the AS-SNPs over-
lapping this region were discarded. If haplotype info 
was available for the same region (namely, which allele 
was present in a 2:1 ratio), the AS-SNPs overlapping 
the region were tested against an adjusted null hypoth-
esis (H0: p1 =  1/3|p2 =  2/3), so as to exclude the copy 
number bias from the significance of the allele-specific 
binding difference. Regions with four or more copies 
were excluded from analysis. (6) Pruned AS-SNPs selec-
tions are finally intersected with collections of GWAS or 
eSNPs and SNPs in LD (r2 > 0.8) with GWAS or eSNPs 
(proxy SNPs calculated via the SNAP tool (Johnson 
et al. 2008) which uses genotype data from the Interna-
tional HapMap Project) to select candidate functional 
AS-SNPs for experimental validation. We compared the 
ratio between the allele with higher read number count 
over the total read count at hz SNPs [G1 if G1 > G2|G2 
if G2  >  G1/(G1  +  G2)] to estimate the allele-specific 
effect of an SNP. P values comparing AS effects between 
common and rare AS-SNPs were calculated using two-
tailed t test.

Cell cultures

Peripheral blood mononuclear cells (PBMCs) were puri-
fied from healthy donor buffy coats (Department of Trans-
fusion Medicine, Uppsala University Hospital, Sweden) 
using Ficoll density-gradient centrifugation. The B cells 
were isolated from PBMCs by positive selection using 
CD19+ B-cell isolation kit (Miltenyi Biotec) according to 
manufacturer’s instructions. The cells were cultured in 1 ml 
volumes in 24-well plates (Nunc) in macrophage serum-
free medium (Life Technologies) at the concentration of 
3 × 106 B cells/ml. The cells were stimulated with a phos-
phorothioate-modified CpG A oligonucleotide ODN2216 
(CyberGene) at the concentration of 3 μg/ml and incubated 
for 5 h at 37 °C with 5 % CO2. The harvested cells were 
stored in RLT buffer (QIAGEN) at −80 °C.

Gene expression studies

Total RNA was extracted from mock and stimulated B cells 
using RNeasy® Mini Kit (QIAGEN). First-strand cDNA 
was synthesized from 1  ng of total RNA with oligo (dT) 
primer using the Maxima First Strand cDNA synthesis kit 
(Thermo Scientific). The reaction was performed at 50 °C 
for 30 min and terminated at 85 °C for 5 min. qPCR gene 
expression quantifications were performed in 96-well plates 
using the StepOnePlus™ Real-Time PCR System (Applied 
Biosystems). Reactions were performed in a total 20  µl 
volume comprising 10  µl JumpStart™ Taq ReadyMix™ 
(Sigma-Aldrich)  +  EvaGreen® dye 20× (Biotium) and 
0.25 µg of each primer. All qPCR reactions were performed 
in triplicate and the Ct values were averaged. Normaliza-
tion was performed using the housekeeping gene β-ACTIN 
to evaluate the relative expression.

Results

Sequence and allele‑specific signals in ENCODE cell 
lines

We set out to discover putative functional genetic variants 
by detecting SNPs with a difference in TF binding between 
alleles at a large scale. We sequenced the genomes of cell 
lines from myeloid cells (K562) and neuroblastoma (SK-
N-SH) (see “Materials and methods”) and downloaded 
public data on the genome sequence of B cell (GM12878) 
and embryonic stem cell (H1-hESC). All public ChIP-
seq data from the ENCODE project from these cell lines 
were downloaded, giving data from on average 66 TFs 
per cell line (range 27–100). We used the allele-specific 
alignment pipeline (ASAP) (http://www.bioinformatics.
babraham.ac.uk/projects/ASAP/) to align the reads to the 
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reference (G1) and alternative (G2) alleles, respectively. 
We required that at least one ChIP-seq read mapped to each 
allele to further support the SNP calling. The number of 
reads mapping to the G1 and G2 allele was counted at all 
heterozygous positions, and those with a statistically sig-
nificant difference in the number of reads were identified 
after correcting for multiple testing and copy number vari-
ation (CNV) (see “Materials and methods”). Data from the 
1000 Genomes project (The 1000 Genomes Project 2012) 
was used to determine if the variants were common with 
allele frequency (AF) ≥1 % or rare <1 %. We used exten-
sive filtering to remove potential false positives in repeated 
and ENCODE “blacklisted” sequences. The number of 
reads mapping to the two alternative genomes is presented 
in Table S1 in Supplementary material 1. There were 
only small differences in the number of the aligned reads 
between the genomes, as in previous studies (Rozowsky 
et al. 2011), indicating that aligning bias toward the refer-
ence genome was well controlled for.

In the four cell lines, we found evidence of allele-
specific binding of transcription factors to 9962 SNPs 
(AS-SNPs). The highest number of AS-SNPs, 4299, 
was detected in K562 and the lowest number, 1014, in 
H1-hESC (Table  1), and as expected cells with the high-
est number of data sets of ChIP-seq of TFs had the high-
est number of AS-SNPs. Annotation in ChromHMM was 
available for GM12878, K562 and H1-hESC and 17 % of 
the AS-SNPs were located in active promoters, 17  % in 
insulators and the rest in distal regulatory elements. Since 
we only consider heterozygous positions in this analy-
sis, we compared the number of heterozygous SNPs and 
the number of AS-SNPs that were shared between two or 
more cell lines. Out of the 5,523,883 heterozygous SNPs, 
we found 3,296,857 that were unique to one of the cells, 
whereas 1,580,106, 551,933 and 94,987 were present in 2, 
3 and 4 cell lines (Table S2 in Supplementary material 1). 
The majority of the AS-SNPs, 9215, were detected in only 
one cell line, while 324, 29 and 3 were shared between 
2, 3 and 4 cell lines, respectively. There was a highly sig-
nificant difference in the distribution of heterozygous and 
AS-SNPs in these cells (P  <  2 ×  10−16), suggesting that 
most functional gene-regulatory elements are unique to a 

cell type and that only a small fraction is shared between 
two or more cell types. Out of our AS-SNPs, 1191 were 
also detected as DHS variants (Maurano et al. 2015). The 
results from both strategies depend on the alleles that are 
present in the studied cell types, so it is expected that the 
overlap will only be partial.

Many AS‑SNPs have low allele frequencies

Most AS-SNPs are common in the population, but notably 
16 % (13–19 %) of all AS-SNPs (1563 AS-SNPs) had an 
AF <1  %. Out of all heterozygous SNPs in a cell, 14  % 
have AF <1 % so an equal fraction shows allele-specific TF 
binding. To estimate the AS effect, we calculated the ratio 
between the allele with higher read number count over the 
total read count observed at common or rare heterozygous 
SNPs (see “Materials and methods”). We found a strikingly 
higher ratio with rare AS-SNPs in all cells except H1-hESC 
(Fig.  1), indicating that rare variants may have a larger 
effect on regulatory elements than common variants. With 
the exception of H1-hESC, there was no difference in the 
ratio for AF 1–10 % or 1–5 % compared to common alleles 
(Fig S5 in Supplementary material 1). Our data suggest 
that rare variants frequently affect the function of regula-
tory sequences and their effect may be larger than common 
alleles (Lappalainen et  al. 2013) and that they therefore 
may contribute to common diseases to a higher degree than 
rare variants in coding sequences.

ChIP‑seq of 20 TFs, polymerases or coactivators in few 
unrelated people detect a large fraction of common 
AS‑SNPs in the population

We wanted to determine how many TFs were needed to 
detect most AS-SNPs in a cell and therefore investigated 
the fraction identified by the 20 TFs that showed the high-
est number of allele-specific binding sites in each cell line. 
We found that between 92 % and 99 % of all AS-SNPs in 
each cell line were detected by the top 20 TFs, polymerases 
or coactivators, and even if ChIP-sequencing of 100 differ-
ent DNA-binding proteins had been performed, the results 
from the top 20 are enough to detect most AS effects in a 

Table 1   AS-SNPs detected in four different cell lines

Total SNPs called  
from WGS

Heterozygous  
SNPs

TFs ChIP-seq-ed AS-SNPs  
(total)

Common AS-SNPs  
(% of total)

Rare AS-SNPs 
(% of total)

GM12878 3,657,092 2,250,735 86 3265 2631 (81) 634 (19)

H1-hESC 3,377,147 2,014,114 51 1014 858 (85) 156 (15)

SK-N-SH 4,625,100 2,363,834 27 1384 1158 (84) 226 (16)

K562 4,374,809 1,864,966 100 4299 3752 (87) 547 (13)

Total 9962 8399 (84) 1563 (16)
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cell. In a project to search B cells, or the other cells studied 
here, from additional people for AS-SNPs, these TFs can 
be selected to optimize the chances of finding candidate 
regulatory variants.

We investigated the overlap of the top 20 TFs, polymer-
ases or coactivators between the four different cell lines 
(Fig. 2a; Table S4 in Supplementary material 1). Three TFs 
(CTCF, RAD21, YY1) and POL2 detected many AS-SNPs 
in all cell lines, three lines shared 4 TFs (NRSF, MAX, 
USF1 and TBP) and two lines shared 11 TFs (CEBPB, 
ZNF143, GABP, JUND, RFX5, EGR1, ELF1, NFYB, 
CREB1, TEAD4 and E2F6) and P300. The number of 
highly informative TFs that are unique to one cell line var-
ied between five (H1-hESC) and nine (SK-N-SH). Some 
of these unique TFs are previously known to be of central 
importance for the cell, i.e., pioneer TFs like NANOG in 
H1-hESC and factors important for maturation of B cells 
such as BCL3, EBF1 and PU1 in GM12878. Our data sug-
gest that TFs shared by many cells, pioneer TFs and those 
important for cell development should be selected when 
designing a project to identify AS-SNPs in a cell or tissue 
previously not studied by ChIP-seq.

We then investigated the number of individuals that 
need to be analyzed to detect most common AS-SNPs in 
a certain cell type. Assuming Hardy–Weinberg equilibrium 
(HWE), 33 % (1/3) of all common polymorphisms are het-
erozygous in one person. There is a huge number of rare 
variants in the human population and only a small fraction 
of them are heterozygous in one person. We determined 

the percentage of common polymorphisms expected to be 
heterozygous in two to ten unrelated individuals assuming 
HWE. According to our prediction (Fig. 2b and Table S5), 
66 % (2/3) of all common polymorphisms are expected to 
be heterozygous in at least one of three unrelated people. 
For five people, the corresponding figure is 79 % and for 
ten people 90  %. The likelihood to find at least one het-
erozygous person depends on the AF and is the highest at 
AF = 0.5. At this AF, you have 88 % chance of discover-
ing a heterozygote if you study three people, 97 % if you 
study five and over 99 % in ten people. However, even at 
AF =  0.1, the chance to find one or more heterozygotes 
is 45 % among three people, 63 % among five and 86 % 
in ten people. For rare variants (AF <1  %), the chances 
decrease substantially. It is thus possible to search for AS-
SNPs among most common polymorphisms in the popula-
tion by investigating cell lines or tissues from three to ten 
people, ideally from diverse ethnic backgrounds.

Many AS‑SNPs are associated with disease and gene 
expression

The GWAS catalog has entries for a wide spectrum of 
traits that are expressed in different cell types, all of which 
were not studied in this experiment. Molecular events that 
could be explained by the cells investigated are for example 
immune-mediated diseases for GM12878 and K562, and 
neurological diseases for SK-N-SH (Table S3 in Supple-
mentary material 1). Consequently, we searched the cata-
log for these cell-specific traits. H1-hESC was not investi-
gated. The SNP with the strongest association (GWAS top 
hit) was collected from the catalog and SNPs in high LD 
(r2 > 0.8) were identified and intersected with the collec-
tion of AS-SNPs. For 36 traits, we found 141 AS-SNPs. 
We investigated the number of candidate regulatory SNPs 
found when searching the GWAS catalog using matched 
random sets of non-AS-SNPs. We found significantly more 
AS-SNPs than expected by chance with a clear enrichment 
(5- to 13-fold) in the overlap of AS-SNPs as compared to 
random sets of non-AS-SNPs (Fig S3 in Supplementary 
material 1). Out of the 141 unique AS-SNPs that were can-
didates to explain GWAS signals, only 15 were the particu-
lar SNP reported in the GWAS catalog and the other 126 
were in the high-LD interval and 10 of these were rare 
AS-SNPs (Table 2; Fig. 3a, b and Tables S8, S11, S13 in 
Supplementary material 3). We grouped the SNPs in 1 Mb 
loci, and in immune cells, GM12878 and K562, we found 
candidate functional SNPs at 71 loci and in SK-N-SH at 14 
loci, giving a total of functional candidates at 85 loci. We 
compared our candidates with the total number of mapped 
regions for different diseases and detected tentative func-
tional variants for 11 % of loci mapped for psoriasis, 9 % 
for SLE and self-reported allergy, 8  % for inflammatory 

Fig. 1   Allelic effects of rare variants. Allele-specific effect (see 
“Materials and methods”) at heterozygous SNPs with a significant 
difference between the ChIP-seq reads of alleles G1 and G2 in four 
different cell lines
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bowel disease/Crohn’s disease/ulcerative colitis and 6  % 
for type 1 diabetes, suggesting new functional regulatory 
elements for many common diseases.

Furthermore, we took the top hits from the whole 
GWAS catalog including SNPs in high LD (r2 > 0.8) and 
compared to the list of AS-SNPs. This resulted in 398 

Fig. 2   Coverage of transcription factors and alleles in the popula-
tion. a Network representing the top 20 TFs, polymerases or coacti-
vators whose ChIP-seq reads detect most AS-SNPs in four different 
cell lines. The TFs detecting most AS-SNPs in several cell lines are 
clustered at the center with the more cell-specific ones in the outer 

layers. b The likelihood of finding a heterozygous SNP as a function 
of the allele frequency considering one or more individuals. The AUC 
represents the proportion of heterozygous SNPs a population of n 
individuals
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entries of common and 14 rare AS-SNPs (Tables S9, S12, 
S14 and S15 in Supplementary material 3). The relevance 
of these AS-SNPs is not ascertained, since they were not 

necessarily detected in the appropriate cell to explain the 
phenotype, but it is likely that several of them may be 
functional due to pleiotropic effects. We have found novel 

Table 2   AS-SNPs detected in different cell lines associated with cell-specific GWAS traits

Loci defined as GWAS-SNPs within 1 Mb regions
a  In HLA region

GWAS-associated traits Number of AS-SNPs Number of AS-loci Number of reported loci ¤ % of reported loci 
with AS-SNPs

GM12878 and K562

 Systemic lupus erythematosus 28 (18a) 6 63 9, 5

 Crohn’s disease|inflammatory bowel 
disease|ulcerative colitis

22 (3a) 14 182 7, 7

 Type 1 diabetes 14 (7a) 4 65 6, 2

 Chronic lymphocytic leukemia 14 (14a) 1 25 4, 0

 Asthma 13 (8a) 3 74 4, 1

 IgG glycosylation 11 (1a) 9 295 3, 1

 Schizophrenia 18 3 101 3, 0

 Self-reported allergy 12 3 34 8, 8

 Rheumatoid arthritis 9 4 151 2, 6

 Psoriasis 6 3 27 11, 1

 Systemic sclerosis 5 2 27 7, 4

 Celiac disease 5 3 61 4, 9

 Primary biliary cirrhosis 4 1 24 4, 2

 Adverse response to chemotherapy (neu-
tropenia/leucopenia) (carboplatin)

4 2 9 22, 2

 Chronic myeloid leukemia 3 1 28 3, 6

 Multiple sclerosis 3 3 138 2, 2

 Amyotrophic lateral sclerosis 2 1 142 0, 7

 Restless legs syndrome 2 1 6 16, 7

 Vitiligo 2 1 33 3, 0

 Acute lymphoblastic leukemia (childhood)1 1 33 3, 0

 Ankylosing spondylitis 1 1 21 4, 8

 Atopic dermatitis 1 1 18 5, 6

 Endometriosis 1 1 20 5, 0

 IgE grass sensitization 1 1 9 11, 1

 Primary sclerosing cholangitis 1 1 2 50, 0

SK-N-SH

 Obesity-related traits 3 3 572 0, 5

 Parkinson’s disease 2 2 50 4, 0

 Schizophrenia 1 1 101 1, 0

 Bipolar disorder and schizophrenia 1 1 113 0, 9

 Attention deficit hyperactivity disorder 
(time to onset)

1 1 128 0, 8

 Alzheimer’s disease (late onset) 1 1 48 2, 1

 Inattentive symptoms 1 1 14 7, 1

 Amyotrophic lateral sclerosis 1 1 142 0, 7

 White matter integrity 1 1 14 7, 1

 Anorexia nervosa 1 1 26 3, 8

 Migraine 1 1 60 1, 7
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Fig. 3   AS-SNPs associated with GWAS-SNPs. a Top AS-SNPs asso-
ciated with GWAS-SNPs intersecting the cell-specific collections 
of AS-SNPs with the full GWAS catalog. Numbers are reported for 
common and rare AS-SNPs that are direct hits in the GWAS cata-
log or in LD with GWAS-SNPs. Bottom AS-SNPs associated with 
GWAS-SNPs intersecting the cell-specific collections of AS-SNPs 
with GWAS-SNPs associated with cell-specific traits. b Model repre-
sentation of the networks of interactions observed between AS-SNPs 

and GWAS-SNPs. The dotted red box highlights the simplest sce-
nario with one AS-SNP in LD with a GWAS-SNP. The tables report 
the numbers of instances observed in each cell line where one AS-
SNP is in LD with several GWAS-SNPs or one GWAS-SNPs is in LD 
with different AS-SNPs, or where GWAS-SNPs were also AS-SNPs. 
c Four AS-SNPs, located in three different regulatory elements, inter-
act with several GWAS-SNPs associated with autoimmune diseases
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putative functional variants that may explain GWAS-SNPs 
using lymphoblastoid cell lines. Some examples are AS-
SNPs detected in GM12878 and K562 on a haplotype at 
the IKZF3/ORMDL3 locus, which is associated with both 
a range of autoimmune diseases described below and cer-
vical cancer. Infection with papilloma virus is a strong 
risk factor for cervical cancer and variation in the immune 
response to this agent may contribute to disease risk. This 
reflects that cellular mechanisms may be shared between 
cells types, and a gene-regulatory element detected in one 
cell type could be relevant to other types.

We have also found novel putative functional variants 
that may explain eQTL SNPs (eSNPs). Genetic control 
of gene activity has been investigated in lymphoblastoid 
cell lines and eSNPs have been detected (Lappalainen 
et  al. 2013). We examined whether AS-SNPs in B cells 
(GM12878) are better candidates to drive the allelic dif-
ference in expression. We took SNPs in LD (r2 > 0.8) with 
16,078 eSNPs for B cells and investigated how many are 
AS-SNPs in GM12878. We found 84 eSNPs that are AS-
SNPs, and an additional 362 AS-SNPs that are in LD with 
an eSNP (Tables S10 in Supplementary material 3). Some of 
the eSNPs in GM12878 are associated with the expression 
of repeats and therefore difficult to interpret from a disease 
perspective. We consider the AS-SNPs as good candidates 
to drive the allele-specific expression variation and note that 
only a fraction of eSNPs shows tentative functional effect, 
but that many more SNPs in high LD do. There is a clear 
enrichment (5- to 13-fold) in the overlap of AS-SNPs and 
cell-specific GWAS and eQTLs compared to random sets of 
non-AS-SNPs (Fig S3 in Supplementary material 1).

Networks of AS‑SNPs and GWAS‑SNPs

A haplotype at the IKZF3/ORMDL3 locus is associated 
with primary biliary cirrhosis, systemic lupus erythema-
tosus, systemic sclerosis, Type 1 diabetes autoantibodies, 
type 1 diabetes, ulcerative colitis, Crohn’s disease, inflam-
matory bowel disease and rheumatoid arthritis (Hindorff 
et  al. 2011) (Fig.  3c and Fig. S2 in Supplementary mate-
rial 1). Seven SNPs detect the associations, but none are 
AS-SNPs. However, they are in LD with four AS-SNPs: 
AS-SNPs rs4065275 and rs8076131 separated by 47  bp 
at one regulatory element, AS-SNP rs2305479 resid-
ing 18 kb away and to AS-SNP rs12936231 (Table S8 in 
Supplementary material 1) located a further 33  kb away 
at another element (Verlaan et al. 2009). Our data suggest 
that the AS-SNPs, all detected in the B cell GM12878, are 
good candidates to drive the association and that they may 
influence the expression of IKZF3 which is important for 
B lymphocyte proliferation and differentiation or ORMDL3 
involved in sphingolipid synthesis. The pattern that several 
GWAS-SNPs are associated with the same AS-SNP and 

that several AS-SNPs are detected at one locus is found in 
many other instances (Fig.  3b). This suggests that SNPs 
at distinct regulatory elements could regulate the activ-
ity of the same gene, which is supported by recent data 
(Corradin et al. 2014). To test if AS-SNPs are enriched in 
super-enhancers we obtained a collection of ~60,000 super-
enhancers (dbSUPER, http://bioinfo.au.tsinghua.edu.cn/
dbsuper/index.php) defined per cell line and intersected 
them with our collections of AS-SNPs or random sets of 
selected non-AS-SNPs (Fig. S4 in Supplementary mate-
rial 1). We found a higher fraction of super-enhancers to 
contain AS-SNPs than what would be expected by chance 
(P = 2 × 10−5).

An AS‑SNP regulates SYNGR1, a candidate 
for rheumatoid arthritis and primary biliary cirrhosis

Recently, rs909685 was associated with rheumatoid 
(Okada et al. 2014) and primary biliary cirrhosis (Liu et al. 
2012). The eSNP rs2069235 is in high LD with the GWAS/
AS-SNP rs909685 and associated with the expression of 
SYNGR1, coding for a membrane protein associated with 
presynaptic vesicles in neuronal cells and also expressed 
in B- and other immune cells. To validate the results from 
GM12878, we purified B cells from blood donors who had 
been genotyped using a 200  K ImmunoChip. The cells 
were either treated with medium only (mock) or stimulated 
with the oligonucleotide ODN2216 (see “Materials and 
methods”), which activated the TF EBF1 (Fig. 4a). ChIP-
seq has shown that EBF1 binds to the regulatory element 
that harbors the GWAS/AS-SNP rs909685. B cells from 
donors who are homozygous, AA or TT for the alleles, 
respectively, at this locus showed significant difference 
in activity of SYNGR1 (Fig. 4b, lower panel). Stimulation 
with ODN2216, which increases the levels of EBF1, sig-
nificantly decreased the expression of SYNGR1 for both 
genotypes (Fig.  4b, lower panel). rs909685 disrupts the 
motif for PITX3 which is known to interact with NURR1, 
a factor involved in the regulation of cortisol which sug-
gests a link to inflammatory processes (Mages et al. 1994). 
This indicates that SYNGR1 is controlled by the regulatory 
element with the AS-SNP rs909685 giving an allelic differ-
ence in expression at basal conditions and that EBF1 acts 
as a repressor to decrease the expression from both alleles. 
Furthermore, it suggests that differential expression of 
SYNGR1 could mediate the genetic predisposition to rheu-
matoid arthritis and primary biliary cirrhosis at this locus.

An AS‑SNP regulates psoriasis and rheumatoid 
arthritis candidate gene COG6

A GWAS has shown that rs7993214 is associated with 
psoriasis (Liu et  al. 2008) and rs9603616 to rheumatoid 

http://bioinfo.au.tsinghua.edu.cn/dbsuper/index.php
http://bioinfo.au.tsinghua.edu.cn/dbsuper/index.php
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arthritis (Okada et al. 2014). The GWAS-SNPs rs7993214 
and rs9603616 are in high LD with each other and with the 
AS-SNP rs9603612 which is located at a regulatory ele-
ment bound by EBF1 in GM12878. Purified B cells from 
blood donors, homozygous, CC or GG, for the alleles at 

rs9603612 were stimulated with ODN2216 and we deter-
mined the expression of the psoriasis candidate gene 
COG6. A donor homozygous for the G allele had signifi-
cantly higher expression than the one homozygous for C. 
In the cells stimulated with ODN2216, the expression of 

Fig. 4   Functional effects of AS-SNPs in primary B cells. a Stimu-
lation of B cells with the oligonucleotide ODN2216 increases the 
expression of TF EBF1. b Top rs909685 is a GWAS-SNP with AS 
behavior detected by EBF1 ChIP-seq reads. rs909685 is in LD with 
the eQTL SNP rs2069235 which is associated with the expression 
of the SYNGR1 gene. Bottom SYNGR1 expression in an individual 
homozygous for the A- or T-allele, respectively, at rs909685, unstim-
ulated (blue) or stimulated with ODN2216 (yellow). Middle motif 

for PITX3 at rs909685 which alters the TF-binding motif. c Top AS-
SNP rs9603612 is located in an intron of COG6 and is in LD with the 
GWAS-SNP rs7993214. rs9603612 showed AS behavior with EBF1 
ChIP-seq reads covering the SNP with significant difference. Bot-
tom expression of COG6 in an individual homozygous for the C- and 
G-alleles, respectively, of rs9603612, unstimulated (blue) or stimu-
lated with ODN2216 (yellow). Middle motif for CREB1 at rs9603612 
which alters the TF-binding motif
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COG6 increased significantly for both genotypes (Fig. 4c, 
lower panel). This indicates that COG6 is differentially 
expressed depending on the allele at rs9603612 and that 
EBF1 regulates the activity of both alleles. Homozygous 
mutations in COG6 cause Shaheen syndrome with hyper-
keratosis of the palms and soles, hypohidrosis, intellectual 
disability and dental enamel hypoplasia. Patients with pso-
riasis also have hyperkeratosis resulting in scaly patches 
over the body, in the palms of the hands and soles of the 
feet. The AS-SNP rs9603612 is located in a motif for 
CREB1, which is activated in psoriatic lesions (Funding 
et al. 2007). The data thus suggest that the risk of develop-
ing psoriasis is mediated by the regulatory element with the 
functional SNP rs9603612 leading to differential activity of 
COG6.

Discussion

Most variants associated with common diseases are in 
non-coding DNA and enriched in regulatory DNA (Mau-
rano et  al. 2012). Many AS variants have been detected 
using reads from DHS analysis (Maurano et  al. 2015) 
and were predicted to be caused by AS TF binding. As a 
complementary approach in this study, we present candi-
date functional SNP variants detected using the biased TF 
allele binding in ChIP-seq data. ChIP-seq reads generated 
for TFs in four different cell lines from the ENCODE pro-
ject were analyzed to identify cell-specific collections of 
AS-SNPs. This makes a significant addition to the collec-
tion of SNPs with AS chromatin signals. One incentive for 
the study was to define candidate variant drivers of GWAS 
signals and we identified 141 AS-SNPs meeting the crite-
ria. Based on the detailed validations of two SNPs asso-
ciated with rheumatoid arthritis/primary biliary cirrhosis 
and psoriasis, we believe that many others are worth fur-
ther study. These efforts will make it possible, not only to 
validate the regulated gene, but also to connect the disease 
process to upstream regulatory pathways. This will provide 
a more holistic approach to the understanding of disease 
processes and help to remove the current bottleneck in the 
process of translating GWAS signals to functional disease 
mechanisms.

Most of the detected AS-SNPs are located in distal reg-
ulatory elements and are candidates to regulate a nearby 
gene, while 17  % are located in promoters. Recent stud-
ies have indicated the presence of chromatin domains with 
associated signals between SNPs (Waszak et  al. 2015; 
Grubert et al. 2015), but across the genome, Waszak et al. 
(2015) detected 14,559 domains, of which only 25 % were 
larger than 70  kb. Correlation of allelic bias in adjacent 
SNPs was also found (Maurano et al. 2015) with the same 
conclusion that most correlations are present in regions 

with sizes of regulatory elements and only a small frac-
tion extending over 10 kb. This indicates that at a (small) 
fraction of regions, the AS-SNPs we detect may be corre-
lated to other functional variants which are the drivers of 
chromatin signals. In B cells, we found 446 AS-SNPs that 
are eQTL SNPs or are in high LD with such SNPs and we 
regard them as candidates to drive the eQTL. This does not 
exclude the possibility that many of the other AS-SNPs 
may be associated with gene expression variation. A recent 
study in mice (Crowley et al. 2015) suggests that more than 
80 % of mouse genes have cis-regulatory variation. Stud-
ies in man have been performed on small sample sets and 
therefore underpowered to detect the weak effects, so more 
associations remain to be found as studies increase, e.g., in 
the GTEx consortium.

Recent data have shown a high number of rare variants 
in people and the idea is that some of them are functional, 
and that evolution has not had time to remove them from 
the population (Keinan and Clark 2012). Exome sequenc-
ing has been performed in large disease cohorts and con-
trols and only a low number of rare coding variants have 
been associated with disease, indicating that they do not 
have a large impact on disease risk in the population (Fu 
et  al. 2013). We found a high number of candidate func-
tional AS-SNPs that are rare in the population, which can 
be compared to 53–80 predicted candidate functional vari-
ants per person, most of them rare, in the coding sequence 
(Li et al. 2015; Fu et al. 2013). We have just studied four 
cell types from one person each, so if all different cells 
in the human organism would be analyzed, the number of 
rare candidate-regulatory variants would increase and even 
more outnumber the rare candidate functional coding vari-
ants. We observed a significantly higher difference in G1/
G2 read counts at rare AS-SNPs as compared to common 
ones, which suggests that rare AS-SNPs may have a large 
functional effect. This is consistent with findings from 
eQTLs in B cells (Lappalainen et  al. 2013), showing that 
low-frequency alleles have a large effect on expression. It 
is therefore possible that rare variants in regulatory regions 
frequently contribute to common disease risk. This possi-
bility has been difficult to study since the correct functional 
regulatory element needs to be investigated; however, the 
data we now present points to a collection of candidate reg-
ulatory sequences.

If rare variants act on regulatory elements in the fre-
quencies we detect, it would add heterogeneity and noise 
to association studies. Rare variants are often specific to an 
ethnic group, and in one population a set of rare variants 
may be associated with one common variant on a haplo-
type, whereas in another population there may be one or 
more rare variants associated with another common SNP. 
Consequently, different GWAS and eQTL studies may 
find the strongest signals to different common SNPs on the 
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same haplotype that has one or more common functional 
variant(s). This is consistent with the fact that GWAS stud-
ies often find the strongest association to alternative SNPs 
and with our finding that several GWAS-SNPs at a locus 
often show association to one or a few AS-SNPs (Fig. 3). 
The missing heritability has been much debated over the 
years. Rare variants are generally not found in GWAS stud-
ies and often even filtered out in quality control steps. If 
rare variants contribute to common diseases in the numbers 
that we detect them, they may change the proportion of the 
explained heritability. Not only are they frequent, but their 
allele-specific effect may be larger than for common ones; 
so combined, this may explain a part of the missing herit-
ability. We are approaching an era when GWAS studies will 
be based on whole genome sequencing, thus making it pos-
sible to evaluate the contribution of rare regulatory variants 
to common disease. In the same way, the rare variants may 
also obscure associations of gene expression and may be 
the reason why we detect many more AS-SNPs in LD with 
an eSNP, than AS-SNPs that are eSNPs.

In an attempt to minimize the proportion of false posi-
tives during the selection of AS-SNPs, we applied strong 
filtering and cutoffs to eliminate candidate SNPs in 
genomic regions with high repetitive content such as cen-
tromeres, telomeres and CNVs. In fact, large regions were 
inaccessible for analysis due to CNVs and large chromo-
somal abnormalities, limiting the number of AS-SNPs 
that could be detected. In future projects to find candi-
date regulatory SNPs, care should be exercised to use cell 
lines without gross structural rearrangements. The number 
of detected AS-SNPs depends on the number of reads at 
each allele and in this data set it was limited by the type 
of data generated in ENCODE. We propose that a project 
optimized to search for AS-SNPs should improve power by 
using long paired-end reads to sequence the whole ChIP-
enriched DNA fragment and by generating a high number 
of reads.

Our results indicate that it is possible to predict which 
TFs will detect most AS-SNPs in a cell or tissue, which 
has not been analyzed before. Starting with the TFs that 
are expressed in the cell or tissue, one can select those 
that are shared between two or more of the cells in this 
study and add pioneer factors and others with verified cen-
tral importance to the cell. As described, ChIP-seq of 20 
selected TFs from the cells studied here or 20–30 TFs for 
new cells or tissues is a powerful way to find a large col-
lection of common AS-SNPs. By repeating the experiment 
in samples from three to ten people, the most common pol-
ymorphisms in the human population can be interrogated 
for allele-specific binding. This strategy can be used to 
find more candidate functional variants. Rare variants are, 
as always, harder to study. They will be detected in whole 
genome sequencing, but their functional effect may need to 

be studied by large-scale functional tests (Kheradpour et al. 
2013) or by computer modeling.

Conclusions

Drivers of GWAS signals in non-coding regions are 
located in gene-regulatory elements and result in differ-
ence in TF binding between alleles. We have screened for 
such events in four cell types and found a large number 
of candidate functional variants. Those in LD r2 > 0.8 in 
relation to reported SNPs for traits and expression were 
identified resulting in hundreds of potential genetic driv-
ers. Experimental validation supports SNPs in B cells 
that explain psoriasis, rheumatoid arthritis and primary 
biliary cirrhosis. As many as 16  % of functional can-
didates are rare with AF  <1  %. If we assume that they 
contribute to common disease to the same degree as com-
mon variants, they may explain why GWAS signals differ 
between populations and may contribute to the missing 
heritability.
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