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history of colorectal polyps, as we hypothesized that their 
inclusion reduces power to detect associations. This is sup-
ported empirically and through simulations. Two-phase 
GWAS analysis was performed in a total of 16,517 cases 
and 14,487 controls. We identified rs17094983, a SNP 
associated with risk of CRC [p = 2.5 × 10−10; odds ratio 
estimated by re-including all controls (OR) = 0.87, 95 % 
confidence interval (CI) 0.83–0.91; minor allele frequency 
(MAF) = 13 %]. Results were replicated in samples of 
African descent (1894 cases and 4703 controls; p = 0.01; 
OR = 0.86, 95 % CI 0.77–0.97; MAF = 16 %). Gene 
expression data in 195 colon adenocarcinomas and 59 

Abstract Over 50 loci associated with colorectal cancer 
(CRC) have been uncovered by genome-wide association 
studies (GWAS). Identifying additional loci has the poten-
tial to help elucidate aspects of the underlying biological 
processes leading to better understanding of the pathogen-
esis of the disease. We re-evaluated a GWAS by exclud-
ing controls that have family history of CRC or personal 

M. Lemire and C. Qu contributed equally to this work.

Electronic supplementary material The online version of this 
article (doi:10.1007/s00439-015-1598-6) contains supplementary 
material, which is available to authorized users.

 * Mathieu Lemire 
 mathieu.lemire@oicr.on.ca

 Conghui Qu 
 cqu@fredhutch.org

 Lenora W. M. Loo 
 lloo@cc.hawaii.edu

 Syed H. E. Zaidi 
 hassan.zaidi@oicr.on.ca

 Hansong Wang 
 hwang@cc.hawaii.edu

 Sonja I. Berndt 
 berndts@mail.nih.gov

 Stéphane Bézieau 
 stephane.bezieau@univ-nantes.fr

 Hermann Brenner 
 h.brenner@dkfz.de

 Peter T. Campbell 
 Peter.Campbell@cancer.org

 Andrew T. Chan 
 achan@mgh.harvard.edu

 Jenny Chang-Claude 
 j.chang-claude@dkfz.de

 Mengmeng Du 
 mdu@fredhutch.org

 Christopher K. Edlund 
 cedlund@usc.edu

 Steven Gallinger 
 Steven.Gallinger@uhn.on.ca

 Robert W. Haile 
 rhaile@stanford.edu

 Tabitha A. Harrison 
 tharriso@fredhutch.org

 Michael Hoffmeister 
 m.hoffmeister@dkfz.de

 John L. Hopper 
 j.hopper@unimelb.edu.au

http://crossmark.crossref.org/dialog/?doi=10.1007/s00439-015-1598-6&domain=pdf
http://dx.doi.org/10.1007/s00439-015-1598-6


1250 Hum Genet (2015) 134:1249–1262

1 3

normal colon tissues from two different studies revealed 
that this locus has genotypes that are associated with RTN1 
(Reticulon 1) expression (p = 0.001), a protein-coding gene 
involved in survival and proliferation of cancer cells which 
is highly expressed in normal colon tissues but has signifi-
cantly reduced expression in tumor cells (p = 1.3 × 10−8).

Introduction

Genome-wide association studies (GWAS) have been suc-
cessful at identifying germline common variations associated 
with the risk of developing colorectal cancer (CRC). Success 
of the genome-wide design has been driven mainly by large 
international collaborative efforts to pool resources and sam-
ples to produce large datasets of tens of thousands of cases 
and controls, to help identify genetic risk factors that only 
had moderate associated risks. Over 50 genetic risk variants 
have been identified thus far (Al-Tassan et al. 2015; Broder-
ick et al. 2007; Cui et al. 2011; Dunlop et al. 2012; Houlston 
et al. 2008, 2010; Jaeger et al. 2008; Jia et al. 2013; Peters 
et al. 2012, 2013; Schmit et al. 2014; Schumacher et al. 2015; 
Tenesa et al. 2008; Tomlinson et al. 2007, 2008, 2011; Wang 
et al. 2014; Whiffin et al. 2014; Zanke et al. 2007; Zhang et al. 
2014), with odds ratio typically in the range 1.10–1.25 and 
minor allele frequencies typically no less than ~10 % (partly 
by design of genotyping arrays). Once the low-hanging fruits 

have been picked, the design becomes more challenging since 
the discovery of additional variants with smaller effect or 
lower allelic frequency may require increasing the sample size 
by an order of magnitude. Although not as informative from 
a public health perspective, these additional, undiscovered 
variants still have the potential to help elucidate parts of the 
pathobiology.

The American Cancer Society and the US Multi-Society 
Task Force on Colorectal Cancer recommend early detec-
tion testing starting at 40 years of age for those with a fam-
ily history of CRC, given their higher risk of developing 
tumors (Read and Kodner 1999; Levin et al. 2008; Lieber-
man et al. 2012). The lifetime increase in risk in those with 
a family history of CRC is about twofold (Slattery et al. 
2003), partly due to shared genes and/or shared environ-
ment with the affected relative (Lichtenstein et al. 2000). 
Because they share the genome and the genetic risk back-
ground of their affected relative, the inclusion of controls 
with a family history of CRC may reduce the power to 
detect a genetic association with the disease in a case–con-
trol study. By excluding these controls from the study, we 
show that power can be increased even if the sample size 
is reduced. Moreover, we argue with empirical evidence 
that excluding controls that were diagnosed with colorec-
tal (CR) polyps (potential precursors of tumors), when such 
a diagnostic is available, may also lead to an increase in 
power. This allows for a re-evaluation of GWAS without 
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the need to increase the sample size or genotype additional 
samples.

Materials and methods

Sample description and genotyping

The cases and controls included in the present GWAS 
consist of a subset of samples that were collected across 
multiple study centers, within the Genetics and Epide-
miology of Colorectal Cancer Consortium/Colon Can-
cer Family Registries (GECCO/CCFR) (Peters et al. 
2013). As a result of simulation-based power calcu-
lations and empirical observations, we attempted to 
increase the power to detect an association by exclud-
ing controls with a positive family history and controls 
that were diagnosed with CR polyps. Status of CR pol-
yps was self-reported from answering questions such as 
“has a doctor ever told you that you had polyps in your 
large bowel or colon or rectum?”. Table 1 describes the 
sample sizes of each study, before and after exclusion 
of controls and the genotyping platform used in each. 
Replication of initial results from GECCO/CCFR was 
attempted in samples from 6 studies from the Colorec-
tal Cancer Transdisciplinary Study (CORECT) (Wang 

et al. 2014) (Table 1). Genome-wide significant results 
were then analyzed in samples of African ancestry [1894 
cases (49.6 % females; mean age 67.9) and 4703 con-
trols (35.2 % females; mean age 61.6)] and of Japanese 
ancestry [2627 cases (42.1 % females; mean age 65.3) 
and 3797 controls (45 % females; mean age 64.7)] to 
evaluate trans-ethnic effects of the SNPs. These samples 
were genotyped using Illumina 1 M-Duo, 660 W-Quad 
or Omni 2.5 M depending on the center (see Wang et al. 
2014 for details).

Statistical power comparison

To confirm that the exclusion of controls with a positive 
family history of CRC would not lead to a reduction, but 
rather an increase in power, we performed a simulation 
study. We simulated the segregation of a susceptibility 
SNP in nuclear families. Sibship size followed a Poisson 
distribution with mean 3.5 sibs. One susceptibility SNP 
was simulated with varying allele frequency and rela-
tive risk (with risk alleles acting multiplicatively on the 
risk). The segregation of alleles in the nuclear families 
and the simulation of the disease state of all family mem-
bers were performed using SLINK (Schäffer et al. 2011). 
Lifetime risk of the simulated disease was fixed at 5 % 
(Siegel et al. 2014). 11,800 cases and 14,300 controls 

 Thomas J. Hudson 
 tom.hudson@oicr.on.ca
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(the approximate sample size of all samples in GECCO/
CCFR) were randomly selected among all affected and 
unaffected individuals, respectively. Once an individual 
was selected, all other members of the nuclear family 
became ineligible to enter the case–control sample. Hav-
ing a family history of the simulated disease was defined 
as having at least one first-degree affected relative (sib 
or parent). For each combination of allele frequency and 
effect size, 400 replicates were assessed for association 
between the simulated SNP and the disease status using 
a simple allelic Chi-square test (–assoc command in 
PLINK; Purcell et al. 2007), before and after exclusion 
of the controls with a positive family history. Power was 
estimated from the proportion of replicates reaching sig-
nificance p < 5 × 10−8.

Genome‑wide association analysis

Imputation to HapMap2 Release 24 was performed using 
MACH for all studies, with the exception of OFCCR, 
which was imputed to HapMap Release 22 using BEA-
GLE. Log-additive models were fit and adjusted for age, 
sex, center, batch effect (in the ASTERISK study), smoking 
status (in the PHS study), and the first 3 principal compo-
nents on study level (using HapMap-imputed data). Repli-
cation was attempted in CORECT for the SNPs with meta-
analysis p < 10−5 in GECCO/CCFR.

RNA expression studies

Two sample sets were used to assess the association 
between a SNP and expression of genes within a 2 Mbp 

window centered at the SNP position. Both studies evalu-
ated gene expression in colon adenocarcinomas and normal 
colon tissues.

The first study (TCGA) consists of data from 155 
colon adenocarcinomas and 19 normal colon tissues 
(from a total of 162 distinct donors: 12 matched tumor 
and normal adjacent pairs are included) from The Can-
cer Genome Atlas (TCGA; downloaded from CG Hub: 
https://cghub.ucsc.edu/). These samples have gene 
expression data derived from an Agilent 244 K Custom 
Gene Expression Array and genotypes derived from 
Affymetrix Genome-Wide Human SNP 6.0 Array. We 
used Level 3 expression data, which consists of normal-
ized signals and expression calls per gene, per sample. 
Genotype data were obtained under approved access. We 
compared the genotype calls between tissues of the same 
donors. A patient was excluded if he or she presented dis-
cordant homozygous genotype calls at >1 % of homozy-
gous markers (heterozygous genotypes were ignored 
because of the potential for loss of heterozygosity in 
tumors). The SNP data was analyzed with the –homozyg 
command in PLINK to identify regions with loss of het-
erozygosity (LOH); gene expression values in samples 
displaying LOH in the gene interval were ignored in 
analyses.

The second study (CCFR) consists of data from 40 
tumors and 40 paired adjacent normal tissues from 40 
participants enrolled in CCFR, with gene expression data 
derived from the Affymetrix GeneChip Human Exon 
1.0 ST Array and genotype data derived from Affymetrix 
Genome-Wide Human SNP 6.0 Array. This set of tumor/
normal samples has been used in an eQTL (expression 
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Table 1  Sample sizes

Studies Genotyping 
platforms

Cases Controls Controls without CR polyps 
or FH

Controls in 
analysis

Controls 
in analysis 
(%)

N Fem 
(%)

Age range N Fem (%) Age range N Fem (%) Age range

GECCO studies

 ASTERISKIllumina 300 K 892 38 41–99 947 45 40–97 NA 947a 100

 CCFR set I Illumina 1 M, 
1 M-Duo, 
Omni1

1171 48 15–79 980 52 19–74 829 53 19–74 829 85

 Colo2&3 Illumina 300 K 87 46 38–85 125 44 40–86 96 48 40–86 96 77

 DACHS 
Set I

Illumina 300 K 1710 41 33–94 1708 40 34–98 1254 41 34–98 1254 73

 DACHS 
set II

Illumina Omni-
Express

666 39 35–92 498 35 35–99 348 36 35–99 348 70

 DALS set I Illumina 
550 K/610 K

706 43 30–78 710 44 28–79 570 45 28–78 570 80

 DALS Set 
II

Illumina 300 K 410 47 30–78 464 48 29–78 389 48 29–78 389 84

 HPFS set I Illumina Omni-
Express

227 0 48–82 230 0 48–81 178 0 48–81 178 77

 HPFS set II Illumina Omni-
Express

176 0 48–82 172 0 48–83 141 0 48–83 141 82

 MEC Illumina 300 K 328 46 45–76 346 47 45–76 247 49 45–76 247 71

 NHS set I Illumina Omni-
Express

391 100 44–69 774 100 44–69 659 100 44–69 659 85

 NHS set II Illumina Omni-
Express

158 100 44–69 181 100 44–69 160 100 44–69 160 88

 OFCCR Affymetrix 
100 K/500 K

650 59 33–77 522 43 29–77 284 40 33–77 284 54

 PHS set 
I + II

Illumina Omni-
Express

375 0 40–83 389 0 40–84 NA 389a 100

 PMH Illumina 300 K 280 100 48–73 122 100 48–73 84 100 48–73 84 69

 PLCO set I Illumina 
550 K/610 K

533 43 55–74 1976 22 55–74 1610 22 55–74 1610 81

 PLCO set 
II

Illumina 300 K 486 43 55–75 415 42 55–75 343 42 55–75 343 83

 VITAL Illumina 300 K 285 47 51–76 288 48 50–76 201 50 51–76 201 70

 WHI set 
I + hip 
fracture

Illumina 
550 K/610 K

470 100 50–79 1528 100 50–79 953 100 50–79 953 62

 WHI Set II Illumina 300 K 1006 100 50–79 1,010 100 50–79 644 100 50–79 644 64

 HPFS Adv 
Adnm

Illumina Omni-
Express

313 0 48–81 345 0 48–80 301 0 48–80 301 87

 NHS Adv 
Adnm

Illumina Omni-
Express

513 100 44–69 578 100 44–69 496 100 44–69 496 86

 Total 11833 14308 9787 11123 78

CORECT studies

 CCFRb Illumina 1 M, 
1 M-Duo, 
Omni1

1245 51 20–88 1028 54 20–88 768 54 20–88 768 75

 CPS II Affymetrix 
Axiom

548 50 48–84 537 48 49–84 423 52 49–84 423 79

 MCCS Affymetrix 
Axiom

538 49 40–76 469 48 40–70 469 48 40–70 469 100
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quantitative trait loci) study of previously published GWAS 
loci for CRC (Loo et al. 2012).

Differential expression was assessed using a non-para-
metric Wilcoxon rank-sum test when comparing two fac-
tors, or a Kruskal–Wallis rank-sum test when comparing 
three factors.

Results

Controls with a family history or CR polyps potentially 
reduce power to detect association

As a proof of concept that power may be reduced when includ-
ing controls with a positive family history of CRC in a case–
control study, we evaluated a genetic risk score in GECCO by 
counting the number of risk alleles that an individual possessed 
across 36 SNPs identified by GWAS, after pruning those in LD 
(Al-Tassan et al. 2015; Broderick et al. 2007; Cui et al. 2011; 
Dunlop et al. 2012; Houlston et al. 2008, 2010; Jaeger et al. 
2008; Jia et al. 2013; Peters et al. 2012, 2013; Schumacher et al. 
2015; Tenesa et al. 2008; Tomlinson et al. 2007, 2008, 2011; 
Wang et al. 2014; Whiffin et al. 2014; Zanke et al. 2007; Zhang 
et al. 2014). The distribution of this genetic risk score was strati-
fied by disease status and family history. Figure 1 shows that 
controls with a family history of CRC have genetic risk scores 
that are intermediate between that of cases and family-history-
negative controls, indicating that controls with a family history 
share some genetic risk with their affected first-degree relatives.

Simulation-based power calculations support the strat-
egy of excluding controls with a family history of CRC: 
across a wide spectrum of allele frequencies and relative 
risks, Supplementary Table S2 indicates a gain in statistical 

power even though the number of controls is reduced by 
over 20 %. This motivated exclusion of controls with a pos-
itive family history.

Family history is a feature that can easily be simulated, 
through specification of penetrances (including phenocop-
ies), segregation of alleles or shared environmental vari-
ables, and ascertainment. For other traits or features—such 
as diagnosis of CR polyps in controls, it can be hypothe-
sized that power may be reduced from inclusion of sam-
ples that display them. However, these traits may not be 
straightforward to incorporate in an assessment of power; 

Table 1  continued

Studies Genotyping 
platforms

Cases Controls Controls without CR polyps 
or FH

Controls in 
analysis

Controls 
in analysis 
(%)

N Fem 
(%)

Age range N Fem (%) Age range N Fem (%) Age range

 MECC Affymetrix 
Axiom

1120 50 25–98 820 50 27–95 656 48 27–95 656 80

 Kentucky Affymetrix 
Axiom

1038 51 20–87 1134 51 42–93 689 51 42–93 689 61

 Newfound-
land

Affymetrix 
Axiom

195 38 36–76 477 41 20–73 359 43 20–73 359 75

 Total 4684 4465 3364 3364a 75

Grand total 16517 18773 13151 14487 77

Sample size of studies included in the genome-wide association study (CEGGO/CCFR) and replication study (CORECT)

NA information not available, FH family history of CRC, Fem females
a Controls with missing family history information were treated as having no family history due to high rate of missing data
b Excludes samples in GECCO CCFR Set I

Fig. 1  Count of risk alleles. Boxplot representation of the total count 
of risk alleles in cases and controls, stratified on family history (FH)
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interpretation would only be as good as the underlying 
model linking the trait (say, presence of CR polyps) to the 
likelihood of developing the disease. For these traits, strat-
ifying the risk score, as was done for family history, can 
provide insights. Similar to family history-based stratifi-
cation, Supplementary Figure S1 shows that controls that 
were previously diagnosed with CR polyps have a genetic 
risk score intermediate to that of cases and other controls. 
Because the diagnosis of CR polyps is correlated with fam-
ily history of CRC, Supplementary Figure S1 only focuses 
on samples without a family history. Based on this empiri-
cal evidence and the results from simulations described 
above, we excluded from this analysis controls that have a 
family history and/or controls diagnosed with CR polyps.

Genome‑wide association study and replication

Samples in the discovery phase of this study, which were 
collected across multiple study centers within GECCO/

CCFR, were analyzed after exclusion of controls with 
a family history of CRC or diagnosis of CR polyps. Of 
note, among the centers that sampled both sexes, female 
controls were more likely to have reported a family his-
tory of CRC than males (fixed effect model: OR = 1.31; 
p = 0.0006) and less likely to have reported CR polyps than 
males (OR = 0.65; p = 2 × 10−8). Control individuals who 
reported family history were slightly older than those who 
did not (mean of 64.06 years compared to 63.49; p = 0.011, 
adjusted for center). In contrast, control individuals who 
reported polyps were substantially older than those who did 
not (mean of 65.9 years compared to 63.3; p < 10−8).

Association results between genetic variants and risk of 
developing CRC in the resulting samples are graphically 
summarized in the Manhattan plot depicted in Fig. 2. The 
inflation factor (λ = 1.019) is comparable to the one calcu-
lated when no controls are excluded (λ = 1.021; Fig. 2b, c).

Replication was attempted in samples from CORECT 
for SNPs that reached significance at p < 10−5 in the 

Fig. 2  Association results. a Manhattan plot of results in GECCO/
CCFR. Controls with family history and/or polyps are excluded from 
the analysis. Each dot represents a SNP plotted on the x axis rela-
tive to its position in the genome, whose level of significance is rep-
resented on the y axis. Green dots represent SNPs in LD with SNPs 
identified in published GWAS for CRC. Replication in CORECT was 

attempted for SNPs with p < 10−5 (blue horizontal line). The red hor-
izontal line indicates p = 5 × 10−8; b quantile–quantile plot of p val-
ues in (a), on the negative log scale. λ is the inflation factor (the ratio 
of observed to expected median); c quantile–quantile plot of p values 
when no controls are excluded from the analysis
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discovery phase. Supplementary Table S3 shows results for 
these SNPs in both phases of the study after pruning for 
linkage disequilibrium (LD) (reporting the most significant 
SNP among SNPs with r2 > 0.5).

One SNP, rs17094983, reached genome-wide sig-
nificance in the meta-analysis of all studies combined 
(p = 2.5 × 10−10) with no evidence of heterogeneity 
across centers (phet = 0.97) (Supplementary Figure S2). 
The minor allele of the SNP has a frequency of 13 % and is 
inversely associated with risk; the odds ratio (estimated by 
re-including the controls with FH or CR polyps, to elimi-
nate the effect of the selection bias) is OR = 0.87 (95 % 
confidence interval 0.83–0.91; p = 4.7 × 10−9) compared 
to OR = 0.85 when these controls are excluded (Supple-
mentary Figure S2). To evaluate trans-ethnic associations 
for that SNP, we first note that rs17094983 is monomor-
phic in populations of Asian ancestry according to the 1000 
Genomes project, and it has thus not been observed in the 
samples of Japanese descent; this also has been reported 
elsewhere (Peters et al. 2013). In samples of African 
descent, the SNP replicated (p = 0.01) with a minor allele 
frequency of 16 % and a consistent effect size (OR = 0.86, 
95 % confidence interval 0.77–0.97).

Genes and transcripts in the region surrounding 
rs17094983 are illustrated in Fig. 3.

Study of expression quantitative trait loci

In the 2Mbp window centered on rs17094983, The Can-
cer Genome Atlas (TCGA) includes expression data on 
11 transcripts: ACTR10, ARID4A, JKAMP (C14orf100), 
C14orf37, DAAM1, DACT1, GPR135, KIAA0586, 
PSMA3, RTN1 and TIMM9. Figure 4 and Supplementary 
Figures S3–S12 show expression values of these genes 
in normal colon tissues and tumors as well as expression 

values in tumors stratified by genotypes at 3 SNPs in high 
LD with rs17094983 (which is not part of the Affymetrix 
6.0 array available from TCGA): rs17094971 (r2 = 0.81 
with rs17094983, calculated from the EUR samples of 
the 1000 Genomes Project), rs1432096 (r2 = 0.80) and 
rs710005 (r2 = 0.54). RTN1 (Fig. 4) displays lower expres-
sion in tumors than in normal tissue and is the transcript 
that shows the most differential expression in the region 
(p = 1.3 × 10−8; based on a non-parametric Wilcoxon 
test). Notably, of the transcripts targeted by the expression 
array, RTN1 is among the genes with the highest average 
expression across normal colon tissues: only 13 % of tran-
scripts in the genome have expression values higher than 
that of RTN1. In tumors, eQTL analyses reveal that RTN1 
shows differential expression between genotypes of both 
rs1432096 (p = 0.022; based on a non-parametric Kruskal–
Wallis test) and rs710005 (p = 0.0013), the latter being sta-
tistically significant even after accounting for the 33 eQTL 
combinations (SNP-transcript expression) that we tested 
[false discovery rate (FDR) = 4.2 % for rs710005]. It is, 
however, the SNP with the weakest LD with rs17094983. 
Expression values for the heterozygous genotypes are ele-
vated compared to values for the common homozygous 
genotypes (homozygous for the apparent “risk” allele); this 
direction of association is consistent with the minor allele 
being inversely associated with risk, as normal tissue shows 
higher expression of RTN1. The number of normal tissues 
(n = 15) is too small to draw meaningful conclusions from 
eQTL analyses. No other transcript is associated (after 
accounting for multiple testing) with any of these SNPs 
(Supplementary Figures S3–S12).

We sought to replicate RTN1 expression association 
results from TCGA using data from 40 normal colon tis-
sues and 40 matched tumors from CCFR. Consistent with 
the TCGA data, RTN1 shows significantly lower expression 
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in tumors compared to normal tissues (p = 1.1 × 10−8) 
(Fig. 5a). When stratified on genotypes, RTN1 expres-
sion levels show patterns of associations that are in the 
same direction as seen in the TCGA data, in both normal 
colon tissues [p = 0.041 for rs1432096 (r2 = 0.80 with 
rs17094983); Fig. 5] and tumors (p = 0.041 for rs1432096; 
Supplemental Figure S13), suggesting that heterozygous 
individuals tend to show higher expression of RTN1 than 
common homozygous individuals, irrespective of whether 
the colon cells are normal or malignant.

Discussion

We describe a strategy to re-evaluate GWAS data that 
may facilitate identification of additional genetic risk 

variants at genome-wide significance levels without 
necessitating an increase in sample size. By exclud-
ing controls with a family history of the disease from 
a case–control study (or other features that may poten-
tially make controls more likely to possess genetic risk 
factors for the disease under study—such as diagnosis of 
CR polyps, potential precursors of tumors of the colon) 
power can be increased. This also has implications for 
study design.

We report an association between SNPs at 14q23.1 and the 
risk of developing CRC. rs17094983 was mentioned in a pub-
lished GWAS (Peters et al. 2013) for CRC but did not reach 
genome-wide significance (reported p < 3 × 10−6). The present 
study confirms the association at genome-wide significance 
levels. We show that genotypes of SNPs in high LD with it are 
significantly associated with expression of RTN1 (Reticulon 1), 
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a protein-coding gene highly expressed in normal colon cells 
whose expression is substantially reduced in colon tumor cells.

The RTN1 gene produces three transcripts, which encode 
for the RTN1-A, RTN1-B, and RTN1-C proteins. The expres-
sion values that we presented were derived from probes that 
are targeting exons present in all three transcripts; there were 
no probes specific to a single transcript. These proteins are 
members of highly conserved reticulons, which are localized 
in the endoplasmic reticulum (ER). Reticulons show pro-
apoptotic activity via the induction of ER stress (Kuang et al. 
2005; Di Sano et al. 2007). The mechanisms by which RTN1 
exerts its effects are not well understood. RTN1-A has been 
recently described as a mediator of chronic kidney disease 
progression that promotes renal injury through ER stress 
(Fan et al. 2015). In kidney epithelial cells, RTN1-A but not 
RTN1-C interacts with PERK, an ER stress molecule that 

activates apoptotic pathway. RTN1-C is regulated by acetyla-
tion and its DNA-binding activity is required for its role as 
an inhibitor of histone deacetylases (HDAC) activity (Fazi 
et al. 2009). Inhibition of HDACs can result in hyperacetyla-
tion of proteins, which, in turn, induces apoptosis of tumor 
cells and sensitizes tumors to cell-death processes and to 
other drugs (Heerboth et al. 2014). RTN1-C overexpression 
sensitizes cancer cells to chemotherapeutic-induced apopto-
sis through p53-independent pathways (Di Sano et al. 2003). 
In androgen-dependent LNCaP prostate cancer cells, knock 
down using siRNA targeting all RTN1 transcript isoforms 
enabled androgen independent growth of these cells (Levina 
et al. 2015). Gastrointestinal stromal tumors (GISTs) with 
mutations in KIT or PDGFRA show frequent alterations of 
the 14q23.1 region, which includes the RTN1 gene (Astolfi 
et al. 2010). Moreover, the knockdown of RTN1 results in 
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increased proliferation of mutation-harboring GIST cells. 
These studies indicate that decreased expression of RTN1 
is related to survival and proliferation of cancer cells. In the 
present study, reduced expression of RTN1 in tumors and a 
further decrease in patients with risk-associated alleles are 
consistent with the abovementioned roles of RTN1 in cancer.

The strengths of this study are the large sample size and 
the increase in power to detect a genetic association, caused 
by the removal of controls with family history of CRC or per-
sonal history of CR polyps. By excluding controls that may 
share the genetic risk background of their affected relatives, 
we have increased the differences between cases and the 
remaining controls. However, the OR estimated from samples 
that underwent this selection bias does not readily generalize 
to the whole population; we thus provided an OR estimated 
from the complete sample set thereby making a distinction 
between the discovery aspects of the study and the estima-
tion of the effect size. In the present study, genome-wide 
significance was observed with or without the excluded con-
trols, due to the large sample size at hand. Excluding these 
controls, the p value was more than one order of magnitude 
smaller, consistent with higher power; for smaller studies, an 
order of magnitude difference might be all that is needed for 
additional discoveries at genome-wide significance levels.
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