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loci (eQTL) and DNase I hypertensive sites from 98 cell 
lines). We detected pleiotropy in 24 of the 35 psychiat-
ric-immune disorder pairs. The strongest pleiotropy was 
observed for schizophrenia-rheumatoid arthritis with MHC 
region included in the analysis (p = 3.9× 10

−285), and 
schizophrenia-Crohn’s disease with MHC region excluded 
(p = 1.1× 10

−36). Significant enrichment (>1.4 fold) 
of immune-related eQTL was observed in four psychiat-
ric disorders. Genomic regions responsible for pleiotropy 
between psychiatric disorders and immune disorders were 
detected. The MHC region on chromosome 6 appears to 
be the most important with other regions, such as cytoband 
1p13.2, also playing significant roles in pleiotropy. We also 
found that most alleles shared between schizophrenia and 
Crohn’s disease have the same effect direction, with sim-
ilar trend found for other disorder pairs, such as bipolar-
Crohn’s disease. Our results offer a novel bird’s-eye view 
of the genetic relationship and demonstrate strong evidence 
for pervasive pleiotropy between psychiatric disorders and 
immune disorders. Our findings might open new routes 
for prevention and treatment strategies for these disorders 
based on a new appreciation of the importance of immuno-
logical mechanisms in mediating risk of many psychiatric 
diseases.

Introduction

Psychiatric disorders are often associated with significant 
morbidity and mortality (Saha et al. 2007). The estimated 
heritability for most psychiatric disorders is moderate to 
high (40–80 %), so genetic factors play a critical role in 
their etiology (Sullivan et al. 2000; Lichtenstein et al. 2009, 
2010). In the past few years, many genome-wide asso-
ciation studies (GWAS) have been conducted to identify 
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genetic risk variants underlying psychiatric disorders (Viss-
cher et al. 2012). Despite recent progress, there is much yet 
to be discovered regarding the genetic architecture of psy-
chiatric disorders (Gratten et al. 2014).

The relationship between psychiatric disorders and 
immune disorders has intrigued researchers for decades 
(Fig. S1). There is a moderately large body of evidence that 
supports a role for immune dysfunction in the development 
of several psychiatric disorders, including early hypothesis 
like the macrophage theory of depression (Smith 1991), 
and recent findings such as the epidemiological observation 
of co-occurrence of rheumatoid arthritis (RA) and depres-
sion (Margaretten et al. 2011; Covic et al. 2012) and cross-
disorder drug effects, for example some drug for psychi-
atric disorders have anti-inflammatory properties (Walker 
2013; Muller et al. 2006). The genetic liability underlying 
these observed correlations has not been well studied, with 
the exception that recent GWAS have repeatedly identi-
fied association between SCZ and genetic variants at the 
major histocompatibility locus (MHC), which also plays an 
important role in the immune system (Schizophrenia 2014; 
Irish Schizophrenia Genomics 2012; International Schizo-
phrenia 2009). However, no strong evidence of shared 
liability was observed between Crohn’s disease (CD) and 
multiple psychiatric disorders in another study (Cross-Dis-
order 2013b). In genetics, the term pleiotropy refers to a 
one-to-many relationship between a gene or mutation and 
phenotypes (Paaby and Rockman 2013). In the GWAS era, 
pleiotropy could explain correlations among disorders, and 
may also boost statistical power to detect genetic asso-
ciations (Cross-Disorder 2013a, b; Vattikuti et al. 2012; 
Li et al. 2014; Lee et al. 2012; Andreassen et al. 2013). To 
date, pervasive pleiotropic effects have been discovered in 
autoimmune disorders (Cotsapas et al. 2011) and in psychi-
atric disorders (Gratten et al. 2014; Cross-Disorder 2013b), 
as separate classes.

Given the public health significance of these two classes 
of disorders and the treatment implications of any etiologi-
cal overlap, it is important to resolve the nature of genetic 
pleiotropy between them, to understand the underlying 
mechanisms of pleiotropy, and to identify specific genes 
and pathways driving such pleiotropy. These inquiries can 
only now be carried out because of the large amounts of 
genomic data that have become available in recent years. 
Large consortia have been formed to study many psy-
chiatric disorders and immune disorders (Schizophre-
nia 2014; Cross-Disorder 2013a, b; Tobacco Genetics 
2010; Lango Allen et al. 2010; Speliotes et al. 2010; Bar-
rett et al. 2009; Harley et al. 2008; IMSG 2007; Anderson 
et al. 2011; Franke et al. 2010). For example, the results 
from a well-powered GWAS of schizophrenia (Schizo-
phrenia 2014) provided strong evidence supporting the 
link between schizophrenia and the immune system. 

Undoubtedly, the availability of high-quality omics data 
offers us an unprecedented opportunity to revisit the nature 
of the genetic connections between psychiatric disorders 
and immune-mediated disorders. The analysis results can 
deepen our understanding of the genetic architecture of 
complex human diseases.

Our current study takes advantage of multiple omics 
data resources to obtain a bird’s-eye view of the shared 
genetic components between psychiatric disorders and 
immune disorders. To better represent those two disorder 
categories while taking the data availability into account, 
we considered five psychiatric disorders, including schizo-
phrenia (SCZ), bipolar affective disorder (BPD), autism 
spectrum disorder (ASD), attention deficit hyperactivity 
disorder (ADHD), and major depressive disorder (MDD). 
For immune-mediated disorders, we considered two 
inflammatory bowel diseases (IBDs), Crohn’s disease (CD) 
and ulcerative colitis (UC), and five other immune disor-
ders, including multiple sclerosis (MS), psoriasis (PS), 
rheumatoid arthritis (RA), systemic lupus erythematosis 
(SLE), and insulin-dependent diabetes mellitus (T1D). 
For comparisons, we also included a central nervous sys-
tem degenerative disease, Parkinson’s disease (PD), and 
five traits related to education, height, and weight. We per-
formed comprehensive genome-level analysis on psychiat-
ric disorders and immune disorders by integrating both dis-
order-specific GWAS and genomic annotations, in search 
of common genetic liability. Our results not only confirmed 
previously reported genetic regions affecting disease risk 
for both psychiatric and immune-mediated disorders, but 
also implicated many novel shared genes and pathways.

Results

Pervasive pleiotropic effects between psychiatric 
disorders and immune system disorders

Previous studies have shown extensive shared genetic 
effects among many of the five psychiatric disorders stud-
ied by the Psychiatric Genomics Consortium (PGC) (Cross-
Disorder 2013a, b) and among multiple immune system 
disorders (Cotsapas et al. 2011), separately. Consistent 
with those studies, we also observed pervasive pleiotropic 
effects among psychiatric disorders and among immune-
related disorders (Table S1). Pleiotropic effects are sig-
nificant (Bonferroni-adjusted p < 0.05) for all 21 pairs of 
immune system disorders, and for seven of the 10 pairs of 
psychiatric disorders (the exceptions being ASD-ADHD, 
MDD–ADHD, and MDD–ASD).

We then tested pleiotropic effects between psychiatric 
and immune system disorders. We first considered SCZ 
with seven immune-mediated disorders. The conditional 
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Fig. 1  Pervasive pleiotropic effects between psychiatric and 
immune system disorders. a Conditional Q-Q plot showing pleiot-
ropy between schizophrenia and 7 immune system disorders. Black 
dots represent all 1 219 805 SCZ GWAS SNPs while the other 7 
colored dots represent different subsets of SNPs selected from the 
corresponding immune system disorder GWAS whose p < 0.0001 
(left panel) and p < 0.001 (right panel), with the number of SNPs 
in each subset shown in brackets. b Chromosome-bound circular 

permutation to adjust LD effects for assessment of the significance 
of pleiotropy of eight GWAS pairs. For each of the 8 trait pairs, 
1000 times of chromosome-bound circular permutations were per-
formed. The distribution of the test statistic from 1000 permutations 
are shown by histograms, where x-axis represents the test statistic, 
Diff _PI = π̂11 − (π̂10 + π̂11)(π̂01 + π̂11), and y-axis represents its 
frequency. Red vertical line denotes the observed test statistics for 
each trait pair (color figure online)
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Q-Q plots (Fig. 1a) suggest that all seven immune-medi-
ated disorders share genetic liability components with SCZ.

Conditional Q-Q plots, while simple and intuitive, suffer 
from arbitrary cutoffs, e.g. 1× 10−4, and do not offer statis-
tical assessment of pleiotropy. We then used GPA (Genetic 
analysis incorporating pleiotropy and annotation), a statis-
tically rigorous approach recently developed by us (Chung 
et al. 2014), to quantitatively test the significance of plei-
otropy between the five psychiatric disorders (SCZ, BPD, 
MDD, ASD, ADHD) and seven immune-mediated disor-
ders (CD, UC, MS, PS, SLE, RA, T1D). Twenty-four of 
the 35 pairs were significant at Bonferroni-adjusted p-value 
<0.05 (Table S1), indicating pervasive pleiotropic effects 
between psychiatric disorders and immune-mediated dis-
orders. Consistent with previous studies (Andreassen et al. 
2014), we observed strong pleiotropy between SCZ–MS 
(p = 1.3× 10−20), but no significant pleiotropy between 
BPD–MS (p = 0.26), with or without the MHC region 
(Fig. S2).

For each pair of disorders, we estimated the proportion 
of single nucleotide polymorphisms (SNPs) associated 
with both disorders vs. those associated with only one dis-
order (Table S1). Figure 2 shows the results among SCZ, 
BPD, UC and CD. Consistent with previous studies (Cross-
Disorder 2013a; Parkes et al. 2013), most of the SCZ-
associated SNPs and BPD-associated SNPs were estimated 
to be shared between these two disorders. Similarly, most 
UC-associated SNPs and CD-associated SNPs were shared 
between them. The proportions of SNPs shared by cross-
class disorders were: SCZ–CD 0.063 (s.e. 0.0021); SCZ–
UC 0.053 (s.e. 0.0018); BPD–CD 0.05 (s.e. 0.0034); and 
BPD–UC 0.039 (s.e. 0.0025), respectively.

To account for potential inflation of statistical signifi-
cance in pleiotropy tests due to LD structure, pleiotropy 
among SCZ, BPD, CD, and UC was studied by the means 
of chromosome-bound circular permutations (Kindt et al. 
2013), as detailed in “Materials and methods”. Consistent 
with GPA pleiotropy test results, all six disease pairs have 
significant pleiotropy, with permutation-based p values 
below 0.001 for SCZ–BPD, CD–UC, SCZ–CD, SCZ-UC 
and about 0.004 for BPD–CD and BPD–UC (Fig. 1b).

Enrichment of immune‑related annotations in multiple 
psychiatric disorders

Observation of extensive pleiotropy naturally leads to the 
exploration of functional enrichment for the shared genes to 
better understand the underlying biology. We used central 
nervous system (CNS) SNPs and immune-related eQTLs 
(see “Materials and methods”) to represent the functional 
sites relevant to the CNS and immune system, respectively. 
Because 12.5 % of CNS SNPs overlap immune eQTLs, we 
also tested enrichments excluding those overlapping SNPs.

We first tested for enrichment of CNS SNPs in all 18 
traits (Fig. 3a). As expected, all psychiatric disorders had 
modest enrichment for CNS SNPs (>1.3-fold, except for 
MDD, 1.09-fold). The enrichment effects could still be 
observed (and were even stronger for ADHD) with the 
MHC region and/or immune-related eQTLs excluded (Fig. 
S3). Only three immune system disorders (MS, PS and 
RA) showed modest enrichment for CNS SNPs (1.5, 1.2, 
and 1.2-fold, respectively), but not with immune eQTLs 
excluded (0.9, 0.4, 0.5-folds, respectively). This suggests 
that enrichment of CNS SNPs in immune traits was driven 
by overlapping immune eQTLs. We also observed enrich-
ment of CNS SNPs for education years (1.25-fold), college 
completion status (1.29-fold), and BMI (1.55-fold), but 
neither waist-to-hip ratio adjusted BMI nor height showed 
enrichment of CNS SNPs.

Next, we tested enrichment of immune eQTLs in the 
same set of 18 traits (Fig. 3b). The seven immune-medi-
ated disorders consistently had the strongest enrichment 
(ranging from 2.0 to 8.5-fold). We also observed enrich-
ment of immune eQTLs in four psychiatric disorders 
(SCZ, BPD, ASD, and MDD; 2.0, 2.0, 1.4, 1.6-fold, 
respectively), and Parkinson’s disease (1.4-fold). Those 
enrichment effects still persisted with MHC region and/
or CNS SNPs excluded, suggesting the enrichment was 
not solely due to eQTLs in the MHC region or overlap-
ping with CNS SNPs (Fig. S3). We also observed immune 
eQTL enrichment in two education related traits, college 
completion (1.39-fold) and year of education (1.46-fold), 
and in three physical features, BMI (1.99-fold), obesity 
measured by waist-to-hip ratio adjusted BMI (2.90-fold), 
and height (2.97-fold).

To explore this hypothesis further, we tested levels of 
enrichment of immune-related eQTLs in SNPs associated 
with both psychiatric disorders (SCZ, BPD, ASD, MDD, 
ADHD) and Crohn’s disease, and observed larger enrich-
ment ratios compared with those SNPs associated with 
only one disease (Fig. S4). This result suggests that the 
shared genetic components between the five psychiatric 
disorders and CD are closely related to immune function. 
Next we tested enrichment of DNase-peak located SNPs 
in SCZ GWAS signals from 98 ENCODE cell lines (Table 
S2), and found the top cell lines were from blood elements 
having important roles in immune response, with the top 
two cell lines being CD20+ B cells and Th2 cells (CD4+ T 
cells) (Fig. S5). We also tested enrichment of an epigenetic 
marker H3K9ac (H3 lysine 9 acetylation), known to mark 
active enhancers and promoters, in eight tissues from the 
ROADMAP project (Roadmap Epigenomics Consortium 
2015). We observed that both psychiatric disorders and 
immune-related disorders have the highest enrichment for 
H3K9ac markers in blood, while educational traits (years 
of education and colleges completion) have the highest 



1199Hum Genet (2015) 134:1195–1209 

1 3

enrichment for H3K9ac markers in brain (Fig. S6). We also 
observed enrichment of H3K9ac markers from fat tissue to 
waist-to-hip ratio adjusted BMI GWAS (Fig. S6). Those 
results further demonstrate the enrichment of immune-spe-
cific contribution to the psychiatric disorder GWAS.

Trend of consistent effect direction between psychiatric 
disorders and immune system disorders

To explore the mechanism of these pleiotropic effects fur-
ther, we examined effect directions. For each SNP, the same 

Fig. 2  GPA results showing pleiotropic effects among SCZ, BPD, 
UC and CD. Purple, red, green and blue represent SCZ, BPD, UC 
and CD; gray represents the proportion of SNPs associated with both 
disorders, and white represents the proportion of SNPs associated 
with neither disorder. Upper triangle: pie charts show proportion of 
SNPs associated with only one disorder, both disorders (gray), and 
neither disorder (white). Lower triangle: bar plots contrasting propor-

tions of associated SNPs for each disorder when analyzed separately 
(first and third bar in darker color), and proportion of associated 
SNPs when two disorders are jointly analyzed (second and fourth bar 
for proportion of SNPs associated with only one disorder, and fifth 
gray bar for proportion of SNPs associated with both disorders). 
Error bars indicate one standard error (color figure online)



1200 Hum Genet (2015) 134:1195–1209

1 3

allele may increase or reduce susceptibility for the two dis-
orders (same direction) or have opposite effects (different 
directions). The SCZ Q-Q plot (Fig. S7) shows interest-
ing signals conditional on having the same effect direction 
with CD. We then considered four disorder pairs showing 
strong pleiotropy: SCZ–CD (p = 1.9× 10−109), BPD–
CD (p = 1.5× 10−13), SCZ–Height (p = 2.0× 10−122 ), 
and BPD–Height (p = 5.4× 10−150). For each of these 
four pairs, there is no correlation in effect direction when 
all genotyped SNPs are considered (Table S3). However, 
trends emerged after we partitioned the SNPs into 10 
groups according to their posterior probabilities of being 
associated with both traits. Proportions of SNPs having 
the same effect directions were calculated for each group. 

There are clear patterns for SCZ–CD and BPD–CD, but not 
for SCZ–height nor BPD–height as shown in Fig. 4.

In general, the higher the posterior probability of a SNP 
being associated with SCZ (or BPD) and CD, the more 
likely that the SNP had the same effect direction for the 
pair. For SCZ–CD, among the 85 top SNPs with posterior 
probabilities of association with both SCZ and CD higher 
than 0.9 (Table S4), 97.6 % of SNPs had the same effect 
directions (an allele either increases or reduces both SCZ 
and CD risks). Similarly, for BPD–CD, in the SNP group 
with posterior probabilities higher than 0.8, and between 
0.7 and 0.8, 83 and 95% of SNPs had the same effect 
direction, respectively (Fig. 4). Similar patterns were also 
observed for SCZ–RA and BPD–RA pairs (Fig. S8). In 

Fig. 3  Enrichment of CNS 
SNPs and immune eQTLs in 
18 traits. a Enrichment of CNS 
SNPs (comprising 18.8 % of all 
SNPs) in 18 traits from three 
categories: psychiatric disorders 
or CNS-related disorder (red), 
immune system-related disor-
ders (blue), and body somatic 
features (black). For each trait, 
the first bar (darker color) 
excludes immune eQTLs from 
CNS SNPs, and the second 
bar (light color) is for all CNS 
SNPs (comprising 21.4 % of 
all SNPs). b Enrichment of 
immune eQTLs (compris-
ing 7.5 % of all SNPs) in 18 
traits from three categories: 
psychiatric disorders or CNS-
related disorder (red), immune 
system-related disorders (blue), 
and other body somatic features 
(black). For each trait, the first 
bar (darker color) excluded 
CNS SNPs from immune 
eQTLs, and the second bar 
(light color) is for all immune 
eQTLs (comprising 10.1 % of 
all SNPs) (color figure online)
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contrast, the proportion of SCZ risk alleles that were asso-
ciated with lower height was  50 % for all SNP groups, 
regardless of their posterior probabilities of being associ-
ated with both SCZ and height. Effect direction distribu-
tions across 10 posterior groups for the BPD–height pair 
behaved similarly. We also investigated the influence of LD 
blocks on the observed effect direction trend by grouping 
SNPs into LD blocks based on DistiLD Database (Palleja 
et al. 2012), as detailed in Supplementary Methods. LD 
blocks with high posterior probability were more likely to 
have a higher proportion of SNPs with same effect direc-
tion for SCZ–CD and BPD–CD, while the effect direction 
was less consistent for SCZ–height and BPD–height (Fig. 
S9).

Genome region enrichment analysis

To demonstrate the biological mechanism of the pleiot-
ropy between psychiatric disorders and immune-mediated 
disorders, we tested genome-wide enrichment of potential 
pleiotropic SNPs in cytobands, protein–protein interaction 
networks, and gene ontology (GO) terms, for 28 disorder 
pairs between seven immune system disorders (CD, UC, 
MS, PS, RA, SLE, and T1D) and four psychiatric disorders 
(SCZ, BPD, MDD, and ASD), detailed in “Materials and 
methods”.

In cytoband enrichment analysis, a complete list of 
all cytobands with enrichment odds ratio (OR)>5 and 

Bonferroni-adjusted p value <0.001 in at least one disease 
pair is reported in Table S5. Some cytobands have signifi-
cant enrichment in more than one disease pairs, such as 
MHC region and 1p13.2, indicating their role in affecting 
both psychiatric disorders and immune system disorders. 
Specifically, cytoband 1p13.2 was significantly enriched 
for the eight disorder pairs between {SCZ, BPD, MDD, 
and ASD} and {T1D and RA}, with Bonferroni-adjusted 
p values ranging from 6.8× 10−26 to 2.7× 10−78, with 
top SNPs located in genes AP4B1, PTPN22, and PHTF1 
(Fig. S10). In protein–protein interaction (PPI) network 
analysis, several sub-networks (Fig. S11) were highlighted 
in the analysis. Specifically, those protein–protein interac-
tion clusters most responsible for shared genetic compo-
nents between psychiatric disorders and immune system 
disorders in these data were: (1) three minor gene subunits 
HLA-E, HLA-F, and HLA-G, but not the three major gene 
subunits, interacting with TAP1, TAP2. TAP1 and TAP2 
are transporters associated with antigen processing, which 
cooperate with MHC class I to present antigens (Suh et al. 
1994); (2) Interaction between HLA-DO, HLA-DM, and 
HLA-DR proteins; and (3) a set of genes with important 
roles in transcriptional activation, including BRD2, TUBB, 
ABT1, and multiple histone coding genes. In GO term 
enrichment analysis, the identified top terms included anti-
gen processing and presentation, MHC protein complex, 
allograft rejection, and NF-kappaB binding (Table S6), 
which further suggests the enrichment of immune system 
function in shared genetic factors between psychiatric and 
immune system disorders.

Discussion

Our work demonstrates extensive pleiotropy between psy-
chiatric disorders and immune system disorders. It is a 
common concern that the uneven distribution of genomic 
features, such as LD blocks and genes, may bias these find-
ings. To address this issue rigorously, we performed chro-
mosome-bound circular permutation (Kindt et al. 2013) 
on eight trait pairs for which we performed comprehen-
sive analysis in this work (Fig. 1b). All eight pairs yielded 
highly significant permutation-based p values, consistent 
with the GPA pleiotropy test results.

Beyond the evidence of pleiotropy, our results suggest 
how psychiatric disorders and immune system disorders are 
related genetically. We observed a major but not single role 
of MHC region in contributing to the pleiotropy between 
psychiatric disorders and immune system disorders. First, 
we observed enrichment of immune eQTLs even after the 
whole MHC region was removed (Fig. S3). Second, cyto-
band enrichment results indicate roles played by other 
specific genomic regions, such as 1p13.2, harboring gene 

Fig. 4  Trend of consistent effect directions for SCZ/BPD–CD across 
posterior probability groups. Proportion of SNPs having the same 
effect direction for trait pairs, in each of the 10 posterior probabil-
ity groups (darker colors indicate higher posterior probability), where 
SNPs were grouped based on posterior of being associated with both 
traits into 10 equal bins. Four pairs of traits: SCZ–CD, SCZ–height, 
BPD–CD, and BPD–height
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PTPN22 [Protein Tyrosine Phosphatase, Non-Receptor 
Type 22 (Lymphoid)], which was also prioritized in our PPI 
analysis.

The observation of a tendency of the same effect direc-
tion for SNPs associated with either SCZ and BPD paired 
with CD gives some insight concerning the underlying 
mechanism of their shared genetic factors. Pleiotropy has 
been extensively reviewed (Paaby and Rockman 2013; Wil-
liams 1957; Stearns 2010; Solovieff et al. 2013), but is still 
not well understood in terms of its extent, mechanisms, and 
consequences. The weak hypothesis of universal pleiotropy 
(WHUP) advocated by Fisher (1930) and Wright (1968) 
is based on two assumptions that, in general, a pheno-
type might be influenced by many variants, and a variant 
might cause changes to many phenotypes. Under WHUP, 
extensive pleiotropy should be detected while the effect 
directions of shared genetic variants should be about ran-
dom, which is not we observed for SCZ–CD. Our obser-
vation supports a closer genetic relationship between those 
two types of disorders. Various molecular mechanisms 
could result in pleiotropy (Solovieff et al. 2013). There 
are biological pleiotropy, mediated pleiotropy, and spuri-
ous pleiotropy. Biological pleiotropy has separate causal 
paths for different phenotypes, while mediated pleiotropy 
has one phenotype lying on another phenotypes causal 
path; thus by this mechanism, one phenotype might lead 
to another (Solovieff et al. 2013). Our results, the striking 
trend of shared SNPs for SCZ and CD acting in the same 
direction, can be best explained by mediated pleiotropy. 
This, together with our observation of pervasive enrichment 
of immune eQTLs in psychiatric disorders, and the lack of 
enrichment of CNS SNPs (immune eQTLs excluded) in 
immune-mediated disorders (except MS, which is charac-
terized by CNS pathology) suggest that immune system 
disorders might mediate psychiatric disorder risk, i.e. some 
downstream immune dysfunctions might be a trigger to 
some psychiatric disorders (or subtypes).

Consistent with a recent GWAS finding that detected 
pathways associated with BMI mostly act in brain or 
peripheral nervous system (Locke et al. 2015), we observed 
enrichment of CNS SNPs for BMI, but a depletion of 
CNS SNPs for WHRadjBMI, suggesting different regu-
lation mechanisms for body fat level and fat distribution. 
We also observed considerable enrichment of immune-
related eQTLs in height and BMI, which are consistent 
with previous experiments that BMI is correlated with 
immune parameters (Ilavska et al. 2012), and that height 
is associated with immune response in young men (Krams 
et al. 2014). Our results further confirmed the relation-
ship between BMI and height and immune system from a 
genomics perspective.

Our work revealed the shared genetic factors between 
psychiatric and immune system disorders using novel 

methods and multiple omics data accumulated in recent 
years. We were able to show that there is pervasive pleiot-
ropy between those two categories of disorders. Although 
the MHC region shows the strongest pleiotropic effects, 
other regions, such as cytoband 1p13.2, also contribute 
to the overall pleiotropy. Moreover, we found that pleio-
tropic SNPs for schizophrenia and Crohn’s disease tend to 
have the same effect direction for both disorders, suggest-
ing mediated pleiotropy. Apart from cross-disorder study 
of GWAS summary statistics, our study included various 
genome annotations, including CNS SNPs, eQTLs detected 
in immune-related contexts, and DNase I hypertensive 
sites from 98 cell lines. Study of those genome annota-
tions provided further support for correlated genetic fac-
tors for psychiatric disorders and immune system disorders. 
Our work offers insights on pleiotropic mechanisms and a 
better understanding of pathophysiology, which may lead 
to improved prevention and treatment strategies for these 
two classes of disorders via immunological mechanisms. 
Although our analyses were based on results from GWAS 
consortia, the statistical power remains limited to identify 
the majority of disease associated variants for these dis-
orders. GWAS results from larger studies and improved 
statistical and bioinformatics approaches will enable us 
to identify more shared genetic pathways between these 
classes of disorders, and as always despite the very high 
significance levels we observed for some relationships 
independent replication of our results is called for.

Materials and methods

Genome‑wide association study (GWAS) data sources

We made use of GWAS summary statistics from a set of 
diverse and representative traits, including major psychi-
atric disorders, various immune system disorders, body 
morphological features, and some socioeconomic measures 
(Table 1). The p values were available for all traits, but only 
some of them have available specified alleles and their cor-
responding beta or odds ratios indicating effect direction.

Genomic annotation data sources

Central nervous system (CNS) genes were identified in 
a previous study (Raychaudhuri et al. 2010), compris-
ing preferentially brain-expressed genes (Raychaudhuri 
et al. 2010), neuronal-activity genes (Walsh et al. 2008), 
learning-related genes (Weiss et al. 2008), and synapse 
genes, defined by Gene Ontology (Ashburner et al. 2000). 
A complete list of these genes is given in Table S7. CNS 
SNPs were defined as SNPs located within 50 kb of CNS 
genes. To investigate immune system influence, we used 
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context-specific eQTLs upon triggering immune response 
as detected by Fairfax et al. (2014), where interferon-γ 
and lipopolysaccharide (LPS) were used as inflammatory 
proxies to stimulate innate immune effects in monocytes 
from volunteers of European ancestry. We used a union of 
cis-eQTLs detected in four distinct contexts, nave, LPS2 
(monocytes exposed to 2 h of LPS), LPS24 (monocytes 
exposed to 24 h of LPS), and INF-γ (monocytes exposed 
to 24 h of interferon-γ), as a set of immune-related eQTLs 
in our study. In total, we have 94,674 immune eQTLs and 
199,202 CNS SNPs, of which 24,860 CNS SNPs are also 
immune eQTLs.

To investigate the impact of chromatin state, we 
used DNase I hypersensitivity sites extracted from 
ENCODE (2012) DNase-seq peaks and signal of open 
chromatin from 125 cell lines. There were 98 cell lines 
after removing 27 cancer cell lines (Table S2). Although 
limited in cell lines from brain regions, those 98 cell lines 
have great coverage for various blood cells, making it suit-
able for studying whether there is enrichment of functional 
genomic regions in SCZ GWAS tissues implicated with 
important immune functions. DNase-Peak SNPs are SNPs 
located in or within 1kb from DNase-Peaks. We obtained 
the H3K9ac histone marker from the project (Roadmap 
Epigenomics Consortium 2015). We downloaded the con-
solidated narrow peaks from http://egg2.wustl.edu/road-
map/data/byFileType/peaks/consolidated/narrowPeak/, 
and then generated our annotations based on the −log(p) 
value cutoff at 6. We mainly focused on eight primary tis-
sues, including blood (E038, E047, E062, E115, E116, 

E123, E124), brain (E067, E068, E069, E072, E073, E074, 
E125), breast (E027, E119), fat (E023, E025, E063), heart 
(E083), lung (E017, E088, E114, E128), muscle (E052, 
E107, E108, E120, E121), and skin (E126, E127).

Pleiotropy and annotation enrichment analysis using 
GPA

Pleiotropy analysis was performed via the GPA R pack-
age (Chung et al. 2014), which is a statistical approach 
to exploring the genetic architecture of complex traits by 
integrating pleiotropy and functional annotation informa-
tion, including prioritizing risk genetic variants, and evalu-
ating annotation enrichment and pleiotropy by hypothesis 
testing. Instead of relying on genotype–phenotype data at 
the individual level, it only requires the summary statistics 
from GWAS, which makes it useful for integrative analysis 
of genomic data. For each trait pair, only overlapped SNPs 
across the two traits were used in our analysis. For conveni-
ence, we briefly introduce the GPA model (Chung et al. 
2014) and its notation here.

Consider the p values {p1, . . . , pM} obtained by per-
forming hypothesis testing of genome-wide SNPs from 
one GWAS, where M is the number of SNPs. In the GPA 
model, these p values are assumed to come from a mix-
ture of null (un-associated) and non-null (associated), with 
probability π0 and π1 = 1− π0, respectively. GPA uses the 
Uniform distribution on [0,1] and the Beta distribution with 
parameters (α, 1) to model the p values from the null and 
non-null groups, respectively. Let Zj ∈ {0, 1} be the latent 

Table 1  Sources of GWAS summary statistics

Traits Trait types Source/references

Schizophrenia (SCZ) Psychiatric disorder PGC (Cross-Disorder 2013a)

Bipolar disorder (BPD) Psychiatric disorder PGC (Cross-Disorder 2013a)

Autism spectrum disorder (ASD) Psychiatric disorder PGC (Cross-Disorder 2013a)

Attention deficit hyperactivity disorder (ADHD) Psychiatric disorder PGC (Cross-Disorder 2013a)

Major depressive disorder (MDD) Psychiatric disorder PGC (Cross-Disorder 2013a)

Parkinson’s Disease (PD) CNS degenerative disease Simon-Sanchez et al. (2009)

Crohn’s Disease (CD) Immune system disorder IIBDGC (Franke et al. 2010)

Ulcerative colitis (UC) Immune system disorder IIBDGC (Anderson et al. 2011)

Multiple sclerosis (MS) Immune system disorder IMSGC (IMSG 2007)

Psoriasis (PS) Immune system disorder Feng et al.  (2009)

Rheumatoid arthritis (RA) Immune system disorder Stahl et al.  (2010)

Systemic lupus erythematosis (SLE) Immune system disorder SLEGEN (Harley et al. 2008)

Insulin-dependent (Type 1) diabetes mellitus (T1D) Immune system disorder T1DGC (Barrett et al. 2009)

Binary variable for college completion Education status Rietveld et al. (2013)

Years of educational attainment Education status Rietveld et al. (2013)

Body mass index (BMI) Body feature GIANT Consortium (Speliotes et al. 2010)

Waist-to-hip ratio (WHR) adjusted BMI Body feature GIANT Consortium (Heid et al. 2010)

Height Body feature GIANT Consortium (Lango Allen et al. 2010)

http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak/
http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak/
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variable indicating whether the jth SNP is from the null or 
non-null group, where Zj = 0 means null and Zj = 1 means 
non-null. Then the GPA model for one GWAS without 
annotation can be written as:

GPA further incorporates functional annotation as follows. 
Let an M-dimensional vector A collect functional informa-
tion from an annotation source, where Aj ∈ {0, 1} indicates 
whether the jth SNP is a functional unit according to the 
annotation source. For example, given an eQTL data, if the 
jth SNP is an eQTL, then Aj = 1, otherwise Aj = 0. The 
relationship between Zj and Aj is described as:

Clearly, q0 can be interpreted as the proportion of null 
SNPs being annotated, q1 corresponds to the proportion of 
non-null SNPs being annotated, and q1 > q0 implies that 
there exists enrichment in this annotation.

Let �̂ = {π̂0, π̂1, q̂0, q̂1, α̂} be the collection of the esti-
mated model parameters. Then SNPs can be prioritized 
based on their local false discovery rates (FDR). When 
there is no annotation data, the local FDR is defined 
as the probability that the jth SNP belongs to the null 
group given its p value, i.e., f̂dr(pj) = Pr(Zj = 0|pj; �̂). 
With annotation data, the FDR can be calculated as 
f̂dr(pj,Aj) = Pr(Zj = 0|pj,Aj; �̂). We can use the likeli-
hood ratio test to assess the significance of its enrichment. 
Specifically, the significance of enrichment of an annota-
tion for GWAS can be assessed by testing H0 : q0 = q1 ver-
sus H1 : q0 �= q1. Standard errors of all the parameters can 
also be calculated.

The extension of the above model to handle two GWAS 
is straightforward. Suppose the p values from two GWAS 
have been collected in an M × 2 matrix p = [pjk], where 
pjk denotes the p value of the jth SNP in the kth GWAS, 
k = 1, 2. Let Zj ∈ {00, 10, 01, 11} indicate the association 
between the j-th SNP and the two phenotypes: Zj = 00 
means the jth SNP is associated with neither of them, 
Zj = 10 means it is only associated with the first one, 
Zj = 01 means it is only associated with the second one, 
and Zj = 11 means it is associated with both. Then the two-
groups model (1) can be extended to the following four-
groups model:

(1)
π0 = Pr (Zj = 0) : pj ∼ U[0, 1], if Zj = 0,

π1 = Pr (Zj = 1) : pj ∼ Beta(α, 1), if Zj = 1.

(2)q0 = Pr
(
Aj = 1|Zj = 0

)
, q1 = Pr

(
Aj = 1|Zj = 1

)
.

where q00 is the probability of a null SNP being annotated, 
q10 is the probability of the first phenotype-associated SNP 
being annotated, q01 is the probability of the second pheno-
type-associated SNP being annotated, and q11 is the prob-
ability of jointly associated SNP being annotated. For joint 
analysis of two GWAS data sets, the local FDR calculation 
and enrichment assessment can be done in a similar way. 
In addition, the pleiotropy between two phenotypes can be 
tested in a statistically rigorous way. When there is no plei-
otropy, i.e., the signals from the two GWAS are independ-
ent of each other, testing pleiotropy can be formulated by 
testing the following hypothesis:

where π1∗ = π10 + π11 and π∗1 = π01 + π11. The likeli-
hood ratio test statistic asymptotically follows χ2 distribu-
tion with df = 1 under the null.

Chromosome‑bound circular permutation to assess the 
significance of pleiotropy

To fully account for the potential effects from LD structure 
when testing the significance of pleiotropy, chromosome-
bound circular permutation (Kindt et al. 2013) was adopted 
here. This permutation approach preserves the observed 
LD distribution of SNPs around the genome, and estab-
lishes a robust null distribution from which the significance 
of the observed pleiotropy can be calculated. To assess 
the significance of the pleiotropy of two traits A and B, 
the summary statistic set of trait A was circularly permu-
tated within chromosomes as follows: The summary statis-
tics were ordered according to their SNP positions. Next, 
a random number was generated from one to the number 
of SNPs in the chromosome. Then the summary statistics 
were shifted down by the generated random number. If 
their shifting status exceeded the number of SNPs in the 
chromosome, they resumed at the beginning position. The 
summary statistic set of GWAS B was unchanged. For each 
permutation, GPA was used to estimate the proportion of 

q00 = Pr (Aj = 1|Zj = 00),

q10 = Pr (Aj = 1|Zj = 10),

q01 = Pr (Aj = 1|Zj = 01),

q11 = Pr (Aj = 1|Zj = 11),

(4)H0 : π11 = π1∗π∗1, v.s. H1 : not H0,

(3)

π00 = Pr (Zj = 00) : pj1 ∼ U[0, 1], pj2 ∼ U[0, 1], if Zj = 00,

π10 = Pr (Zj = 10) : pj1 ∼ Beta(α1, 1), pj2 ∼ U[0, 1], if Zj = 10,

π01 = Pr (Zj = 01) : pj1 ∼ U[0, 1], pj2 ∼ Beta(α2, 1), if Zj = 01,

π11 = Pr (Zj = 11) : pj1 ∼ Beta(α1, 1), pj2 ∼ Beta(α2, 1), if Zj = 11.

Similarly, functional annotation information can be incor-
porated into the multiple GWAS model (3) in the following 
way:

the SNPs in the four groups: SNPs associated with neither 
of the traits, SNPs associated with trait A, SNPs associ-
ated with trait B, and SNPs associated with both, denoted 
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as {π̂00, π̂10, π̂01, π̂11}. Under the null hypothesis that 
there is no pleiotropy between A and B, the joint distribu-
tion should be the product of its marginal distribution, i.e., 
π̂11 = (π̂10 + π̂11)(π̂01 + π̂11). Therefore, we define our 
test statistic as Diff _PI = π̂11 − (π̂10 + π̂11)(π̂01 + π̂11), 
and recorded the test statistic for each permutation. The 
observed test statistic of the real data was compared with 
the null distribution obtained from chromosome-bound cir-
cular permutation, and p values were obtained accordingly. 
The permutation results for eight pairs of GWAS are shown 
in Fig. 1b.

Effect direction analysis on the level of LD blocks

SNPs were grouped into LD blocks based on DistiLD 
Database (Palleja et al. 2012). For each LD block, we first 
calculated the number of SNPs within the block and the 
proportion of these SNPs having the same effect direc-
tion for both traits. For each SNP within the LD block, we 
evaluated its posterior probability of being associated with 
both traits and assigned the maximum posterior probability 
of these SNPs to the LD block, as the LD blocks posterior 
probability.

Enrichment analysis

Enrichment analysis for cytobands Cytoband position 
was downloaded from the UCSC Table Browser (Karol-
chik et al. 2004), with 862 entries of cytobands in total. 
Enrichment tests were carried out on 28 pairs of disease 
pairs, between seven immune system disorders (CD, UC, 
MS, PS, RA, SLE, and T1D) and four psychiatric disor-
ders (SCZ, BPD, MDD, and ASD). Fig. S12 shows the 
posterior probability of being associated with both dis-
eases for those 28 disease pairs. For each disease pair, 
potentially shared SNPs were selected based on posterior 
probability Pr (Zj = 1) > 0.5. Numbers of potentially 
shared SNPs vary from disease to disease, ranging from 0 
to 4505 (for SCZ–CD). For each cytoband, we calculated 
{x11, x10, x01, x00}, with x11 being the number of SNPs in 
cytoband that are potentially shared SNPs, x10 being the 
number of SNPs in cytoband that are not potentially shared 
SNPs, x01 being the number of potentially shared SNPs 
not in cytoband, and x00 being the number of SNPs not in 
cytoband and are not potentially shared SNPs. Under null 
hypothesis that there is no enrichment {x11, x10, x01, x00
} follows hypergeometic distribution. The deviation from 
null hypothesis was tested using Fishers exact test and p 
values were adjusted for multiple testing (Dunn 1961).

Enrichment analysis for gene ontology (GO) terms and 
KEGG pathways Genome annotation enrichment was per-
formed via DAVID (Huang et al. 2009a, b) on GO (Ash-
burner et al. 2000) terms and KEGG pathways (Kanehisaa 

and Goto 2000; Data 2014). Enrichment tests were carried 
out on 28 pairs of disease pairs, between seven immune 
system disorders (CD, UC, MS, PS, RA, SLE, and T1D) 
and four psychiatric disorders (SCZ, BPD, MDD, and 
ASD). Gene lists were constructed with genes containing 
SNPs having posterior >0.8 in at least three disorder pairs.

Enrichment analysis for protein–protein interaction 
(PPI) networkPPI can provide independent information for 
prioritization of genetic findings, and thus we constructed 
PPI sub-networks via DAPPLE (Rossin et al. 2011) in 
which PPI edges are overrepresented in top SNPs. Enrich-
ment tests were carried out on 28 pairs of disease pairs, 
between seven immune system disorders (CD, UC, MS, PS, 
RA, SLE, and T1D) and four psychiatric disorders (SCZ, 
BPD, MDD, and ASD). For each disease pair, potentially 
shared SNPs were selected based on posterior of being 
associated with both diseases Pr(Zj = 1) > 0.8 (Fig. S13).
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