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environmental similarity. By comparing the association of 
parental history with T2D in our simulations to case–con-
trol studies of T2D nested in the Nurses’ Health Study and 
Health Professionals Follow-up Study, we estimate that 
first-degree relatives have a correlation of 23 % (95 % CI 
15–27 %) in their environmental contribution to T2D liabil-
ity and that this shared environment is responsible for 32 % 
(95 % CI 24–36 %) of the association between parental his-
tory and T2D, with the remainder due to shared genetics. 
Estimates are robust to varying model parameter values and 
our framework can be extended to different definitions of 
family history. In conclusion, we find that the association 
between parental history and T2D derives from predomi-
nately genetic but also environmental effects.

Introduction

Diabetes is a leading cause of morbidity and mortality in 
developed countries. The worldwide prevalence of the dis-
ease is projected to double from the 371 million estimated 
in 2012 to 551 million in 2030, with type 2 diabetes (T2D) 
accounting for more than 90 % of these cases (International 
Diabetes Federation 2011). Roughly 40 % of the variance 
in T2D is due to genetics (Kaprio et al. 1992; Poulsen et al. 
1999), suggesting that both genetic and environmental fac-
tors contribute substantially to an individual’s T2D risk. 
Increased adiposity, inactivity, smoking, excessive caloric 
intake and poor diet quality have consistently been associ-
ated with risk of the disease (Hu 2011). Thus far, 5.7 % of 
the variance in T2D can be explained by known variants 
identified by genome-wide association studies (GWAS) 
(Morris et al. 2012). A positive family history of diabetes 
has been associated with a 2- to 30-fold increased risk of 
T2D (Abbasi et al. 2011; Hemminki et al. 2010; Lyssenko 
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et al. 2008; Meigs et al. 2008; The InterAct Consortium 
2013; van’t Riet et al. 2010), but whether this association 
derives from genetic or shared environment is unclear.

Known environmental factors such as excess adiposity 
and, to a lesser extent, specific diet and lifestyle factors, 
reportedly explain up to 40 % of the association between 
having a family history of diabetes and risk of T2D (Abbasi 
et al. 2011; The InterAct Consortium 2013; van’t Riet et al. 
2010). Many of these factors are also partly genetic but how 
this contributes to the relationship between family history 
and the development of T2D is unclear (Rice et al. 1995). 
Known genetic variants for the disease explain very little of 
this association (Cornelis et al. 2009; Lyssenko et al. 2008; 
Meigs et al. 2008; The InterAct Consortium 2013), consist-
ent with the weak correlation between family history of 
diabetes and these known variants (Vassy et al. 2011).

Early work of Khoury et al. (1988), which relied exclu-
sively on simulations without analyzing real phenotypes, 
suggested that shared environment may not be responsible 
for the majority of shared familial risk of complex disease. 
Twin and family studies have been the standard approaches 
to investigating components underlying familial aggre-
gation of a disease but are underpowered and subject to 
biases (Hopper et al. 2005; Kendler et al. 1993; Zaitlen 
et al. 2013; Zuk et al. 2012). The growing availability of 
population-based datasets of unrelated individuals with 
genetic, environmental and personal family history data 
offers a potentially powerful opportunity to understand 
family history of a disease. In the current study we quantify 
the extent to which family history of diabetes derives from 
genetic or shared environmental factors. We use a combi-
nation of simulated and empirically derived models, maxi-
mizing the availability of known genetic and environmental 
risk factors for the disease in unrelated individuals.

Materials and methods

Statistical model

Our statistical framework is based on the liability threshold 
model, involving an underlying normally distributed liabil-
ity (Falconer 1967). An individual is a disease case if the 
liability exceeds a threshold T, where T is determined by the 
prevalence of disease in the population. We partition the lia-
bility into genetic (G) and environmental (E) components; 
both G and E are further partitioned into known (1) and 
unknown (2) components. Thus, the liability is the sum of 
G1 (known genetic effects), G2 (unknown genetic effects), 
E1 (known environmental effects) and E2 (unknown envi-
ronmental effects), with liability-scale variances σ2

G1, σ
2
G2, 

σ2
E1, σ2

E2, respectively. Because known “environmental” 
effects can be partly genetic (for example, the heritability 

of BMI is ~0.5 (Maes et al. 1997; Visscher et al. 2012), 
we further partition E1 into a genetic component E1G 
(σ2

E1G = σ2
E1x, where x is the proportion of E1 explained by 

genetics), and a genuinely environmental component E1E 
(σ2

E1E = σ2
E1 − σ2

E1G). The variance explained by family his-
tory (FH) derives from G1, G2, E1G, E1E and/or E2. Our 
objective is to estimate how much of this is genetic (G1, G2 
and/or E1G) and how much is environmental (E1E and/or 
E2). We assume that first-degree relatives have a correlation 
of 0.5 for each genetic component (G1, G2 and E1G) and 
a correlation of ξ for each environmental component (E1E 
and E2), where ξ is unknown.

Simulation framework

We first generated liabilities ϕ ~ N (0, 1) for a given num-
ber of individuals (N) and then defined case–control phe-
notype π to equal 1 (case) if ϕ ≥ T or 0 (control) if ϕ < T. 
We used the threshold T = 1.28, which corresponds to a 
disease prevalence of 10 %. When modeling case–control 
ascertainment, we subsampled a user-defined number of 
cases and controls from the larger set of simulated individ-
uals (see below).

Liabilities were simulated based on four components 
G1, G2, E1 and E2 with liability-scale variances σ2

G1, 
σ2

G2, σ2
E1, σ2

E2, respectively (see above). We used values 
of σ2

G1 = 0.03 and σ2
E1 = 0.18 obtained empirically (see 

“Results”) based on variance explained by known genetic 
(σ2

G1) and environmental (σ2
E1) associations with T2D. We 

set σ2
G2 = 0.40 − σ2

G1 = 0.37 based on estimated heritability 
(σ2

G1 + σ2
G2) of 0.40 for T2D (Kaprio et al. 1992; Poulsen 

et al. 1999), and thus σ2
E2 = 0.60 − σ2

E1 = 0.42. We also 
performed simulations in which known “environmental” 
effects (E1) were partitioned into a genetic component E1G 
(σ2

E1G = σ2
E1x, where x = 0.5, corresponding to the herit-

ability of BMI (Maes et al. 1997), a major environmental 
risk factor for T2D) and a genuinely environmental compo-
nent E1E (σ2

E1E = σ2
E1 − σ2

E1G) (see above).
To simulate parental history (referred herein as ‘family 

history’ [FH]) of diabetes, we simulated exactly two first-
degree relatives (i.e. mother and father) for each individual, 
assuming parent–offspring correlation of 0.5 for genetic 
components and ξ for environmental components, for vari-
ous values of ξ (0.0–0.5, in increments of 0.01). Each indi-
vidual was assigned FH = 1 if at least one of his/her two 
parents was a disease case, and FH = 0 otherwise.

We conducted simulations under both case–control 
ascertainment (proportion of disease cases oversam-
pled) and random ascertainment (proportion of disease 
cases equal to prevalence 10 %). We note that the vari-
ance explained by FH may be part of G1, G2, El and/or 
E2, which together explain all of the phenotypic variance. 
For each value of ξ, we ran linear regressions to evaluate 
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the proportion of phenotypic variance explained by any 
combination of G1, E1, and/or FH (the variables that are 
observed in a real study). The proportion of variance was 
estimated on the observed scale, but can be transformed 
to the liability scale (either with or without correction for 
case–control ascertainment, as appropriate) as described by 
Lee et al. (2011): 

 [Eq. 23 in Lee et al. (2011)]
where h2

l
 is the proportion of variance estimated on the 

liability scale, h2
occ

 is the proportion of variance estimated 
on the observed scale under case–control ascertainment, K 
is the prevalence of disease, P is the proportion of cases in 

the study and z = e
−T2

2√
2π

. At a disease prevalence of 10 %, 

variance components on the observed scale with case– 
control ascertainment are 0.954 times those on the liability 
scale, and variance components on the observed scale with-
out case–control ascertainment are 0.344 times those on the 
liability scale.

ξ̂ can then be used in Eq. 1 to estimate the proportion of 
shared liability that is due to genetics (πFH,G) vs. environ-
ment (πFH,E = 1 − πFH,G):

which is the ratio between the genetic covariance between 
parent and offspring (rp-o,G) and the total phenotypic covar-
iance between parent and offspring (rp-o); these concepts 
can be generalized to any relationship class.

Simulations described above were repeated under dif-
ferent assumed values of heritability (G1 + G2, 0.20–0.60 
with increments of 0.05) and proportion of E1 explained by 
genetics (x, 0.0–0.75 with 0.05 increments). In a secondary 
analysis, we simulated a third first-degree relative (i.e. sib-
ling) and repeated the entire set of experiments.

Nested case–control GWAS of type 2 diabetes

Empirical estimates of variances in T2D risk explained by 
FH and known genetic (G1) and environmental (E1) risk 
factors (and combinations thereof) were obtained from two 
case–control T2D GWAS nested in the Nurses’ Health Study 
(NHS) and Health Professionals Follow-up Study (HPFS) 
(Qi et al. 2010) and were compared to simulations with the 
same number of cases and controls. The NHS was estab-
lished in 1976 when 121,700 female registered nurses aged 
30–55 years and residing in the US completed a mailed 
questionnaire on medical history and lifestyle characteristics 
(Colditz and Hankinson 2005). The HPFS was initiated in 

h
2
l = h

2
occ

K(1 − K)

z2

K(1 − K)

P(1 − P)
,

(1)π̂FH,G = 0.5(σ 2
G1 + σ 2

G2 + σ 2
E1G

)

0.5(σ 2
G1 + σ 2

G2 + σ 2
E1G

) + ξ̂ (σ 2
E1E

+ σ 2
E2)

,

1986 when 51,529 male health professionals between 40 and 
75 years of age and residing in the US completed a question-
naire on lifestyle and medical history (Chu et al. 2001). Every 
2 years, follow-up questionnaires have been sent to partici-
pants from both cohorts to update information on exposures 
and newly diagnosed disease. Details regarding the study 
design including population, data collection, assessment of 
T2D (see Supplementary text), T2D case–control selection, 
genotyping quality control and imputation have been reported 
elsewhere (Cornelis et al. 2009; Hu et al. 2001; Laurie et al. 
2010; Manson et al. 1991; Qi et al. 2010). We restricted the 
current analysis to incident cases of T2D and to participants 
of European ancestry with complete genotyping data for T2D 
risk variants: 1,746 controls and 1,237 cases for NHS, 1,287 
controls and 867 cases for HPFS. We replaced missing non-
genetic covariate data (<9 % of NHS and <3 % of HPFS), 
with the study mean value of that covariate. All partici-
pants provided written informed consent, and the study was 
approved by the institutional review board of the Brigham 
and Women’s Hospital and the Human Subjects Committee 
Review Board of Harvard School of Public Health.

Measures of family history of diabetes (FH)

In the NHS, women were asked to report whether any of 
their first-degree family members (father, mother, and/or 
siblings) ever had diabetes in the questionnaires mailed 
in 1982, 1988, and 1992. Corresponding data were col-
lected for men (HPFS) in 1987, 1990, 1992 and 2008. We 
considered paternal, maternal or sibling history of diabe-
tes to be positive if the respondent indicated so in any of 
the questionnaires and negative if responses were “no” or 
“missing”. Parental history was defined based on a positive 
paternal and/or maternal history.

Measures of known environmental factors (E1)

For HPFS, anthropometrical and lifestyle factors was 
derived from the baseline (1986) questionnaires (Colditz 
et al. 1997; Rimm et al. 1991). For NHS, a more com-
plete assessment of lifestyle factors was administered in 
1980 and thus served as the baseline year for this cohort. 
BMI was calculated as weight (in kilograms) divided 
by the square of height (in meters). Physical activity was 
expressed as metabolic equivalent task (MET) hours of 
moderate to vigorous exercise per week (Wolf et al. 1994). 
METs were calculated for NHS in 1986 but correlated with 
the less precise measure of physical activity from 1,980 (h/
week). A semi-quantitative food frequency questionnaire 
was used to derive an Alternative Healthy Eating Index 
(AHEI) score, a measure of overall diet quality that has 
previously been associated with T2D in these cohorts (Chi-
uve et al. 2012; Willett 1998).
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Measures of known genetic factors (G1)

For each participant, a genetic risk score (GRS) for T2D 
was calculated by summing the values of 55 SNPs tagging 
reproducibly associated T2D loci reaching GW levels of 
significance in European populations (Morris et al. 2012). 
This SNP list did not include SNPs that were sex specific 
or that were identified in earlier GWAS but not confirmed 
in the recent meta-analysis (Rice et al. 1995; Rimm et al. 
1991). rs9936386 (FTO), also associated with obesity, was 
included among the 55 SNPs. We assumed an additive 
genetic model for each SNP, applying a linear weighting of 
0, 1, and 2 to genotypes containing 0, 1, or 2 alleles previ-
ously associated with increased risk, respectively (Cornelis 
et al. 2009). Each SNP was weighted according to its rela-
tive effect size (β coefficient) from the recent meta-analysis 
(combined discovery + replication stages) by Morris et al. 
(2012). The score was rescaled to reflect the number of risk 
alleles and theoretically ranges from 0 to 110, with higher 
scores indicating a higher genetic susceptibility to T2D.

Statistical analysis

The variances explained by each of the components G1, 
E1, and FH or combinations of these components in 
simulations (for each value of ξ, shared environment) 
were compared to their respective values in real data. 
The estimate of ξ for a sample/dataset (ξ̂) is the value of 
ξ that minimizes the sum of squared residuals based on 
differences between observed variances in analyses of 
real phenotypes and the fitted variances in analyses of 
simulated phenotypes: (σ̂2

G1 − σ2
G1)

2 + (σ̂2
E1 − σ2

E1)
2 +  

(σ̂2
FH − σ2

FH)2 + (σ̂2
G1,E1 − σ2

G1,E1)
2 + (σ̂2

G1,FH − σ2
G1,FH)2 +  

(σ̂2
E1,FH − σ2

E1,FH)2 + (σ̂2
G1,E1,FH − σ2

G1,E1,FH)2. We simu-
lated 1,000 independent simulated data sets with sample 
sizes and parameter values matching those of the NHS 
and HPFS and computed estimates of ξ and corresponding 
non-parametric 95 % CI. Because BMI was the primary 
contributor to E1, and the narrow-sense heritability of 
BMI is widely believed to lie between 0.4 and 0.6 (Viss-
cher et al. 2012), we computed separate 95 % confidence 
intervals for x = 0.4 and x = 0.6 and conservatively report 
the union of those confidence intervals as our primary 
result. For each genetic data set, case–control status and all 
independent variables were normalized [i.e. mean of 0 and 
standard deviation (SD) of 1] prior to modeling. E1 con-
sisted of BMI (kg/m2), current smoking (yes/no), physical 
activity (METs/week), alcohol consumption (g/day), diet 
quality (AHEI) and age. The latter, however, contributed 
little to T2D liability in this data set as a result of age-
matching. Linear regression was used to obtain empirical 
estimates of the variance of T2D explained by any com-
bination of G1, E1 and/or FH. Similarly, we obtained 

empirical estimates of the variance of T2D explained by 
any combination of E1 and/or FH using the entire NHS 
(n = 84,880) and HPFS (n = 39,694) cohort, for which G1 
is not available. Our primary analysis included FH defined 
using parental history, but we also extend our framework 
to other definitions of FH.

Results

Baseline characteristics of cases and controls are presented 
in Table 1. In logistic regression analysis adjusting for age, 
lifestyle factors, BMI and the GRS, the odds ratio (95 % 
CI) of T2D associated with a positive parent history of 
diabetes was 2.82 (2.35–3.37) in the NHS and 2.86 (2.30–
3.55) in the HPFS.

Table 2 presents the variances in T2D risk explained by 
FH and G1 and E1 risk factors (and combinations thereof) 
observed in the NHS and HPFS. A parental history of dia-
betes explained 0.07 of the variance in risk among NHS 
and 0.06 among HPFS. For both cohorts, the risk variance 
explained by G1 (σ̂2

G1) and E1 (σ̂2
E1) was approximately 0.03 

and 0.18, respectively; thus σ2
G2 = 0.37 and σ2

E2 = 0.42. 
BMI was the primary contributor to σ̂2

E1: when considered 
alone, it explained 0.17 of the variance in T2D risk. Our 
estimate of G1 (3 %, based on 55 SNPs) in NHS and HPFS 
is lower than the 5.7 % (based on 63 SNPs) reported in the 
latest meta-analysis by Morris et al. (2012). The differences 
may be due to the number of SNPs analyzed, but are more 
likely due to differences between cohorts or to the winner’s 
curse (Garner 2007). Supplementary Tables S1 (NHS) and 
S2 (HPFS) present equivalent data to that of Table 2 apply-
ing different definitions of FH. For both cohorts accounting 
for sibling history of the disease added little to the variance 
of T2D risk beyond that of parental history. All variances 
in T2D risk explained by FH and E1 when estimated from 
the ascertained case–control studies of these cohorts were 
roughly threefold greater than those when estimated from 
the full cohorts (Supplementary Tables S3 and S4), con-
sistent with the fact that observed-scale variance increases 
under case–control ascertainment (0.954 vs. 0.344; see 
above) (Lee et al. 2011).

Results from simulations to estimate parental shared 
environment (ξ̂) for these two studies (where σ2

G1 = 0.03, 
σ2

E1 = 0.18, σ2
G2 = 0.37 and σ2

E2 = 0.42) are displayed in 
Fig. 1. When the proportion of E1 explained by genetics 
(x) is 0.5, and thus σ2

E1G = 0.09 and σ2
E1E = 0.09, the value 

of ξ that best fits the observed data reported in Table 2 for 
NHS (ξ̂) was 0.23 with 95 % CI (accounting for the uncer-
tainty in x) of 0.16–0.27 (Fig. 1a). The proportion of shared 
liability due to environment (π̂FH,E) is estimated to be 0.32 
(95 % CI 0.25–0.37). Estimates for HPFS were consistent, 
but slightly lower (Fig. 1b). Averaging across cohorts, we 
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obtained estimates of ξ̂ = 0.23 (95 % CI 0.15–0.27) and 
π̂FH,E = 0.32 (95 % CI 0.24–0.36). Setting x = 0 (an unre-
alistically low value) yields only slightly higher estimates 
of ξ̂ (Fig. 1) and π̂FH,E for both cohorts.

Our estimate of parental shared environment (ξ̂, 23 % 
where x = 0.5) in NHS and HPFS is much lower than that 
reported in population-based twin studies (Kaprio et al. 
1992; Poulsen et al. 1999). In an earlier Finnish Twin study 
by Kaprio et al. (1992), additive genetics, shared environ-
ment and non-shared environment accounted for 42, 30 and 
28 % of the variance in T2D, respectively. Corresponding 
estimates in a recent analysis of the Danish Twin Registry 

were 26, 41 and 33 % (Poulsen et al. 1999). When adjust-
ing our simulation parameter estimate of G1 from 0.40 to 
0.26 [reported by Poulsen et al. (1999)], ξ̂ was 29 % in both 
the NHS and HPFS. In our simulations where estimates of 
the heritability of T2D range from 20 to 60 % an approxi-
mate linear decrease in ξ̂ is observed for both cohorts 
(Fig. 2), and thus remained relatively low in comparison 
to twin studies. Varying the proportion of E1 explained by 
genetics (x) had little impact on ξ̂, with values ranging from 
0.27 to 0.19 across cohorts (Fig. 3).

Supplementary Figure S1 displays results of simu-
lations when extending our definition of FH to include 
diabetes history of one to five siblings. For both studies, 
ξ̂slightly decreases with each additional sibling. Simu-
lating three first-degree relatives, we repeated the simu-
lation experiment outlined for parental history above 
for a family history of the disease. When the proportion 
of E1 explained by genetics (x) is 0.5, the estimate of ξ̂ 
that best fits the observed data in Table 2 (parental or 
sibling history of diabetes) for NHS was 0.16 (95 % CI 
0.11–0.22) and π̂FH,E = 0.25 (95 % CI 0.19–0.29) (Sup-
plementary Fig. S2a). In HPFS, corresponding esti-
mates of ξ̂ and π̂FH,E were 0.13 (95 % CI 0.03–0.17) and 
π̂FH,E = 0.21 (95 % CI 0.06–0.28), respectively (Sup-
plementary Fig. S2b). Similar patterns to that described 
for parental history when varying estimates of heritabil-
ity (G1 + G2) and proportion of E1 explained by genet-
ics (x) were observed when corresponding family his-
tory simulations were performed (Supplementary Figs. 
S2–S4).

Table 1  Baseline characteristics of the Nurses’ Health Study and Health Professionals Follow-up Study nested case–control studies of T2D

a Data are means (standard deviation) for continuous and n (%) for dichotomous variables
b Results from analysis of variance (continuous variables) or χ2 (dichotomous variables) comparing future cases to controls for each study
c Information on type of diabetes in family members or other family structure details (i.e. adopted or biological parents) was not collected
d Number of biological siblings, including any deceased but not half siblings, was collected in 1996

Characteristic NHS HPFS

Controlsa Casesa Pb Controlsa Casesa Pb

n = 1,746 n = 1,237 n = 1,287 n = 867

Age 47.1 (6.8) 47.1 (6.8) 0.99 55.5 (8.4) 54.3 (8.3) 0.001

BMI, kg/m2 24.2 (4.2) 28.3 (5.1) <0.0001 25.0 (2.7) 28.0 (3.9) <0.0001

Alternative Healthy Eating Index 31 (5.9) 31 (5.7) 0.01 48 (11) 45 (10) <0.0001

Current Smoking, n (%) 340 (19) 322 (26) <0.0001 136 (11) 138 (16) 0.0003

Alcohol, g/day 6.5 (9.6) 4.7 (8.9) <0.0001 12.1 (15.1) 11.8 (16.3) 0.70

Physical activity, METs/week 14 (16) 12 (14) <0.0001 21 (23) 14 (19) <0.0001

Family history of diabetes, n (%) 418 (24) 630 (51) <0.0001 362 (28) 460 (53) <0.0001

 Parent historyc 358 (21) 558 (45) <0.0001 267 (21) 381 (44) <0.0001

 Sibling historyc 111 (6) 198 (16) <0.0001 142 (11) 229 (26) <0.0001

Number of siblingsd 2.49 (1.99) 2.47 (1.97) 0.79 2.18 (1.83) 2.10 (1.78) 0.30

T2D genetic risk score (G1) 58.5 (5.0) 60.3 (5.1) <0.0001 58.7 (5.1) 60.5 (4.9) <0.0001

Table 2  Variance in T2D risk explained by parental history of diabe-
tes (FH) and known genetic (G1) and environmental (E1) risk factors

a Observed-scaled σ2 from linear regressions of FH, G1 (T2D GRS) 
and E1 (age, BMI, smoking status, diet quality, alcohol consumption 
and physical activity) and their combinations (specified in column 1) 
on T2D case-status

Model NHSa HPFSa

σ2 95 % CI σ2 95 % CI

FH 0.069 0.051–0.087 0.062 0.042–0.082

G1 0.032 0.020–0.044 0.031 0.017–0.045

E1 0.179 0.154–0.204 0.185 0.155–0.215

FH, G1 0.093 0.073–0.113 0.084 0.062–0.106

FH, E1 0.222 0.196–0.248 0.226 0.195–0.257

G1, E1 0.207 0.181–0.233 0.212 0.181–0.243

FH, G1, E1 0.244 0.217–0.270 0.247 0.216–0.278
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Discussion

In the current study we quantify the extent to which fam-
ily history derives from genetic or environmental factors. 
We developed a statistical framework that models four 
components of variance, including known and unknown 
genetic and environmental factors, using a liability thresh-
old model. Our approach relies on a comparison between 
simulations and empirical data. By comparing the asso-
ciation of parental history with T2D in our simulations to 
case–control studies of T2D nested in the NHS and HPFS, 
we estimate that first-degree relatives have a correlation of 
23 % (95 % CI 15–27 %) in their environmental contribu-
tion to T2D liability and that this shared environment is 
responsible for 32 % (95 % CI 24–36 %) of the association 

between parental history and T2D, with the remainder due 
to shared genetics. These findings corroborate and extend 
the earlier work by Khoury et al. (1988), which relied 
exclusively on simulations and did not analyze real pheno-
types. Although the current study focused on parental his-
tory, our framework can also be extended to definitions of 
family history that include sibling history. Our methods can 
also be applied to full cohort studies instead of ascertained 
case–control studies.

Studies of related individuals have traditionally been 
used to estimate the environmental and genetic components 
underlying familial aggregation of disease but are often 
underpowered and subject to a number of biases (Hopper 
et al. 2005; Kendler et al. 1993; Zaitlen et al. 2013; Zuk 
et al. 2012). For example, the assumption of equal shared 
environments between monozygotic and dizygotic twins is 
often not valid and could lead to an overestimate of shared 
genetics. The assumption that the correlation of adoptees 
with their biological parents is due to genetic factors and 
correlation with their adoptive parents is due to environ-
mental factors may be violated when placement is selec-
tive. Estimates of heritability may also be upwardly biased 
when cases are selected from samples with closely related 
pairs of individuals (Hopper et al. 2005; Zaitlen et al. 2013) 
or when certain types of epistatic (gene–gene) interactions 
exist (Kendler et al. 1993; Zuk et al. 2012). Finally, several 
conceptual issues surrounding these designs also impact 
the interpretation and generalizability of the findings.

Studies of unrelated individuals with available genetic, 
environmental and family history data are less susceptible 
to the aforementioned biases and their large size, avail-
ability and diversity allow greater power. To our knowl-
edge, no previous studies have thoroughly exploited these 
advantages. Chatterjee et al. (2006) developed a combined 
approach of kin-cohort and case–control analysis with 
application to breast cancer to estimate residual familial 
aggregation, defined as risk conferred by a positive fam-
ily history excluding risk caused by known variants, but do 
not partition this estimate into environmental and unknown 
genetic factors. Bajdik et al. (2001) created a model to sim-
ulate the incidence of breast/ovarian cancer in the family 
of a mutation carrier, but do not incorporate environmen-
tal factors. Our approach is based on the liability threshold 
model (Falconer 1967), which is widely used (Lee et al. 
2011; Plomin et al. 2009) but largely untestable with the 
data we analyze here; we caution that our results could be 
affected by model mis-specification if this is not the correct 
model.

The quality and quantity of data collected for a popu-
lation will be an important determinant of how well our 
method performs. Although our method is flexible enough 
to be applied to various case–control settings, the results 
remain largely population specific. The high level of 

Fig. 1  Estimates of parental shared environment (ξ̂). Results for 
NHS (a) and HPFS (b) under simulation models, where the heritabil-
ity of type 2 diabetes (σ2

G1 + σ2
G2) is 0.40, σ2

G1 = 0.03, σ2
E1 = 0.18, 

σ2
G2 = 0.37, σ2

E2 = 0.42 and x = 0.0, 0.4, 0.5 or 0.6. The best estimate 
(or fit) of ξ for a dataset (ξ̂) is the value of ξ that minimizes the sum 
of squared residuals based on differences between observed variances 
in analyses of real phenotypes and the fitted variances in analyses of 
simulated phenotypes (see “Materials and methods”)
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education and interest in health in the NHS and HPFS may 
reduce the variance in environmental exposures predispos-
ing to disease which may potentially lead to an overesti-
mation of the genetic contribution to the analysis. The phe-
notypic variance for height and BMI explained by additive 
SNP effects in an extended sample of these two cohorts 
is 35 and 22 %, respectively, and is comparable to those 
estimated for cohorts with supposedly more generalizable 
characteristics (Yang et al. 2010a, b), suggesting selec-
tion biases in NHS and HPFS may be limited. Like many 
epidemiological cohorts, the exposure data for NHS and 

HPFS were largely collected via self-report, which is prone 
to error and biases and often limits the amount of detailed 
data collected. In the current study, we used simple defi-
nitions of ‘parental’ and ‘family’ history as these are fre-
quently used in large population settings. More complex 
family history ‘scores’, incorporating age of disease onset, 
gender and family structures have been proposed (Feng 
et al. 2009) and might be considered in future applications 
of our method. Epigenetics is not specifically accounted 
for in our framework but will be only one of many factors 
contributing to shared and unshared environmental com-
ponents. In contrast to ‘environment’ data, genetic data 
are measured very well. For T2D, however, the variance 
explained by known variants (G1) is but a small fraction 
of estimated heritability (Morris et al. 2012). As more dis-
ease loci are discovered (i.e. G1), the performance of our 
method is likely to improve.

Several risk prediction algorithms that account for fam-
ily history have been developed (Do et al. 2012; Lewis 
et al. 2007; Ruderfer et al. 2010; So et al. 2011). Some of 
these may extend to inclusion of environmental or clinical 
factors but often assume independence of these risk fac-
tors with known genetic variants and family history. Recent 
work by Chatterjee et al. (2013) has quantified the amount 
by which family history can improve polygenic risk predic-
tion. However, that study assumed that family history is 
entirely genetic, whereas our results show that family his-
tory is partly environmental, implying that the amount by 
which family history can improve polygenic risk predic-
tion may be greater than that reported by Chatterjee et al. 
(2013).

Our findings, if generalizable to other populations, thus 
inform the interpretation of a ‘positive’ family history and, 

Fig. 2  Parental shared environment (ξ̂) under simulation models 
with varying heritability estimates of type 2 diabetes. Heritability 
estimates range from 0.20 to 0.60 with increments of 0.05. σ2

G1 and  

σ2
E1 are held constant with values of 0.03 and 0.18, respectively. 

Results for NHS (a) and HPFS (b)

Fig. 3  Parental shared environment (ξ̂) under simulation models 
with varying proportions of E1 explained by genetics (x). σ2

G1 = 0.03, 
σ2

E1 = 0.18, σ2
G2 = 0.37, σ2

E2 = 0.42. E1 is partitioned into a genetic 
component E1G (σ2

E1G = σ2
E1(x)) and an environmental component 

E1E (σ2
E1E = σ2

E1 − σ2
E1G), where x ranges from 0.0 to 0.75 with 0.05 

increments
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consequently, the performance and/or interpretation of 
studies that seek to use family history as a novel research 
tool (Ghosh et al. 2012; Thornton and McPeek 2007).
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