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the first study to apply next-generation sequencing-based, 
comprehensive molecular diagnoses to a large number of 
RP probands from Northern Ireland. Our study shows that 
molecular information can aid clinical diagnosis, poten-
tially changing treatment options, current family coun-
seling and management.

Introduction

Retinitis pigmentosa (RP; MIM#268000) refers to a group 
of inherited retinal diseases characterized by progres-
sive photoreceptor apoptosis and retinal degeneration. RP 
is the most common form of hereditary retinal degenera-
tion with a prevalence of approximately 1:3,500 to 1:4,000 
(Wang et al. 2005; Haim 2002) affecting more than one 
million individuals worldwide (Chang et al. 2011). The 
typical clinical manifestations of RP include night blind-
ness and tunnel vision. Some patients may eventually 
develop complete blindness. The phenotype of RP usually 
occurs alone, as nonsyndromic RP affecting only the eye. 
In some rare cases, RP can also be accompanied with other 
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clinical symptoms affecting additional organs. For exam-
ple, patients with Usher syndrome suffer both RP and hear-
ing loss. RP is a highly genetically heterogeneous disease. 
First, more than 50 genes are known to be associated with 
nonsyndromic RP (RetNet; http://www.sph.uth.tmc.edu/ 
Retnet/) and nearly 3,100 pathogenic mutations have been 
reported (Chang et al. 2011). Second, the inheritance pat-
tern of RP involves all modes: autosomal-dominant (adRP), 
autosomal-recessive (arRP), X-linked (xlRP), and digenic 
forms (Anasagasti et al. 2013; Neveling et al. 2012; Kaji-
wara et al. 1994). Third, the molecular basis of RP overlaps 
with other retinal diseases. Different mutations in the same 
genes, or sometimes even the exact same mutations, can 
cause different retinal diseases (Wang et al. 2014).

Because of the heterogeneity of RP, accurate molecular 
diagnosis is essential for meaningful patient counseling as 
it can provide specific disease characterization and prog-
nostic information. Hitherto, standard methods of genetic 
testing for RP include Sanger sequencing, arrayed primer 
extension (APEX) and next-generation sequencing (NGS). 
Sanger sequencing is the gold standard of sequencing, 
however, it is costly for large-scale sequencing. APEX only 
analyzes previously reported mutation loci and thus misses 
novel mutations, leading to a low diagnosis rate (Avila-Fer-
nandez et al. 2010; Zeitz et al. 2009). NGS is currently con-
sidered the most efficient method for mutation screening. 
One approach of NGS is target sequencing, which limits 
testing to known disease-causing genes. For instance, our 
laboratory has developed a retinal capture panel to system-
atically test over 150 known retinal disease genes for path-
ogenic mutations in RP and Leber congenital amaurosis 
patients (Wang et al. 2013, 2014). The NGS-based targeted 
sequencing is superior in both time and cost compared to 
other methods, which makes it an optimal approach for the 
molecular diagnosis of RP.

It is known that the prevalence of causative genes and 
the mutation spectrum can vary significantly among differ-
ent ethnicity groups. This is especially notable in relatively 
isolated populations or those with a higher consanguineous 
rate. For example, in Israeli and Palestinian patient popula-
tions, FAM161A mutations account for about 12 % of arRP 
cases (Bandah-Rozenfeld et al. 2010), whereas in North 
America FAM161A is responsible for only 1 % of arRP 
cases (Venturini et al. 2014). Furthermore, within a certain 
ethnic background, the frequency of a specific mutant allele 
may vary geographically. As an example, the well-known 
c.2299delG, p.(Glu767Serfs) mutation in USH2A is fre-
quently found in European patients. This mutation accounts 
for 47.5 % of USH2A alleles in Denmark (Dreyer et al. 
2008), while the allelic frequency is 31 % in the Nether-
lands (Pennings et al. 2004) and 10 % in France (Aller et al. 
2010). The mutation frequency may become common as a 

result of the founder effect and may change due to genetic 
drift. Therefore, characterizing the mutation spectrum of a 
certain RP cohort can provide more comprehensive knowl-
edge of the disease.

In this study, we performed NGS-based targeted 
sequencing in 82 unrelated RP cases from Northern Ire-
land; 46 were simplex cases and 36 were familial cases. 
The capture panel covered 55 RP genes and 131 other reti-
nal disease genes. To our knowledge, this is the first study 
that performed NGS-based comprehensive molecular diag-
nosis on a large number of RP probands from Northern Ire-
land. Our study demonstrated that an NGS-based molecu-
lar diagnosis can facilitate a clinical diagnosis that better 
defines the disease and helps with family planning and 
patient management.

Materials and methods

Clinical diagnosis and sample collection

A cohort of 82 RP patients and other family members were 
ascertained at the Department of Ophthalmology (BHSCT) 
and Centre for Experimental Medicine (Belfast, UK). All 
patients had a detailed clinical history and underwent full 
ophthalmic evaluation including visual acuity testing, vis-
ual fields testing, fundal examination, and electroretinogra-
phy. Retinitis pigmentosa was diagnosed on the basis of the 
typical fundal features (bone spicule retinal pigmentation, 
arteriolar attenuation, and optic disc pallor), visual field 
constriction, and an attenuated or abolished electroretino-
gram. Pedigrees are constructed based on interview. Avail-
able additional family members both affected and unaf-
fected were also recruited. Genomic DNA of patients was 
extracted from peripheral blood. The research was con-
ducted in accordance with the Tenets of the declaration of 
Helsinki. Ethical permission was granted through ORECNI 
and all patients gave written consent to participate in the 
study.

Retinal capture panel design

A capture panel of retinal disease genes was designed by 
our group which has been successfully applied for the 
molecular diagnosis of RP and Leber congenital amaurosis 
patients (Wang et al. 2013, 2014; Fu et al. 2013a). In this 
study, we updated the capture panel to include 23 newly 
reported retinal disease genes. The panel consisted of 
994,088 bp covering 3,720 exons in 186 known retinal dis-
ease genes (RetNet; http://www.sph.uth.tmc.edu/Retnet/), 
including 55 known RP genes that had been reported at the 
time of panel design (Table S1).

http://www.sph.uth.tmc.edu/Retnet/
http://www.sph.uth.tmc.edu/Retnet/
http://www.sph.uth.tmc.edu/Retnet/
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Library preparation and capture sequencing

Pre-capture Illumina paired-end libraries were generated 
according to the manufacturer’s protocol. Briefly, ~1 μg of 
patient’s genomic DNA was sheared into 300–500 bp frag-
ments. The DNA fragments were end-repaired and a sin-
gle adenine base was added to the 3′ ends using Klenow 
exonuclease. Illumina Y-shape index adapters were ligated 
to the repaired ends, and DNA fragments were PCR ampli-
fied for eight cycles after ligation. The DNA libraries were 
quantified by the PicoGreen fluorescence assay kit (Invit-
rogen, Carlsbad, CA, USA). In each capture reaction, 50 
pre-capture DNA libraries were pooled together. The tar-
geted DNA was captured, washed and recovered using Agi-
lent Hybridization and Wash Kits (Agilent Technologies, 
Santa Clara, CA, USA). Captured libraries were sequenced 
on Illumina HiSeq 2000 (Illumina, San Diego, CA, USA) 
as 100 bp paired-end reads, following the manufacturer’s 
protocol.

Bioinformatics analysis

Paired-end sequencing reads were obtained for each sam-
ple. Reads were mapped to human reference genome hg19 
using Burrows–Wheeler Aligner (BWA version 0.6.1) (Li 
and Durbin 2009). Base quality recalibration and local 
realignment were performed using the Genome Analysis 
Tool Kit (GATK version 1.0.5974) (McKenna et al. 2010). 
AtlasSNP and AtlasIndel2 (Challis et al. 2012) were used 
to call single-nucleotide polymorphisms (SNPs) and small 
insertions and deletions (INDELs).

Since RP is a rare Mendelian disease, polymorphisms 
that appear at a higher than 0.5 % frequency (for reces-
sive variants) or 0.1 % frequency (for dominant variants) 
in at least one of the following databases were consid-
ered too frequent to be pathogenic and therefore excluded 
from further analysis: the 1000 Genome (build 20110521 
and 20101123) (Genomes Project C et al. 2010, 2012), 
dbSNP135 (Sherry et al. 2001), NHLBI exome sequenc-
ing database (Fu et al. 2013b), NIEHS exome sequencing 
database (Genomes Project C et al. 2010), and our inter-
nal control databases. After frequency-based filtering, 
ANNOVAR (Wang et al. 2010) was used to predict pro-
tein-coding changes and filter out synonymous variants. 
Furthermore, mutations known to cause retinal diseases 
were identified by searching against HGMD professional 
database (Stenson et al. 2013). Finally, dbNSFP (version 
2.3) (Liu et al. 2013), a program that compiles predic-
tion scores from six prediction algorithms [SIFT (Ng and 
Henikoff 2003), Polyphen2 (Adzhubei et al. 2010), LRT 
(Chun and Fay 2009), MutationTaster (Schwarz et al. 
2010), MutationAssessor (Reva et al. 2011) and FATHMM 
(Shihab et al. 2013)] and three conservation scores [Phylop 

(Siepel et al. RECOMB 2006), GERP++ (Davydov et al. 
2010) and Siphy (Garber et al. 2009; Lindblad-Toh et al. 
2011)], was used to predict the pathogenicity of novel mis-
sense variants. The details of the method are described in 
supplementary material. The prediction of novel missense 
variants is listed in Table S2.

Causative mutation prioritization

For each patient, we looked for causative variants using the 
following prioritization strategy:

1. Reported pathogenic variants in RP genes.
2. Novel severe loss-of-function (LOF) variants (stop-

gain, splicing, frameshift, fail-to-start) in RP genes.
3. Novel missense variants in RP genes. The missense 

variants must be predicted to be deleterious by dbNSFP 
as described in the Sect. “Materials and methods”.

4. Pathogenic variants in other retinal disease genes.

All the variants should be consistent with the known 
pattern of inheritance of the respective gene (i.e., homozy-
gous/compound heterozygous for recessive genes and het-
erozygous for dominant genes). For the familial cases, we 
specifically looked for variants in genes that matched the 
inheritance patterns predicted from the pedigrees.

Sanger sequencing validation and family segregation test

All putative mutations identified by NGS were validated 
using Sanger sequencing and tested for co-segregation if 
additional affected family members are available. Primers 
were designed using Primer3 (Rozen and Skaletsky 2000). 
To ensure the quality of Sanger sequencing, the amplicons 
were designed to have a boundary around 100 bp away 
from the mutation. Then the amplicons (~400 bp) were 
Sanger sequenced on Applied BioSystems (ABI) 3,730 × l 
capillary sequencer (Applied Biosystems Inc., Foster City, 
CA, USA). The Sanger sequencing results were analyzed 
using Sequencher (version 5.0).

Results

82 Unrelated Northern Ireland families with RP patients 
were recruited

A total of 82 well-characterized RP families from Northern 
Ireland were recruited for this study. Among these families, 
36 had two or more affected members, while the remain-
ing 46 with only one affected member are considered as 
simplex cases. Based on the pedigree information, 26.8 % 
(22/82) of the families were arRP, 13.4 % (11/82) of the 
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families were adRP, 3.7 % (3/82) were xlRP, and 56.1 % 
(46/82) were simplex.

High-quality NGS results were obtained

Capture NGS was performed on all 82 RP families. DNA 
from one affected member of each family was selected, 
captured and sequenced. Within the design region, an aver-
age of 141× coverage was achieved for all samples. 95.1 % 
of bases had coverage of >10×, 91.8 % of bases had cover-
age of >20× and 85.5 % of bases had coverage of >40×, 
indicating that sufficient coverage was achieved to enable 
high variant detection sensitivity (Fig. 1a). To test if the 
coverage of target region was evenly distributed, an even-
ness score was calculated for each sample as described 
previously (Fig. 1b) (Mokry et al. 2010). On average, the 
evenness score for all the 82 probands was 0.8, suggesting 
a nearly uniform distribution was achieved.

Pathogenic mutations were identified in 49 probands

An average of 732 variants, including 672 SNPs and 60 
small INDELs, were initially identified for each sample 
in the targeted region. After all filtering and annotation 

steps (see Sect. “Materials and methods”), an average of 
8.2 SNPs and 1.8 INDELs per patient remained and were 
therefore considered as candidate pathogenic variants. 
Through the mutation prioritization procedure (see Sect. 
“Materials and methods”), we identified pathogenic muta-
tions in 49 probands, including 28 simplex cases and 21 
familial cases, and achieved a solving rate of 60 % (49/82) 
(Tables 1 and 2). 

Simplex cases

Out of the 46 simplex RP cases, 28 (61 %) were identified 
as carrying pathogenic or putative pathogenic mutations in 
known retinal disease genes. Overall, 41 mutations were 
identified in the simplex RP cases and 20 of them were 
novel. Among these novel mutations, six were LOF muta-
tions, including four frameshift and two nonsense muta-
tions. The remaining fourteen were novel missense variants 
that passed multiple frequency-based filters and were pre-
dicted to be pathogenic by dbNSFP (Table S2). Genotypes 
of the patients are detailed in Table 1.

According to the identified mutations, the inheritance 
pattern of two of the simplex probands was autosomal 
dominant (proband Rp25, proband Rp29), two probands 
were X-linked cases (proband Rp349B, proband Rp232A) 
rather than simplex, and the remaining 24 probands carry 
mutations in autosomal-recessive genes. In most cases, the 
diagnosis of simplex RP is strongly biased towards a reces-
sive model; however, it is possible that the simplex cases 
are due to mutations in dominant RP genes. For proband 
Rp25 further assessment of family members was carried 
out. Both Rp25′s parents were deceased but reported as 
unaffected. However, a history of blindness was reported in 
the paternal grandfather and two great-uncles, making the 
inheritance pattern likely to be autosomal dominant.

A total of 16 causative genes were observed in our 
simplex cohort. The most prevalent mutated gene was 
USH2A, which explained disease in eight probands. 
Among the 16 causative genes, eight of them are known 
RP genes, which accounted for 18 (64 %) simplex cases. 
Interestingly, pathogenic mutations in eight other retinal 
disease genes (CDH23, VPS13B, MYO7A, CLRN1, RS1, 
CACNA1F, PHYH, and NPHP4) were found in 10 (36 %) 
probands, including five previously reported alleles, two 
novel LOF alleles, and eight novel missense alleles. The 
minor allele frequency (MAF) and pathogenicity predic-
tions for the novel missense alleles are listed in Table S2. 
For these 10 simplex probands, the molecular information 
is inconsistent with the original clinical diagnosis. This 
could be due to the difficulty of assigning a more precise 
clinical diagnosis at the time of the initial visit, or a novel 
genotype–phenotype correlation as proposed in Wang 
et al. (2014).
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To further investigate the two possibilities for these 
probands, we either reviewed the available clinical data 
and imaging or performed further clinical assessment. 
One proband (Rp131) was confirmed to be affected by RP, 
while the rest of nine probands (Rp78, Rp112, Rp399A, 
Rp83, Rp41, Rp76, Rp349B, Rp232A, and Rp58) were re-
diagnosed to other retinal diseases (Table S4).

Proband Rp131 who carries compound heterozygous 
mutations in NPHP4 remained a diagnosis of RP after clin-
ical reassessment. Mutations in NPHP4 are associated with 
nephronophthisis type 4, a renal disease, and with Senior–
Loken syndrome type 4, a combination of nephronophthi-
sis and retinitis pigmentosa (Hoefele et al. 2005; Otto et al. 
2002). However, Rp131 did not show any clinical signs of 
nephrolithiasis; therefore, the mutation in NPHP4 must not 
be expressing clinically in the kidneys in this patient, and 
proband Rp131 was confirmed as RP.

Proband Rp58 is an interesting case of clinical re-diag-
nosis. The patient carries a putative pathogenic homozy-
gous mutation c.403G > A, p.(Gly135Arg) in PHYH. 
PHYH was previously reported to cause Refsum disease 
(Jansen et al. 2004) which is characterized by early-onset 
RP with variable symptoms including, but not limited to, 
ataxia, neuropathy, hearing loss, and anosmia. Patients 
with Refsum disease usually have night blindness and reti-
nal degeneration in their late childhood or early adulthood, 
and as the disease progresses, other symptoms may appear. 
Some patients will not develop other symptoms until their 
40 or 50 s (Wanders et al. 1993). Therefore, it is very dif-
ficult to distinguish Refsum disease and RP if the disease 
is at the early stage. We revisited proband Rp58 and other 
available family members. Rp58 had developed mild cer-
ebellar ataxia and hearing loss in later years. Interestingly, 
two sons of Rp58 showed learning disability and dyslexia 

Table 2  Summary of 21 familial cases carrying pathogenic mutations

ID Type Gene NM ID Genotype cDNA change Protein change References

Probands carry pathogenic mutations in known RP genes

 Rp113 arRP ABCA4 NM_000350 Homozygous c.3211_3212insGT p.(Ser1071Cysfs) (Allikmets et al. 1997)

 Rp105 arRP ABCA4 NM_000350 Homozygous c.2041C > T p.(Arg681*) (Maugeri et al. 1999)

 Rp125 arRP ABCA4 NM_000350 Heterozygous c.6416G > C p.(Arg2139Pro) Novel

Heterozygous c.1519G > T p.(Asp507Tyr) (Fujinami et al. 2013b)

 Rp375B arRP ABCA4 NM_000350 Heterozygous c.161G > A p.(Cys54Tyr) (Green et al. 1999)

c.43_48del6insC p.(Trp15Alafs) Novel

 Rp124 arRP BBS1 NM_024649 Homozygous c.1169T > G p.(Met390Arg) (Estrada-Cuzcano et al. 2012)

 Rp79 arRP CRB1 NM_201253 Heterozygous c.2129A > T p.(Glu710Val) (Clark et al. 2010)

Heterozygous c.2234C > T p.(Thr745Met) (den Hollander et al. 1999)

 Rp73 arRP CERKL NM_201548 Homozygous c.847C > T p.(Arg283*) (Tuson et al. 2004)

 Rp128 arRP CERKL NM_201548 Homozygous c.847C > T p.(Arg283*) (Tuson et al. 2004)

 Rp69 arRP IMPG2 NM_016247 Homozygous c.829-1G > T p.(?) Novel

 Rp116 arRP PROM1 NM_006017 Heterozygous c.1355_1356insT p.(Tyr453Leufs) Novel

Heterozygous c.622delA p.(Thr208Leufs) Novel

 Rp107 arRP USH2A NM_206933 Heterozygous c.14453C > T p.(Pro4818Leu) (Aller et al. 2006)

Heterozygous c.3187_3188del p.(Gln1063Serfs) (Seyedahmadi et al. 2004)

 Rp229 arRP USH2A NM_206933 Heterozygous c.10073G > A p.(Cys3358Tyr) (McGee et al. 2010)

Heterozygous c.14458_14505del p.(Ala4820_Pro4835del) Novel

 Rp55 arRP USH2A NM_206933 Heterozygous c.769G > A p.(Gly257Arg) (Le Quesne Stabej et al. 2012)

Heterozygous c.2276G > T p.(Cys759Phe) (Rivolta et al. 2000)

 Rp114 arRP PDE6B NM_000283 Homozygous c.1547T > C p.(Leu516Pro) (Clark et al. 2010)

 Rp289 arRP PDE6B NM_000283 Heterozygous c.1895T > C p.(Phe632Ser) Novel

Heterozygous c.2116A > T p.(Lys706*) (McLaughlin et al. 1995)

 Rp142 adRP SNRNP200 NM_014014 Heterozygous c.2042G > A p.(Arg681His) (Benaglio et al. 2011)

 RD1200008 adRP PRPH2 NM_000322 Heterozygous c.1A > T p.(Met1Leu) Novel

 Rp181 xlRP RP2 NM_006915 Hemizygous c.352C > T p.(Arg118Cys) (Bader et al. 2003)

 Rp296 xlRP RPGR NM_000328 Hemizygous c.778 + 1G > C p.(?) (Shu et al. 2007)

Probands carry pathogenic mutations in other retinal disease genes

 Rp278B adRP PITPNM3 NM_031220 Heterozygous c.1878G > C p.(Gln626His) (Kohn et al. 2007)

 Rp150 xlRP CHM NM_000390 Heterozygous c.498_499del p.(Leu167Argfs) Novel
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(Fig. 2). Considering both the clinical reassessment and the 
molecular information, Rp58 was re-diagnosed to Refsum 
disease and dietary treatment was started.

Proband Rp83 carries compound heterozygous LOF 
mutations in VPS13B, which was reported to cause Cohen 
syndrome (Kolehmainen et al. 2004). The features of 
Cohen syndrome vary widely among affected individu-
als, and one of the features is retinal degeneration (Chan-
dler et al. 2002), which is phenotypically similar to RP. 
We revisited patient Rp83 and other syndromic features 
were revealed, including learning difficulties, clumsiness, 
characteristic facial features, progressive retinochoroidal 
dystrophy, and myopia. Therefore, proband Rp83 was re-
diagnosed to Cohen syndrome.

The remaining five re-diagnosed patients carry patho-
genic mutations in genes that are known to cause Usher 
syndrome (Rp78 with CDH23 mutations, Rp112 with 
CDH23 mutations, Rp399A with CDH23 mutations, Rp41 
with MYO7A mutations, and Rp76 with CLRN1 muta-
tions). After clinical reassessment, all five probands were 
found to have a mild hearing loss in addition to RP, and 
were reclassified as Usher syndrome patients. Interestingly, 
patient Rp399A had posed a diagnostic difficulty. Although 
the patient had typical features of a pigmentary retinopathy, 
there was no history of nyctalopia. The patient’s mother 
had contracted rubella while pregnant with patient Rp399A 
and the family was keen to establish definitively whether 

the patient had nonprogressive retinopathy due to rubella or 
whether this was an inherited progressive disorder for the 
purposes of genetic counseling.

Familial cases

Out of 36 familial cases, 21 probands (58 %) were iden-
tified as carrying putative pathogenic mutations in known 
retinal disease genes, as shown in Table 2. These 21 solved 
familial cases are from 15 arRP, three adRP and three xlRP 
families. For the 15 solved arRP cases, there were in total 
22 variants identified, including 15 previously reported 
variants and seven novel variants. The seven novel variants 
included four LOF mutations, one nonframeshift deletion 
and two missense mutations. The novel missense variants 
were filtered with 0.5 % frequency in multiple control data-
bases, and predicted to be pathogenic by dbNSFP (Table 
S2). Among the three solved adRP cases, two probands 
carry previously reported mutations and one proband 
(RD120008) carries a fail-to-start mutation in dominant RP 
gene PRPH2. For the three xlRP cases, two probands carry 
reported mutations known to cause RP and one proband 
carries a LOF mutation in CHM.

For some familial cases, the inheritance modes obtained 
from the pedigree did not match with the mutations identi-
fied in the patients. For example, proband Rp73 was ini-
tially classified as xlRP according to the pedigree (Fig. 3a), 
as all the 5 patients were male and none of the female fam-
ily members were affected. Since this family was at risk 
of xlRP, the male offspring of a carrier mother has a 50 % 
chance of having the disease. To prevent the transmission 
of RP, the daughters of affected members were undergoing 
embryonic testing. However, with the molecular diagnosis, 
proband Rp73 was found to carry a reported homozygous 
stop-gain mutation in CERKL on chromosome 2, which 
suggested that proband Rp73 in fact had arRP. To confirm 
this finding, we performed segregation on this family. The 
segregation test was consistent with the molecular diag-
nosis, saving the family from performing taxing offspring 
selection.

In our familial cases, we identified pathogenic muta-
tions in two genes that have not been previously linked 
to RP (PIPTNM3, CHM) but are known to cause other 
retinal dystrophies. To resolve these ambiguous cases, we 
reviewed the patients and performed a clinical reassess-
ment. After revisiting the patients, they were re-diagnosed 
to other retinal diseases (Table S4).

In the case of proband Rp278B (Fig. 3b), the pedigree 
appeared to show adRP. We identified a known heterozygous 
mutation c.1878G > C, p.(Gln626His) in PITPNM3. The 
mutation was reported to cause autosomal-dominant cone 
dystrophy (Kohn et al. 2007) and patient Rp278B was re-
diagnosed to dominant cone dystrophy. However, when we 

5

5 5
Learning 
disability

Dyslexia

Rp58

Hearing loss;
Learning disability

M1/M1

M1: PHYH, c.403G>A, p.(Gly135Arg)  

I

II

III

IV

1 2

1 2 3 4

1 2 3 4-8

1 2 3 4-8 9-13

Fig. 2  Pedigrees and mutations of proband Rp58. The patient car-
ried a putative pathogenic homozygous mutation c.403G > A, 
p.(Gly135Arg) in PHYH, and was refined to Refsum disease
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performed a segregation test on other affected family mem-
bers, this mutation was not shared by the patient’s affected 
mother and aunts. One possible explanation is that the 
affected members of this family have different types of reti-
nal diseases that are caused by different genetic mutations.

Another case is proband Rp150 (female) (Fig. 3c), 
which was identified as carrying a heterozygous frameshift 
mutation in CHM. Mutations in this gene are known to 
cause choroideremia, an X-linked eye disorder character-
ized by progressive degeneration of the choroid, retinal 
pigment epithelium, and retina. A hemizygous mutated 
male is fully affected while the female heterozygous carri-
ers usually show mild fundus abnormalities (irregular pig-
mentation of the retinal periphery) which are typically sub-
clinical. Yet, some female carriers may also develop the full 
choroideremia phenotype (van den Hurk et al. 1997; Fran-
cois 1971). Choroideremia can be confused with RP since 
both have symptoms of night blindness and tunnel vision. 
The difference is that the loss of vision in choroideremia 
often starts as an irregular ring that gradually expands both 
centrally and out toward the extreme periphery (Coussa and 
Traboulsi 2012). In our case, proband Rp150 might be a 
female choroideremia carrier.

Collectively, as shown in Tables 1 and 2, 65 pathogenic 
mutations were identified in 49 probands, including 28 
simplex cases and 21 familial cases. Twenty-nine (44.6 %) 
of 65 pathogenic mutations identified were novel (Table 3). 
Most of these mutations were nonsynonymous (61.5 %) 
while a significant proportion is frameshift (16.9 %) and 
stop-gain (12.3 %). As shown in Table S4, among all sim-
plex and familial RP cases, there are in total 12 probands 
showing inconsistency between the molecular information 
and the original clinical diagnosis. After clinical reassess-
ment, 11 of 12 subjects were reclassified in terms of their 
retinal disease on the basis of the mutation analysis.

Discussion

In this study, we performed an NGS-based molecular diag-
nosis on 82 well-characterized RP probands from Northern 
Ireland, including 46 simplex cases and 36 familiar cases. 
Our method successfully solved 49 out of 82 probands, 
achieving a solving rate of 60 %.

Our results demonstrate that NGS-based molecular 
information can contribute to precise clinical diagnoses 

Fig. 3  Pedigrees and mutations 
of proband Rp73, Rp278B, 
and Rp150. a Proband Rp73 
carried a homozygous muta-
tion c.847C > T, p.(Arg283*) 
in CERKL, and was refined to 
arRP from xlRP. b Proband 
Rp278 carried a heterozy-
gous mutation c.1878G > C, 
p.(Gln626His) in PITPNM3, 
and was refined to cone 
dystrophy. c Proband Rp150 
carried a heterozygous mutation 
c.498_499del, p.(Leu167Argfs) 
in CHM, and was refined to 
choroideremia
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enabling better disease management and accurate family 
counseling. Clinical manifestations of a number of retinal 
diseases are similar, especially for syndromic RP where 
some syndromes are late-onset and it can be difficult to dis-
tinguish these retinal diseases from nonsyndromic RP by 
clinical examination alone, even with a high index of clini-
cal suspicion. Our approach can provide accurate molecu-
lar information to better define the disease manifestation. 
Patients with a precise diagnosis can then take advantage 
of any treatment available in a timely fashion. For example, 
Rp58 was re-diagnosed as Refsum disease. Unlike nonsyn-
dromic RP, Refsum disease can be modified by diet, and 
preventative treatment can slow the neurological degen-
eration (Baldwin et al. 2010; Wanders et al. 1993); how-
ever, the clinical manifestations of Refsum disease are very 
subtle at an early stage. Therefore, a molecular diagnosis 
increases our understanding of how the patient’s disease 
will progress and allows the possibility of an earlier diag-
nosis and treatment in other family members. Further, as 
shown by proband Rp73, the characterization of genetic 
defects can help with family birth planning to minimize 
the risk of transmitting the disease to offspring. Moreover, 
the molecular testing of patient Rp399A helps resolve the 
diagnostic dilemma which was due to a history of maternal 
rubella, and confirmed a diagnosis of Usher Syndrome with 
mutations in the CDH23 gene. Finally, an accurate molecu-
lar diagnosis is the first step concerning eligibility for gene 
therapy (den Hollander et al. 2010).

It is also worth noting that simplex cases are often 
thought to be recessive since the parents of patients are 
assumed to be unaffected, however, 2/28 of our simplex 
cases were identified to carry heterozygous mutations in 
autosomal-dominant genes. One explanation could be a 
de novo mutation in the patient which results in only one 
affected member in the pedigree. It is also possible that 
patients carry dominant mutations inherited from their par-
ents, but the mutation displays incomplete penetrance in 
the parents causing them not to manifest the disease phe-
notype. Here for example, proband Rp25 was identified 
to carry a heterozygous frameshift mutation in PRPF31 

which is known to cause dominant RP. Both parents of the 
patient were deceased but reported as unaffected, however, 
a history of blindness was reported in the paternal grand-
father and great-uncles. This suggests patient Rp25 is very 
likely to be adRP, and the unaffected parents could be due 
to incomplete penetrance.

Our patient cohort has a different mutation spectrum 
from patient cohorts of other ethnicities. For instance, 
mutations in EYS were frequently found in Chinese RP 
cases (Wang et al. Unpublished data), while we observed 
no pathogenic mutations in EYS. Furthermore, recur-
rent mutations were identified in our cohort. The most 
frequent mutations were c.4714C > T, p.(Leu1572Phe) 
and c.2299delG, p.(Glu767Serfs) in USH2A, shared by 4 
probands (RD1200002, Rp311B, Rp159, Rp86). The geno-
types of these 4 probands around this region are listed in 
Table S5. The shared SNPs may suggest specific haplo-
types and indicate the founder effect. Recent studies on 
Irish population history suggested that a large proportion 
of Irish population was originated from northern Spain. 
Interestingly, the USH2A haplotype identified in our cohort 
is also found to be widespread in Spanish RP and Usher 
patients (Najera et al. 2002; Aller et al. 2010), which sup-
ports the close link between Irish and Spanish population.

In our cohort, we were able to solve a significantly lower 
fraction of adRP than xlRP or arRP patients. One reason is for 
this is that it is difficult to confidently verify that lone novel 
missense mutations cause disease. In the cases where DNA of 
other affected members was not available, a segregation test 
could not be performed. As a result, we could not confidently 
report the candidate mutations. Among our adRP cases, we 
did identify novel putative pathogenic missense mutations in 
three adRP families (Table S3). We also identified some novel 
missense mutations with lower confidence levels in unsolved 
simplex cases that failed to pass our rigorous criteria.

About 35 % of our cases do not have even low confi-
dence candidates. For these unsolved patients, we have 
made every effort to ensure accurate clinical diagnoses and 
although it is possible that some cases are phenocopies, this 
is unlikely given that all cases have been followed clinically 
for many years and all show progression of their disease 
with the expected electrophysiological findings. Another 
explanation for this is that the disease-causing genes were 
not included in our designed panel. Therefore, we are per-
forming whole-exome sequencing on all negative cases, the 
results of which will be presented in a future manuscript. A 
further possibility is that the patients’ phenotype is caused 
by novel disease genes. An additional explanation could 
be pathogenic intronic mutations that were not captured in 
our panel and copy number variations that were difficult to 
detect cause disease in these patients.

In summary, our approach identified the genetic cause 
of 60 % of disease in our patient cohort from Northern 

Table 3  Classifications of all identified putative pathogenic muta-
tions

Novel Previously reported

Missense 16 24

Frameshift 8 3

Stop-gain 2 6

Splicing 1 3

Fail-to-start 1 0

Nonframeshift 1 0

Total 29 (44.6 %) 36 (55.4 %)
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Ireland. A total of 31 novel mutations were found. Our 
study indicated that molecular information can aid clinical 
diagnosis and help with patient treatment and management, 
particularly highlighted by three patients and their families 
(Rp58, Rp73 and Rp399A). Further improvements in NGS 
technology together with the discovery of novel RP genes 
will undoubtedly boost the success rate of NGS-based 
diagnostic approaches in RP in the future.
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