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functional genomic regions including genes (P = 8 × 10−10), 
CpG islands (P = 1 × 10−7) and sno/miRNAs regions 
(P = 3 × 10−9). On average, at least one additional gene and 
two additional CpG islands were disrupted by rare deletions 
in cases compared to controls. The most pronounced differ-
ence was that over 30 sno/miRNAs were disrupted by rare 
deletions in cases for every single disruption event in con-
trols. A total of 13 DNA repair genes were disrupted by rare 
deletions in 19/1,209 cases (1.6 %) compared to one gene in 
1/528 controls (0.2 %; P = 0.007), and this increased DNA 
repair gene loss in cases persisted after excluding five individ-
uals carrying CNVs disrupting mismatch repair genes MLH1, 
MSH2 and MSH6 (P = 0.03). There were 34 miRNA regions 
deleted in at least one case but not in controls, the most fre-
quent of which encompassed hsa-mir-661 and hsa-mir-203. 
Our study implicates rare germline deletions of functional 
and regulatory regions as possible mechanisms conferring 

Abstract Endometrial cancer is the most common inva-
sive gynaecological cancer in women, and relatively little is 
known about inherited risk factors for this disease. This is 
the first genome-wide study to explore the role of common 
and rare germline copy number variants (CNVs) in predis-
position to endometrial cancer. CNVs were called from ger-
mline DNA of 1,209 endometrioid endometrial cancer cases 
and 528 cancer-unaffected female controls. Overall CNV 
load of deletions or DNA gains did not differ significantly 
between cases and controls (P > 0.05), but cases presented 
with an excess of rare germline deletions overlapping likely 
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endometrial cancer risk, and has identified specific regulatory 
elements as candidates for further investigation.

Introduction

Endometrial cancer is the most common invasive gynaeco-
logical cancer in women with more than a quarter of a mil-
lion new cases each year (Ferlay et al. 2010). Moreover, the 
incidence of endometrial cancer has increased significantly 
in western countries over the past 20 years (Evans et al. 
2011). The majority of endometrial cancers (80–90 %) 
are histologically classified as endometrioid subtype at the 
time of presentation (Clement and Young 2002) and are pri-
marily treated by surgical resection. Patients are vulnerable 
to treatment-related morbidity due to the high prevalence of 
comorbidities, such as obesity (Dowdy et al. 2012).

A small proportion of endometrial cancer cases (5–25 %, 
depending on selection criteria) are due to high-risk ger-
mline mutations in one of the mismatch repair genes MLH1, 
MSH2, MSH6, and PMS2 (Buchanan et al. 2014), often pre-
senting with early age of cancer onset, and strong family 
history of cancer as part of Lynch Syndrome. Evidence also 
exists for the contribution of other DNA repair-related genes 
to endometrial cancer risk, including POLD1 (Palles et al. 
2013). Candidate gene and genome-wide searches for single-
nucleotide polymorphisms (SNPs) associated with modest 
risk of endometrial cancer have to date convincingly identi-
fied one locus at 17q12 (HNF1B) (Spurdle et al. 2011), with 
evidence for risk loci at 15q21 (CYP19A1) (Setiawan et al. 
2009) and 1q42 (near CAPN9) (Long et al. 2012). Thus, the 
genetic changes underlying the disease remain unknown for 
most endometrial cancer affected women.

DNA copy number variation (CNV) in the human genome 
is increasingly recognised as a major source of genetic vari-
ation that may influence cancer risk (Krepischi et al. 2012b; 
Kuiper et al. 2010). Indeed, cancer-predisposing CNVs are 
known to occur in important cancer-associated genes and/
or pathways in numerous cancers, including the mismatch 
repair genes, MLH1, MSH2, MSH6 and PMS2 in Lynch 
Syndrome affected families (Thompson et al. 2014). There 
is also evidence that CNV frequency and/or size across the 
genome may play an important role in disease development. 
Increased germline CNV load has been shown to be asso-
ciated with earlier age of cancer onset in TP53 mutation 

carriers (Shlien et al. 2008), and also with predisposition 
to colorectal cancer in high-risk families with or without 
mutations in mismatch repair genes (Talseth-Palmer et al. 
2013; Yang et al. 2014), breast cancer in families that do 
not carry BRCA1 or BRCA2 mutations (Pylkas et al. 2012) 
and germline deletions were associated with ovarian cancer 
in women carrying a mutation in BRCA1 (Yoshihara et al. 
2011). However, these associations have only been found 
in patients from high-risk families. Despite a number of 
reported population-based genome-wide association studies 
of individual CNV genotypes across various cancers (Crad-
dock et al. 2010; Krepischi et al. 2012a; Long et al. 2013), 
we are unaware of any study assessing role of CNV load in 
cancer predisposition at the population level. Further, many 
CNV studies published to date have utilised convenience 
“control” groups with no or little demographic and clinical 
annotation, limiting interpretation of the results.

It has been shown that the extent of copy number change 
can correlate with the level of gene expression of the vari-
ant (Stranger et al. 2007). Similarly, copy number changes 
may disrupt expression of small non-coding RNA regions, 
namely microRNAs (miRNAs) which have a role in key cel-
lular processes including development, cellular proliferation 
and apoptosis, and small nucleolar RNAs (snoRNAs) and 
Cajal body-specific RNAs (scaRNA), which are involved in 
post-transcriptional processing of other non-coding RNAs 
(Marcinkowska et al. 2011). Finally, alterations to CpG 
islands by CNVs have been shown to directly influence gene 
expression levels by changing methylation patterns (Rob-
inson et al. 2010) and modification of transcription factor 
binding sites (Elango and Yi 2011; Zhang et al. 2009). Thus, 
consideration of the functional consequences of CNVs is an 
important aspect to assess in disease risk analyses.

In this study, we utilised SNP array data from a previ-
ously reported genome-wide association study of endo-
metrioid endometrial cancer cases (Spurdle et al. 2011) 
and compared results to those from a well-annotated com-
parable control group, to assess whether CNVs across the 
genome show an altered frequency in endometrial cancer 
cases compared with healthy controls. Our analysis consid-
ered the likely functional importance of CNVs by assess-
ing their location relative to genes and gene regulatory ele-
ments, and also CNV frequency in the cohort.

Materials and methods

Study cohorts

Detailed descriptions of the case and control sample sets 
utilised in this study have been previously reported (McE-
voy et al. 2010; Spurdle et al. 2011). Briefly, 1,343 endome-
trioid endometrial cancer cases with self-reported European 
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ancestry were selected for genome-wide genotyping 
from the Australian National Endometrial Cancer Study 
(ANECS) or the Studies of Epidemiology and Risk factors 
in Cancer Heredity study (SEARCH) in the UK (Spurdle 
et al. 2011). Control samples (n = 528) were female par-
ticipants in the Hunter Community Study (HCS), a popu-
lation-based cohort aged 55–86 years, predominantly of 
European ancestry and residing in the Hunter Region in 
New South Wales, Australia (McEvoy et al. 2010). Control 
individuals with report of any cancer were excluded from 
the analysis.

Genotyping, identification of CNVs and quality control

All DNA samples were genotyped with the Human610-
Quad BeadChip (Illumina, Inc, San Diego, CA, USA) with 
~610,000 markers, as described previously (Spurdle et al. 
2011; Talseth-Palmer et al. 2013). Data for each array were 
normalised using GenomeStudio 2011.1 software (Illu-
mina). Probe information including, genomic location, 
signal intensity (Norm R), allele frequency (Norm θ), log 
R Ratios (LRRs), and B Allele frequencies (BAF) for each 
sample was calculated and exported from GenomeStudio. 
All samples had a call rate >95 %. Results from parallel 
quantitative PCR validation studies (see below: Quantita-
tive PCR CNV validation section, Online Resource 1) dem-
onstrated that PennCNV (Wang et al. 2007) had the highest 
accuracy in identifying Multiplex ligation-dependent probe 
amplification (MLPA)- and/or quantitative PCR (qPCR)-
detected gene deletions of MMR and other selected genes 
identified in this cohort, with 13/13 copy number variants 
called by PennCNV confirmed using these technologies, 
but lower rates of validation for CNVs called using other 
algorithms [QuantiSNP (Colella et al. 2007), CNV Partition  
(http://www.illumina.com/software/illumina_connect.ilmn),  
Gnosis (http://www.cnvision.org)] (Online Resource 1A). 
Based on this observation, CNV calls were then generated 
using the PennCNV program (version 2009 Aug 27), using 
the default program parameters, library files and genomic 
wave adjustment.

Case and control individuals were subject to quality con-
trol measures as previously defined, including measures 
of heterozygosity, relatedness, and non-European ancestry 
(Spurdle et al. 2011; Talseth-Palmer et al. 2013). Addi-
tional quality control procedures were performed for this 
copy number analysis to remove poor-quality array data 
(Online Resource 2) using the following exclusion crite-
ria: log R ratio standard deviation >0.28, B allele frequency 
drift >0.01, waviness factor deviating from 0 by >0.04 and/
or with the number of CNV calls exceeding 70. To reduce 
false positives, CNV calls were excluded if they contained 
<5 probes and/or were ≥1,000 kb in size. A total of 1,209 

cases and 528 female controls passed quality control and 
were included in the analysis.

Quantitative PCR- and multiplex ligation-dependent probe 
amplification-CNV validations

Experimental validation of predicted CNVs using MLPA 
and/or qPCR was carried out, prior to (Buchanan et al. 
2014) or during this study (Online Resource 1), for a sub-
set of 13 CNVs predicted, using the four CNV calling 
algorithms, to overlap the known Lynch Syndrome genes 
MLH1, MSH2, MSH6 and PMS2, or 7 other selected genes 
(Online Resource 1A). During this study, we predicted a 
total of nine deletions [including four in MMR genes pre-
viously identified using MLPA testing (Buchanan et al. 
2014)], and four duplications (including one duplication 
in MSH6). MLPA for MMR genes was carried out with 
SALSA kits P003, P003-B2, P008, P072-B2, and P248-A2 
(MRC-Holland, Amsterdam, the Netherlands), and qPCR 
validation studies for all genes tested were performed using 
the Roche Light Cycler 480 (LC480) (Hoffmann-La Roche 
Ltd, Basel, Switzerland) and Platinum SYBR Green qPCR 
SuperMix-UDG (Invitrogen, California, United States of 
America). Primers (Online Resource 3) were designed to 
target coding regions overlapping CNVs using previously 
documented parameters (D’Haene et al. 2010). Genomic 
regions overlapping ZNF80 (D’Haene et al. 2010) and 
ALB (Meijerink et al. 2001) were targeted as internal ref-
erences for normalisation. Each sample was run with four 
independent replicates and at least three non-CNV carry-
ing controls assayed alongside. Normalised copy number 
values calculated using the Lightcycler 480 Gene Scan-
ning software. qPCR analysis validated seven deletions and 
three duplications, including all four MMR gene CNVs 
previously identified using MLPA. Only CNVs predicted 
by PennCNV were consistently validated by qPCR (Online 
Resource 1 A, B, C).

Identification of genes, CpG islands and small nuclear 
RNAs overlapping CNVs and defining rare CNVs

To avoid examining multiple isoforms from genes, we 
annotated 39,544 UCSC RefSeq (NCBI36/Hg18) tran-
scripts using the SOURCE database (Diehn et al. 2003) and 
defined the genomic intervals for a total of 18,791 unique 
genes. Thus, each gene interval encompassed the start and 
end of all associated RefSeq transcripts (Online Resource 
4). CNVs and gene regions that were estimated to over-
lap by at least one base pair were identified in a genome-
wide scan using Intersect and Join tools from the Galaxy 
web server (Blankenberg et al. 2010; Giardine et al. 2005; 
Goecks et al. 2010).

http://www.illumina.com/software/illumina_connect.ilmn
http://www.cnvision.org
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Since CNV calls do not typically conform to discrete 
genomic regions in different individuals, we used the 
genome coordinates of 18,791 RefSeq gene (NCBI36/
Hg18) boundaries to define a CNV region (Online 
Resource 4). Each of these regions, therefore, represented 
a cluster of one or more CNVs overlapping a well-charac-
terised gene in the human genome and was used to meas-
ure the frequency of CNVs in our study cohort. Rare gene-
overlapping CNVs were defined as those with frequency 
<1 % of the total cohort. To identify rare CNVs overlapping 
CpG islands and small RNA genomic regions, a similar 
approach was carried out using coordinates of CpG islands 
and sno/miRNA [UCSC Genome Browser (NCBI36/hg18); 
http://genome.ucsc.edu/cgi-bin/hgGateway] instead of gene 
regions. The CpG island track used by UCSC Genome 
Browser defined 20,338 unique coordinates across the 
genome using the following criteria: GC content of ≥50 %, 
length >200 bp, ratio of observed to expected CpG dinu-
cleotides >0.6. The data track for sno/miRNA from UCSC 
Genome Browser (NCBI36/hg18) defined 1,120 regions 
across the genome.

Statistical analysis of CNV load

The statistical package R Project version R 2.14.2 
(http://www.r-project.org/) was used to perform statistical 
analyses. T tests with the Satterthwaite adjustment for unequal 
variances were conducted to establish the level of significance 
associated with the difference in CNV carrier frequencies 

between the cases and controls. Mid-P exact test was used as a 
measure of association between CNV load and disease status. 
P values were considered significant if P value <0.05.

Results

CNV frequency in endometrial cancer cases and controls

After stringent quality control measures were applied, 
genotype data from Illumina 610 K SNP arrays suitable for 
genome-wide CNV scans were available for 1,209 cases 
and 528 female controls (Online Resource 2). Using the 
PennCNV algorithm, a total of 30,663 and 13,399 CNV 
calls were generated for cases and controls, respectively 
(Table 1), ranging in size from 0.5 kb to 998 kb. The aver-
age number of CNVs observed per individual did not differ 
significantly between cases and controls (25.36 vs 25.38, 
P = 0.97). Likewise, no difference was observed when 
considering deletions and gains separately (Table 1).

The average number of CNVs predicted to overlap genes 
was marginally greater in cases versus controls (8.56 vs 
8.17, P = 0.04), with this effect attributable to deletions 
(case average = 5.07 vs control average = 4.70, P = 0.01) 
rather than DNA gains (case average = 3.48 vs control 
average = 3.48, P = 0.98) (Table 1). There was no statisti-
cally significant difference between cases and controls for 
deletions or gains of CpG islands. Increased frequency in 
cases versus controls for CNVs overlapping sno/miRNA 

Table 1  Frequency of CNVs in endometrial cancer cases and controls, and overlapping functional and regulatory regions

Significant p values are italics
a Welch two-sample t test

Genomic feature Total frequency Mean frequency Difference in means P valuea

Cases (n = 1,209) Controls (n = 528) Cases Controls Case/control ratio Case–controls 95 % CI

CNVs

 All 30,663 13,399 25.36 25.38 1.00 −0.02 −0.73 to 0.70 0.97

 Deletions 20,800 9,162 17.20 17.35 0.99 −0.15 −0.78 to 0.48 0.65

 Gains 9,863 4,237 8.16 8.02 1.02 0.14 −0.30 to 0.57 0.55

CNVs overlapping genes

 All 10,345 4,316 8.56 8.17 1.05 0.39 0.02 to 0.75 0.04

 Deletions 6,135 2,479 5.07 4.70 1.08 0.37 0.08 to 0.68 0.01

 Gains 4,210 1,837 3.48 3.48 1.00 0.00 −0.23 to 0.23 0.98

CNVs overlapping CpG islands

 All 4,531 1,984 3.75 3.76 1.00 −0.01 −0.26 to 0.24 0.94

 Deletions 2,136 850 1.77 1.61 1.10 0.16 −0.03 to 0.34 0.10

 Gains 2,395 1,134 1.98 2.15 0.92 −0.17 −0.07 to 0.00 0.05

CNVs overlapping sno/miRNAs

 All 291 88 0.24 0.17 1.44 0.07 0.03 to 0.12 1 × 10−3

 Deletions 116 20 0.10 0.04 2.53 0.06 0.03 to 0.09 6 × 10−5

 Gains 175 68 0.14 0.13 1.12 0.01 −0.02 to 0.05 0.40

http://genome.ucsc.edu/cgi-bin/hgGateway
http://www.r-project.org/
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regions (0.10 vs 0.04, P = 6 × 10−5) was attributable to 
a 2.53-fold increase of deletions overlapping sno/miRNA 
regions. The average number of sno/miRNAs disrupted by 
deletions was 4.3-fold higher in cases compared to controls 
(P = 0.001) (Table 1). Additionally, 34 miRNA regions 
predicted to be deleted in at least one case sample were not 
found in controls, with the most frequently affected regions 
encompassing hsa-mir-661 (n = 14 cases) and hsa-mir-203 
(n = 11 cases) (Online Resource 5). For copy number vari-
ants overlapping sno/miRNAs but not genes, there was no 
significant difference between cases and controls when 
assessing the number of deletions (P = 0.09) or duplica-
tions (P = 0.61), however, there was limited power due 
to small CNV numbers (Online Resource 6). The average 
size of CNVs did not differ between cases versus controls 
(Online Resource 7).

Rare CNVs in endometrial cancer cases and controls

To examine the prevalence of rare CNVs overlapping 
genes in our study cohort, CNVs overlapping RefSeq gene 
regions in 18 or more individuals (≥1 % frequency in the 
study cohort) were excluded, all remaining rare CNVs 
either fully or partially overlapped at least one RefSeq 
gene region. The number of rare deletions per individual 
that overlapped at least one gene was 1.73-fold greater in 

cases compared to controls (1.63 vs 0.94; P = 8 × 10−10), 
but no statistically significant difference was seen for 
copy number gains between the two groups (P = 0.69) 
(Table 2). Conversely, the average number of RefSeq genes 
predicted to be disrupted by a rare genomic deletion was 
2.26-fold higher in cases compared to controls (2.76 vs 
1.22; P = 4 × 10−10). Thus, on average, rare deletions in 
endometrial cancer cases are disrupting one additional gene 
compared to controls.

A similar approach was used to identify rare CNVs 
(<1 % frequency) overlapping CpG islands. The aver-
age number of rare deletions predicted to fully or partially 
overlap at least one CpG island was 1.96-fold greater in 
cases than controls (0.78 vs 0.40; P = 1 × 10−7), and the 
number of gains overlapping CpG islands was 1.16-fold 
greater in cases than controls (0.72 vs 0.62; P = 0.05) 
(Table 2). Likewise, the average number of CpG islands 
predicted to be disrupted by a rare genomic deletion was 
3.38-fold higher in cases compared to controls (3.01 vs 
0.89; P = 2 × 10−7), and the average number of CpG 
islands impacted by rare genomic copy number gains was 
1.41-fold higher in cases compared to controls (2.08 vs 
1.47; P = 3 × 10−3). Results of this analysis suggest that 
rare CNVs in endometrial cancer cases are disrupting two 
additional CpG islands compared to controls. Interestingly, 
64 % of these CpG islands are located within genes also 

Table 2  Frequency of rare CNVs and overlapping genes, CpG islands or sno/miRNAs in endometrial cancer cases and controls

Significant p values are italics
a  Welch two sample t test

Genomic feature Total frequency Mean frequency Difference in means P valuea

Cases (n = 1,209) Controls (n = 528) Cases Controls Case/control ratio Case–controls 95 % CI

Rare CNVs (<1 %) overlapping genes

 Deletions 1,976 498 1.63 0.94 1.73 0.69 0.47 to 0.91 8 × 10−10

 Gains 1,274 541 1.05 1.02 1.03 0.03 −0.11 to 0.17 0.69

Genes overlapping rare CNVs (<1 %)

 Deletions 3,338 644 2.76 1.22 2.26 1.54 1.06 to 2.02 4 × 10−10

 Gains 2,376 883 1.97 1.67 1.18 0.30 0.01 to 0.57 0.04

Rare CNVs (<1 %) overlapping CpG islands

 Deletions 937 209 0.78 0.40 1.96 0.38 0.24 to 0.52 1 × 10−7

 Gains 868 327 0.72 0.62 1.16 0.10 0.00 to 0.20 0.05

CpG islands overlapping rare CNVs (<1 %)

 Deletions 3,634 469 3.01 0.89 3.38 2.12 1.33 to 2.91 2 × 10−7

 Gains 2,514 777 2.08 1.47 1.41 0.61 0.20 to 1.01 3 × 10−3

Rare CNVs (<1 %) overlapping sno/miRNAs

 Deletions 88 5 0.07 0.01 7.69 0.06 0.04 to 0.08 3 × 10−9

 Gains 48 14 0.04 0.03 1.50 0.01 −0.01 to 0.03 0.17

Sno/miRNAs overlapping rare CNVs (<1 %)

 Deletions 191 6 0.16 0.01 13.90 0.15 ` 6 × 10−4

 Gains 55 42 0.05 0.08 0.57 −0.03 −0.13 to 0.06 0.50
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disrupted by rare CNVs (data not shown). To extricate the 
contribution of CpG islands (falling within the coordinates 
of a Refseq gene) from the observed results, the loading 
effect of CNVs overlapping only apparently intergenic CpG 
islands was assessed. There were more rare CNVs disrupt-
ing intergenic CpG islands in cases compared to controls 
(deletions P = 0.001; gains P = 0.31) (Online Resource 
8). Further, intergenic CpG islands were disrupted signifi-
cantly more often in cases than controls by both rare dele-
tions (0.88 vs 0.55; P = 0.002) and rare DNA gains (1.09 
vs 0.77; P = 0.008).

Rare deletions (<1 % frequency) overlapping 
sno/miRNAs occurred at a frequency 7.69-fold higher 
in cases than controls (0.07 vs 0.01; P = 3 × 10−9). 
This equated to a 13.90-fold increase in the number of 
sno/miRNAs disrupted by rare CNVs (0.16 vs 0.01; 
P = 6 × 10−4), and there were 191 sno/miRNAs disrupted 
in cases while only six sno/miRNAs were affected in con-
trols (Table 2). That is, over 30 sno/miRNAs were dis-
rupted by rare deletions in cases for every single disruption 
event in controls.

DNA repair genes and known cancer susceptibility genes 
disrupted by CNVs

Given the role of many known high-risk cancer susceptibil-
ity genes in DNA repair, we extended our analysis to iden-
tify rare CNVs overlapping genes acting in the DNA repair 
pathway. One hundred and seventy-six DNA repair genes 
used in this analysis were sourced through an updated ver-
sion of an online inventory (http://sciencepark.mdanderson. 
org/labs/wood/dna_repair_genes.html; updated 4th March 
2013), and included the MMR genes MLH1, MSH2, MSH6, 
and PMS2. There were more cases than controls carry-
ing rare deletions overlapping DNA repair genes (19 vs 
1, P = 0.007, OR = 8.40, 95 % CI 1.54–177.0) (Table 3), 
and this finding remained nominally significant even after 
removing four samples with deletions overlapping MLH1, 
MSH2, and MSH6 (15 cases versus 1 control, P = 0.03, 
OR = 6.64, 95 % CI 1.18–141.60) (Online Resource 9). A 
total of 24 DNA repair genes (including the MMR genes 
MLH1, MSH2, and MSH6) overlapped rare CNVs across 39 

cases (out of 1,209; 3.2 %) compared to eight genes across 
ten controls (out of 528; 1.9 %). There was no evidence 
for an increase in rare CNV gains overlapping DNA repair 
genes in cases versus controls. There was evidence for an 
increase in CNV deletions between cases with (n = 15) or 
without (n = 1,190) CNV disruption of DNA repair genes 
(Online Resource 10), and this difference was observed 
overall (P = 0.01), for CNVs overlapping all genomic 
features assessed (P = 0.01 for genes, P = 0.005 for CpG 
islands, P = 0.05 for sno/miRNAs). Mean CNV size of 
CNVs overlapping genes and sno/miRNAs was greater 
in cases without DNA repair gene disruption (P = 0.04), 
however, no size difference was observed for all CNVs and 
CNVs overlapping CpG islands (Online Resource 11).

Discussion

Relatively little is known about inherited factors that influ-
ence endometrial cancer risk, and to our knowledge this is 
the first genome-wide study to explore the role of germline 
CNV load in endometrial cancer. We used the PennCNV 
algorithm for assessing CNVs detected on the Illumina 
platform, and compared frequencies of CNVs stratified by 
functional annotation and frequency in a well-characterised 
set of endometrial cancer cases and controls. More dele-
tions than gains were observed in both cases and controls 
in our study, consistent with the fact that probe intensity 
differences for most DNA gains are typically smaller than 
those for deletions; hemizygous deletions will reduce the 
probe intensity by half (2:1 ratio) compared to a 1.5-fold 
increase in probe intensity (3:2 ratio) for duplications.

For large-scale studies where experimental validation 
of every predicted CNV is impractical, such as this load 
analysis, accuracy of CNV calling algorithms is of great 
importance. PennCNV was designed for use with Illumina 
array data (Wang et al. 2007), and has been reported in sev-
eral studies to have a high true positive call rate for CNVs 
called using a five probe minimum (Dellinger et al. 2010; 
Marenne et al. 2011). Specificity of 98 % was observed 
for PennCNV in a controlled study validating CNVs by 
MLPA analysis in paired samples (Marenne et al. 2011). In 

Table 3  Association between 
endometrial cancer rare CNVs 
overlapping DNA repair genes

Significant p values are italics
a 2-tailed, Mid-P exact test
b Conditional maximum 
likelihood estimate of odds ratio 
(OR); 95 % confidence limits 
(CL) testing exclusion of 1

CNV type CNV(s) overlapping DNA 
repair genes

Disease status P valuea OR (95 % CL)b

Case Control

All Yes 39 10

No 1,170 518 0.12 1.72 (0.87–3.66)

Deletions Yes 19 1

No 1,190 527 0.007 8.40 (1.54–177.00)

Gains Yes 20 9

No 1,189 519 0.92 0.97 (0.44–2.25)

http://sciencepark.mdanderson.org/labs/wood/dna_repair_genes.html
http://sciencepark.mdanderson.org/labs/wood/dna_repair_genes.html
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support of this, we have found PennCNV to demonstrate 
high concordance with MLPA-identified and/or qPCR-
verified gene deletions in our study. Another important 
consideration when characterising CNVs, in particular 
rare CNVs, is the control group selected for comparison. A 
number of published reports define rare CNVs as those that 
do not occur in the Database of Genomic Variants (DGV). 
However, DGV is a compilation of validated and unvali-
dated CNVs found in studies of individuals from various 
populations of different ethnicities, and using a variety of 
array and sequencing platforms (Iafrate et al. 2004). Impor-
tantly, there is no medical information available for most 
of the samples in DGV which precludes filtering for non-
diseased individuals to serve as appropriate controls, and 
the database includes variants overlapping known cancer 
susceptibility genes (e.g. MSH2 and MSH6) (Iafrate et al. 
2004). Therefore, DGV is not an appropriate control data-
set to define rare CNVs of clinical importance.

Rare CNV load has been reported to be relevant for 
pancreatic (Al-Sukhni et al. 2012), breast (Krepischi et al. 
2012a) and ovarian (Yoshihara et al. 2011) cancers, in stud-
ies that have not considered regulatory regions or defined 
rare CNVs using a large, well-annotated control dataset. In 
this study, we provide evidence for a role of germline struc-
tural alterations in endometrial cancer risk. We found that 
overall CNV load of deletions or DNA gains did not dif-
fer significantly between cases and controls, but cases pre-
sented with an excess of rare germline copy number dele-
tions disrupting genes, CpG islands and sno/miRNAs.

The observation that effects were most obvious when 
considering rare deletions of functionally important gene 
regions is supported in the literature. In particular, Krepis-
chi et al. (2012a) postulate that overtly deleterious germline 
CNVs are removed from the population and those remain-
ing are a result of less stringent selection or alternatively 
they indicate inefficient DNA repair and apoptosis in rel-
evant individuals. This is corroborated by our finding of an 
elevated frequency of germline loss of a DNA repair gene 
in cases versus controls and demonstrates that genes in 
DNA repair pathways other than the four mismatch repair 
genes are also worthy of further investigation in future 
endometrial cancer genetic studies. It was also supported 
by our observation that cases with CNV disruption of DNA 
repair genes were themselves more likely to demonstrate 
increased CNV deletion load. These results are also con-
sistent with whole genome and exome sequencing studies 
of other cancers, many of which provide evidence for a 
role for DNA repair gene variants in cancer predisposition 
(Thompson et al. 2012).

The number of CpG islands disrupted by rare deletions 
was approximately threefold higher in cases versus con-
trols. In some instances, the CpG gain/loss occurs in tan-
dem with gain/loss of nearby gene(s). However, CpG island 

loss/gain does not always directly impact the exonic cod-
ing sequence, and there are several other ways by which 
CpG island disruption could contribute to gene dysregula-
tion and tumourigenesis. First, disruption may directly alter 
transcription factor binding sites and thus gene regulation. 
For example, deletion of a CpG island in the promoter for 
AMCAR results in gene upregulation and promotes colon 
carcinogenesis, whereas simultaneous deletion of another 
two promoter-located CpG islands was associated with the 
opposite effect (Zhang et al. 2009). Furthermore, length 
of CpG islands has been found to correlate with gene 
expression levels (Elango and Yi 2011). Second, deletions 
or gains of CpG islands could contribute to endometrial 
cancer development via abnormal methylation, given that 
CNVs overlapping CpG islands are reported to directly 
influence methylation patterns (Robinson et al. 2010) and 
that abnormal methylation patterns are frequently observed 
in endometrial tumours (Banno et al. 2006; Ghabreau et al. 
2004).

This study found a 2.5-fold increase in deletions over-
lapping sno/miRNA regions in cases versus controls. Dele-
tions of sno/miRNAs are anticipated to disrupt regulation 
of multiple genes simultaneously and thus have widespread 
downstream effects. Both upregulation and downregula-
tion of miRNAs have been implicated in gynaecological 
cancer development (Torres et al. 2011), but the germline 
loss of miRNAs is yet to be characterised in endometrial 
cancer. These findings are supported by literature detailing 
increased complexity in cellular processes and miRNA reg-
ulation due to normal cycling of endometrial tissue (Kuok-
kanen et al. 2010), and that miRNA dysregulation is well 
documented in endometrial cancer development (Torres 
et al. 2011).

The miRNA, hsa-miR-661, deleted in 14 cases and no 
controls, is a relatively well-characterised regulatory mol-
ecule. Transfection studies of the MCF-7 wildtype TP53 
breast cancer cell line showed that miR-661 siRNA-medi-
ated inhibition leads to decreased expression of MDM2 
and MDM4, both negative regulators of TP53, in a tumour-
suppressive manner. In addition, increased expression of 
hsa-miR-661 was reported to be associated with better out-
come for breast cancer patients (Hoffman et al. 2014). hsa-
miR-661 expression in MDA-MB-231 breast cancer cells 
was reported to decrease cell motility, invasiveness, and 
anchorage, and decrease tumour formation in nude mice 
(Reddy et al. 2009). In our case cohort, germline loss of 
hsa-miR-661 is a recurring event, supporting a potential 
role of miR-661 as a tumour suppressor in endometrial can-
cer predisposition.

miRNA hsa-miR-203 was deleted in 11 cases and no 
controls and is known to be intricately involved in regulat-
ing endometrial cell cycling. It is downregulated in the late 
proliferative endometrium and upregulated in the mid-term 
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secretion phase (Kuokkanen et al. 2010). Literature to date 
describes a decrease of hsa-miR-203 expression in most 
malignancies, including hormone-related tumours (Viticchie 
et al. 2011; Wang et al. 2012). There are only two reports 
that examine the expression of hsa-miR-203 in normal and 
malignant endometrium. Huang et al. (2014) found that hsa-
miR-203 was significantly hypermethylated in tumour sam-
ples, correlating with MLH1 methylation status, microsatel-
lite instability, and decreased expression of pro-oncogene 
SOX4 in Ishikawa cells (Huang et al. 2014). Conversely, a 
smaller study by Chung et al. (2009) reported increased 
expression of hsa-miR-203 in endometrial adenocarcinomas 
compared to normal endometrium samples (Chung et al. 
2009). The germline loss of the miR-203 in multiple cases 
but not controls in our study supports a role of hsa-miR-203 
as a tumour suppressor in endometrial cancer predisposition, 
consistent with most previous studies on hormonal cancers.

Apart from CpG island analysis of rare CNVs, there was 
no evidence that DNA gains were involved in endometrial 
cancer predisposition. While this suggests the duplications 
in general are not as disruptive to gene function as dele-
tions, it may also reflect that SNP arrays are not able to 
define the genomic location of duplicated material. For 
example, duplicated genomic material may lie in tandem, 
within itself, or be inserted at another part of the genome in 
either a benign or disruptive manner. Thus, the functional 
relevance of DNA gains would be better assessed using 
alternative technologies, possibly by determining if they 
are associated with altered expression of the gene(s) impli-
cated, or directly assessing their effects on gene transcrip-
tion. We also acknowledge that detection of CNVs in our 
study was limited by the resolution of the microarray used 
for genotyping. Future analyses performed at higher resolu-
tion with CNV specific arrays, or next-generation sequenc-
ing as this becomes more affordable, would improve the 
potential for detecting causal variants along the genome, 
both deletions and duplications.

Our results implicate rare germline deletions of func-
tional and regulatory regions as possible mechanisms 
conferring risk in endometrial cancer. As such, this study 
provides a baseline for future validation studies that con-
sider the functional relevance of predicted CNVs in assess-
ing the role of CNV load in cancer predisposition. This 
study has also identified specific regulatory elements as 
candidates for further investigation in endometrial cancer 
predisposition.
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