
1 3

Hum Genet (2014) 133:575–586
DOI 10.1007/s00439-013-1398-9

Original Investigation

Significant associations of CHRNA2 and CHRNA6 with nicotine 
dependence in European American and African American 
populations

Shaolin Wang · Andrew D van der Vaart · Qing Xu · Chamindi Seneviratne · 
Ovide F. Pomerleau · Cynthia S. Pomerleau · Thomas J. Payne · Jennie Z. Ma · 
Ming D. Li 

Received: 20 July 2013 / Accepted: 8 November 2013 / Published online: 20 November 2013 
© Springer-Verlag Berlin Heidelberg 2013

both ND measures (with a P value of 0.0043 and 0.00086 
for SQ and FTND, respectively) continued to be significant 
in the EA sample even after correction for multiple tests. 
Further, we found several haplotypes that were significantly 
associated with ND in the EA sample in CHRNA6 and in 
the both EA and AA samples in CHRNA2. To confirm the 
associations of the two genes with ND, we conducted a 
replication study with an independent case–control sample 
from the SAGE study, which showed a significant associa-
tion of the two genes with ND, although the significantly 
associated SNPs were not always the same in the two sam-
ples. Together, these findings indicate that both CHRNA2 
and CHRNA6 play a significant role in the etiology of ND 
in AA and EA smokers. Further replication in additional 
independent samples is warranted.

Introduction

Tobacco use continues to be an important worldwide health 
concern. According to World Health Organization, there 
were 1.3 billion tobacco users world wide in 2004 (World 
Health Organization 2012). In the USA, 46.0 million adults 
were cigarette smokers in 2008, and the number of deaths 
annually from smoking-related illnesses accounts for 30 % 
of deaths from cancer and nearly 80  % of deaths from 
chronic obstructive pulmonary disease (CDC 2008; Mok-
dad et al. 2004). The annual economic burden of smoking 
is also substantial, with a staggering $193 billion in medi-
cal costs and productivity losses (CDC 2008; Mokdad et al. 
2004).

Cigarette smoking is a complex behavior, with both 
genetic and environmental components (Al Koudsi and 
Tyndale 2005; Sullivan and Kendler 1999). Many fam-
ily, adoption, and twin studies of smoking addiction have 
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indicated a heritability of 11–78 %, with an average herit-
ability of 59 % for both male and female smokers (Kend-
ler et al. 1999; Li et al. 2003; Maes et al. 2004; Vink et al. 
2005).

Nicotine, the primary psychoactive ingredient in ciga-
rette smoke, exerts its effects by readily crossing the 
blood–brain barrier and binding to nicotinic acetylcholine 
receptors (nAChRs) in various brain structures (Wonnacott 
1997). Activation of nAChRs on dopaminergic terminals 
induces dopamine release in the mesolimbic brain reward 
system (Kleijn et  al. 2011; Wonnacott et  al. 2000). To 
date, 17 nAChR subunits have been identified, which are 
divided into muscle and neuronal types (Kalamida et  al. 
2007). Neuronal nAChRs are widely expressed in the nerv-
ous system in peripheral ganglia and certain areas of the 
brain, as well as in nonexcitable cells, such as epithelium 
and cells of the immune system (Cui and Li 2010). Of the 
neuronal nAChRs, genes for nine α (α2–α10) and three β 
(β2–β4) subunits have been cloned. The α7–α10 subunits 
are found either as homopentamers (of five α7, α8, or α9 
subunits) or as heteropentamers (of α7/α8 and α9/α10) 
(Plazas et  al. 2005). By contrast, the α2–α6 and β2–β4 
subunits form heteropentameric receptors, usually with a 
(αx)2(βy)3 stoichiometry.

Whereas several human neuronal nAChR subunit genes 
have been investigated for association with ND and other 
smoking-related behaviors in human subjects [for reviews, 
see (Berrettini and Doyle 2012; Greenbaum and Lerer 
2009; Li and Burmeister 2009)], CHRNA2 has received 
less attention. Early linkage analysis of the Collaborative 
Studies on Genetics of Alcoholism (COGA) data showed 
modest evidence of linkage to 8p22–23, near CHRNA2, 
using two smoking phenotypes (ever-smoked and aver-
age number of packs per year) (Bergen et  al. 1999). The 
association of CHRNA2 with smoking was reported in the 
schizophrenia families through linkage analysis and the 
candidate gene approach (Faraone et  al. 2004). Although 
there is a reported association of CHRNA2 with ND, meas-
ured by DSM-IV and FTND score, in the Iowa Adop-
tion Studies, the results were not corrected for multiple 
comparisons (Philibert et  al. 2009; Yates et  al. 1998). In 
a smoking cessation trial, SNP rs2565065 in CHRNA2 
appeared to have pharmacogenetic relevance (Heitjan 
et  al. 2008). In contrast, several other studies have failed 
to reveal a significant association of this gene with ND 
or other smoking-related phenotypes (Keskitalo-Vuokko 
et al. 2011).

The CHRNA6 and CHRNB3 genes are located con-
tiguously in a tail-to-tail configuration on chromosome 
8. Both α6- and β3-nAChRs are found in various brain 
regions, including the substantia nigra, ventral tegmental 
area (VTA), striatum, and locus coeruleus (Gotti et  al. 

2006a, b), which have significant roles in dopaminergic 
neurotransmission, thus contributing to reward and rein-
forcement of behavior (Cui et al. 2003). The α6β2β3- as 
well as α6α4β2β3-containing receptors in the striatum 
mediates α-conotoxin MII-sensitive dopamine release. 
In contrast,  α6β2-containing receptors in the supe-
rior colliculus seem to be involved in GABA release 
(Champtiaux et al. 2003; Gotti et al. 2006a, b; Salminen 
et  al. 2004). A recent meta-GWAS study indicated that 
rs2304297 in CHRNA6 is significantly associated with 
ND in the European sample, but the finding did not reach 
genome-wide significance (Thorgeirsson et  al. 2010). 
Candidate gene-based association studies indicated that 
SNPs rs2304297 in the 3′-UTR of CHRNA6 was associ-
ated with ND in the European sample (Hoft et al. 2009b; 
Saccone et  al. 2007), as was rs1072003 in intron  2 of 
CHRNA6 with ND in an Israeli female sample (Green-
baum et al. 2006).

Considering that nearly all subjects used in these GWAS 
or candidate gene-based association studies were of Euro-
pean origin, it would be interesting to know whether 
CHRNA6 and CHRNA2 genes are also associated with ND 
in smokers of other ethnicities. Thus, the primary objective 
of this study was to determine whether significant associ-
ation of variants in CHRNA6 and CHRNA2 with ND can 
be detected in independent samples, especially in African 
American smokers.

Materials and methods

Subjects and ND measures

Discovery family sample

Subjects of this sample include persons of both AA and 
EA origin who were recruited primarily from the states of 
Tennessee, Mississippi, Arkansas, and Michigan. Proband 
smokers were required to be at least 21 years old, to have 
smoked for at least the last 5 years, and to have smoked at 
least 20 cigarettes per day during the last 12 months. Once 
proband smokers were identified, their biological parents 
and siblings were invited to participate whenever possible. 
Table 1 provides the detailed characteristics of the two eth-
nic groups. All participants provided written informed con-
sent, and the Institutional Review Boards of each partici-
pating institution approved the study.

The ND of each smoker was assessed with the two com-
monly used measures of smoking quantity (SQ; the num-
ber of cigarettes smoked per day) and the Fagerström test 
for ND (FTND; 0–10 scale) (Fagerstrom 1978). Because 
of the overlap of the contents of the two measures, a fairly 
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robust correlation exists among them in both populations 
(r = 0.88 for AAs and 0.89 for EAs).

Replication case–control sample

All subjects included in this sample were participants in 
the Study of Addiction: Genetics and Environment (SAGE) 
(Bierut et  al. 2010) through the NCBI dbGaP database 
(dbGaP study accession phs000092.v1.p1). Quantitative 
measurements of severity of addiction to various substances, 
including nicotine, are provided in this dataset. For a detailed 
description, please see http://www.ncbi.nlm.nih.gov/pro-
jects/gap/cgi-bin/study.cgi?study_id=phs000092.v1.p1.

Genotyping and imputation

For the discovery family samples, genomic DNA was either 
extracted from cells in the peripheral venous blood of each 
participant using a Maxi kit (Qiagen Inc, Valencia, CA, USA) 
or obtained from the NIDA Genetics Repository at Rutgers 
University. Seven SNPs in CHRNA2 (rs2292976, rs3735757, 
rs891398, and rs2472553) and  CHRNA6  (rs9298628, 
rs892413, and rs2217732) were selected based on results 
reported by other researchers (Heitjan et  al. 2008; Hoft 
et  al. 2009b; Philibert et  al. 2009), the location of each 
SNP and a uniform coverage of the gene of interest, and 
allele frequency in samples with European and African ori-
gins from NCBI SNP database. All SNPs were genotyped 
using  TaqMan  assays in the 384-well microplate format 
(Applied Biosystems Inc., Foster City, CA, USA) as reported 
previously (Beuten et  al. 2005; Li et  al. 2005; Ma et  al. 
2005). Briefly, 15 ng of DNA was amplified in a total volume 
of 7 μl containing an MGB probe and 2.5 μl of TaqMan uni-
versal PCR master mix. Allelic discrimination analyses were 
performed on the ABI Prism 7900HT. To ensure the quality 
of genotyping, four no-template negative controls and four 
positive controls were added to each 384-well plate.

The SAGE samples were genotyped on commercially 
available platforms, including Illumina (San Diego, CA, 

USA). Quality control was performed in each group sepa-
rately, with the goal of excluding those samples with sex or 
chromosomal anomalies, a low call rate, or first- or second-
degree relatedness. Imputations of non-genotyped SNPs in 
the 1000 Genome CEU v2 (2010–11 release) and the Hap-
Map Phase II CHB + JPT were carried out for the SAGE 
data using MaCH (Li et al. 2009, 2010) and IMPUTE v2 
(Howie et al. 2009; Marchini et al. 2007), respectively.

Statistical analysis

To test for genotyping quality in the discovery family sam-
ple, we assessed Mendelian inconsistencies and departure 
from Hardy–Weinberg equilibrium (HWE) using Haplov-
iew (v. 4.0) software (Barrett et  al. 2005). Subjects with 
any inconsistent SNP data for a given genetic variant were 
excluded from analysis.

Individual and haplotype‑based association analysis 
for the discovery family sample

Associations between the seven SNPs in  CHRNA2 
and CHRNA6  and the two ND measures were deter-
mined using the pedigree-based association test (PBAT 
v. 3.5) based on the generalized estimating equation 
approach (Lange et  al. 2004). Pair-wise linkage disequi-
librium (LD) and haplotype blocks for the four SNPs 
in CHRNA2 and three SNPs in CHRNA6 were assessed by 
Haploview (v. 4.0) software (Barrett et al. 2005; Gabriel 
et al. 2002). Association analysis for haplotypes located in 
each LD block with the two ND measures was performed 
using the family-based association test (FBAT v.1.7.3) 
(Horvath et  al. 2004). Three genetic models (additive, 
dominant, and recessive) were tested for all association 
analyses, with sex and age as covariates in the AA and 
EA samples. Statistically significant results (P  <  0.05) 
for individual SNPs and major haplotypes (frequency 
≥5  %) were adjusted for multiple testing using Bonfer-
roni correction.

Table 1   Description of 
discovery and replication 
samples

Ethnicity Discovery family samples Replication case–control samples

AA EA AA EA

No. of nuclear families 424 495 – –

Avg. members/family (SD) 4.46 (0.88) 3.49 (0.80) – –

No. of subjects 1,892 1,730 1,136 2,428

Female (%) 57 57 52 56

Age [years (SD)] 40.32 (14.60) 45.39 (15.77) 39.68 (6.71) 38.37 (9.65)

No. of smokers 1,013 1,088 626 1,048

CPD (SD) 21.55 (12.07) 22.07 (12.60) 24.33 (17.46) 26.16 (19.71)

FTND score (SD) 5.49 (3.60) 4.62 (3.55) 3.90 (2.88) 2.96 (3.27)

http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000092.v1.p1
http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000092.v1.p1
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Individual and haplotype‑based association analysis 
for the replication case–control SAGE sample

The association analysis was performed using a linear regres-
sion model by regressing two ND measures in PLINK (Pur-
cell et  al. 2007) on age, sex, SNP allele dosage, and other 
drug dependences (alcohol, cocaine, marijuana, opiates, and 
other drugs) covariates. Non-smokers were excluded.

Meta‑analysis of individual SNP association for both the 
discovery and replication samples

Prior to conducting meta-analysis, we measured the het-
erogeneity for the SAGE case–control AA and EA samples 
using the program METAL (Willer et  al. 2010). To com-
bine the association analysis results from the discovery 
family sample and replication case–control sample, we 
conducted our meta-analysis of each SNP under the same 
genetic model used for analyzing each individual sample 
using Fisher’s combining P value method (Fisher 1932). 
Considering that the PBAT approach used in the discovery 
family sample provides only Z score and P value, we used 
an equal weight for each studied sample.

Results

Individual SNP‑based association analysis for discovery 
and replication samples

Results from the individual SNP-based association analy-
ses of the discovery family sample are shown in Table 2. 
Of the CHRNA2 polymorphisms, SNP rs891398 showed 
strong associations with FTND in the AAs (P =  0.0079) 
under an additive model and weak association in the EAs 
(P  =  0.0338) under a dominant model. Also, rs373575 
(P = 0.00782 and 0.00675) and rs2472553 (P = 0.00429 
and 0.000863) showed strong association with SQ and 
FTND in the EAs under a dominant model. For the 
CHRNA6 polymorphisms, the only variant significantly 
associated with SQ in the EAs was rs892413, with a P 
value of 0.00769 under the additive model. All these asso-
ciations remained significant after Bonferroni correction 
for multiple testing.

The results from the replication case–control SAGE 
sample showed that SNP rs2292976 in CHRNA2 had a sig-
nificant association with FTND in the AAs under both an 
additive (P = 0.00533) and a dominant (P = 0.0079) model 

Table 2   ND-associated P values under the three genetic models for the first given allele of each SNP in CHRNA2 and CHRNA6 in the discovery 
family sample

Superscripts indicate genetic model used for analysis: a additive, d dominant, r recessive. For each ethnic-specific sample, age and sex were used 
as covariates. Negative signs indicate protective effect with the model specified in superscript letters

Gene dbSNP ID (Gene Location) Alleles African American European American

Allele freq. SQ FTND Allele freq. SQ FTND

CHRNA2 rs2292976 (Exon 8) A/G 0.13/0.87 0.120a 0.0866a 0.14/0.86 −0.902a −0.664a

0.0578d 0.0461d 0.502d 0.631d

−0.444r −0.700r −0.0378r −0.0221r

rs3735757 (Intron 5) G/C 0.22/0.78 −0.378a −0.613a 0.14/0.86 −0.589a −0.291a

−0.635d −0.810d 0.750d −0.891d

−0.239r −0.464r −0.00782r −0.00675r

rs891398 (Exon 5) T/C (T125A) 0.25/0.75 0.0201a 0.00790a 0.52/0.48 −0.511a −0.450a

0.026d 0.0287d 0.228d 0.294d

0.302r 0.0814r −0.0357r −0.0338r

rs2472553 (Exon 2) T/C (T22I) 0.16/0.84 0.481a 0.534a 0.13/0.87 −0.595a −0.192a

0.324d 0.387d 0.776d −0.724d

−0.538r −0.649r −0.00429r −0.000863r

CHRNA6 rs9298628 (3′-flanking) C/T 0.25/0.75 −0.422a −0.375a 0.81/0.19 −0.0455a −0.216a

−0.266d −0.232d −0.336d −0.547d

−0.913r −0.996r −0.0625r −0.251r

rs892413 (Intron 2) C/A 0.25/0.75 −0.612a −0.397a 0.80/0.20 −0.00769a −0.152a

−0.566d −0.340d −0.117d −0.189d

−0.704r −0.732r −0.0195r −0.304r

rs2217732 (Intron 2) A/G 0.26/0.74 −0.423a −0.405a 0.81/0.19 −0.0195a −0.126a

−0.247d −0.215d −0.335d −0.433d

−0.972r 0.864r −0.0235r −0.163r
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(Table 3). Of the CHRNA6 polymorphisms, rs9298628,  
rs892416, and rs2217732 showed a significant associa-
tion with FTND in the EAs, with P values of 0.000889, 
0.00153, and 0.000865, respectively, under the additive 
model and 0.000218, 0.00053, and 0.000282 under the 
recessive model. Again, all these associations remained sig-
nificant after Bonferroni correction.

Meta‑analysis associations for both discovery 
and replication samples

Meta-analysis was performed for the seven SNPs by com-
bining the results from the discovery and replication sam-
ples, which included the AA sample only, EA sample 
only, and the AA and EA samples together (Table 4). The 
reason to perform meta-analysis on the AA and EA sam-
ples together was that the heterogeneity test for SAGE 
AA and EA case–control samples revealed no heterogene-
ity between the two ethnic samples on these SNPs. Of the 
meta-analyzed SNPs, rs2292976 in CHRNA2 (P = 0.0053) 
and rs892413 in CHRNA6 (P  =  0.00311) showed the 
strongest association with FTND.

Haplotype‑based association analysis

According to the haplotype block criteria defined by 
Gabriel et al. (2002), only one block was identified within 
each ethic sample in the CHRNA2 as well as in CHRNA6 
(Fig. 1). We employed the FBAT program to perform hap-
lotype-based association analysis for all major (defined 
as >5  %) haplotypes in each of the above-mentioned LD 
blocks with the two ND measures in CHRNA2 (Table  5) 
and CHRNA6 (Table 6) from the discovery family sample.

In CHRNA2, significant haplotypes in the AAs were: 
(1) G-C-T, formed by SNPs rs2292976, rs3735757, and 
rs891398 (Fig. 1), with a frequency of 22.3 %, which was 
associated significantly with FTND (Z = 2.54, P = 0.011); 
and (2) G-G-C, formed by the same SNPs, with a frequency 
of 9.6  %, which was associated significantly with FTND 
(Z  =  −2.74; P  =  0.0063) under a dominant model. The 
identified haplotypes in the EAs were: (1) C-T-T, formed 
by SNPs rs3735757, rs891398, and rs2472553, with a fre-
quency of 51.9 %, which was significantly associated with 
FTND (Z = −2.60; P =  0.0093); and (2) C-C-T, formed 
by SNPs rs3735757, rs891398, and rs2472553, with a 

Table 3   ND-associated P values under the three genetic models for the first given allele of each SNP in CHRNA2 and CHRNA6 with ND in the 
replication case–control sample

Superscripts indicate genetic model used for analysis: a additive, d dominant, r recessive. For each ethnic-specific sample, age, sex, and other 
non-nicotine drug dependences were used as covariates. Negative signs indicate protective effect with the model specified in superscript letters

Gene dbSNP ID (gene location) Alleles African American European American

Allele freq. SQ FTND Allele freq. SQ FTND

CHRNA2 rs2292976 (Exon 8) A/G 0.10/0.90 −0.041a −0.00533a 0.13/0.87 0.684a 0.0487a

−0.058d −0.00790d 0.619d 0.0767d

−0.209r −0.147r −0.952r 0.157r

rs3735757 (Intron 5) G/C 0.20/0.80 −0.152a −0.267a 0.13/0.87 0.982a 0.114a

−0.209d −0.380d 0.975d 0.167d

−0.275r −0.290r −0.876r 0.217r

rs891398 (Exon 5) T/C (T125A) 0.25/0.75 −0.463a 0.343a 0.51/0.49 −0.172a −0.297a

−0.462d 0.398d 0.043d −0.124d

−0.724r 0.506r −0.825r −0.864r

rs2472553 (Exon 2) T/C (T22I) 0.16/0.84 0.185a 0.102a 0.13/0.87 −0.942a −0.0785a

0.192d 0.122d 0.812d −0.0953d

0.518r 0.340r −0.635r −0.326r

CHRNA6 rs9298628 (3′-flanking) C/T 0.29/0.71 0.0323a 0.056a 0.79/0.21 0.104a 0.000889a

0.0502d 0.013d 0.589d 0.680d

0.143r 0.941r 0.036r 0.000218r

rs892413 (Intron 2) C/A 0.31/0.69 −0.119a 0.208a 0.80/0.20 −0.189a 0.00153a

−0.0799d −0.486d −0.083d 0.688d

−0.586r 0.035r −0.515r 0.000530r

rs2217732 (Intron 2) A/G 0.29/0.71 0.105a 0.098a 0.80/0.20 0.080a 0.000865a

0.125d 0.026d 0.828d 0.513d

0.304r −0.938r 0.034r 0.000282r
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frequency of 34.4  %, which was significantly associated 
with FTND (Z = 2.85; P = 0.0043).

In CHRNA6, for the AA sample, we found no haplo-
types showing significant association with ND. In the EA 
sample (Table 5), we found one haplotype, C-C-A, formed 
by SNPs rs9298628, rs892413, and rs2217732, with a 

frequency of 79.1  %, significantly associated with SQ 
(Z = −2.71; P =  0.0067). Several haplotype-based asso-
ciations remained significant after Bonferroni correction 
for each LD block.

In the replication case–control sample, only one hap-
lotype in CHRNA2, A-G-C, formed by SNPs rs2292976, 

Table 4   Meta-analysis results of SNPs in CHRNA2 and CHRNA6 with ND in both the discovery and replication samples

For each SNP, meta-analysis was performed on only one genetic model, which was selected on the basis of the association analysis result for 
both the discovery and the replication samples; I2 was calculated only for the replication case–control samples with the METAL program

Gene dbSNP ID Allele African American European American AA + EA samples I2

CHRNA2 rs2292976 A 0.00325d 0.195d 0.00530d 0

rs3735757 G 0.404r 0.011r 0.0252r 0

rs891398 T 0.0187a 0.402a 0.0443a 0

rs2472553 T 0.554r 0.00258r 0.0108r 0

CHRNA6 rs9298628 C 0.998r 0.000592r 0.00498r 0

rs892413 C 0.120r 0.00290r 0.00311r 0

rs2217732 A 0.981r 0.000505r 0.00426r 0

Fig. 1   LD structures for CHRNA2 (left) and CHRNA6 (right) SNPs 
in AAs and EAs from discovery and replication samples. Haploview 
(Barrett et al. 2005) was used to calculate all D′ values, and haplotype 

blocks were defined according to Gabriel et al. (2002). The number in 
each box represents the D′ value for each SNP pair surrounding that 
box
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rs3735757, and rs891398, was significantly associated 
with FTND in the AA sample (P  =  0.00649) (Table  6). 
Two haplotypes formed by SNPs rs9298628, rs892413, 
and rs2217732 in CHRNA6 (Fig.  1) showed significant 
associations in the EA sample: (1) T-A-G, with a fre-
quency of 20.0 %, was significantly associated with FTND 
(P = 0.000947); and (2) C-C-A, with a frequency of 79.2 %, 
was significantly associated with FTND (P = 0.00121).

Discussion

Nicotinic acetylcholine receptors α2 and α6 play vital roles 
in the nervous system. To test for their association with ND, 
seven SNPs in CHRNA2 and CHRNA6 were investigated in 
two independent samples of either African or European ori-
gin. Association analysis revealed that multiple SNPs and 
haplotypes are significantly associated with ND in the both 
discovery and replication samples. In the discovery sample, 
individual SNP analysis for CHRNA2 revealed a significant 
association of two SNPs in the EA sample and one SNP 
in the AA sample with FTND and/or SQ. In particular, we 
found that associations of SNPs rs3735757 and rs2472553 
in CHRNA2 with SQ and FTND remained significant after 
correction for multiple testing. However, such associations 
were not exactly the same at the SNP level in the replica-
tion sample, where only SNP rs2292976 showed significant 
association with FTND in the AA population. Although 
SNP rs892413 showed significant association with SQ in 

the EA discovery samples, all three CHRNA6 SNPs exhib-
ited significant association with FTND in the EA replica-
tion sample, even after correction for multiple testing. 
Further, we found a significant association between sev-
eral haplotypes of CHRNA2/CHRNA6 and ND in both the 
discovery and the replication samples, although haplotypes 
formed by particular SNPs were sometimes different in the 
two samples. Meta-analysis of the discovery and the repli-
cation samples added further support for the association of 
CHRNA2 and CHRNA6 with ND.

Compared with other nAChR subunit genes such as 
CHRNA5-A3-B4, CHRNA4, CHRNB2, and CHRNB3 
(Bierut 2010; Cui et  al. 2013; Li and Burmeister 2009; 
Saccone et al. 2009, 2010; Thorgeirsson et al. 2010; Wang 
et  al. 2012), CHRNA2 has not received much attention in 
nicotine research. Although CHRNA2 was one of the first 
nAChRs investigated as an ND candidate gene in several 
GWAS and candidate studies, no significant associations 
have been reported after correction for multiple testing or 
replicated in independent studies. In the present study, we 
demonstrated that CHRNA2 shows a strong association 
with FTND after correction for multiple testing. Impor-
tantly, the SNP rs2472553, which evinced the strongest 
association with ND, appears to encode a functional variant 
in the signal peptide, causing an amino acid change from 
threonine to isoleucine at the 22nd residue. Our functional 
study with oocyte electrophysiology indicates that this 
mutation changes the sensitivity of functional receptors 
(Dash et al. in preparation).

Table 6   Association analysis results for SNPs in CHRNA2 and CHRNA6 with ND in the replication case–control sample

Superscripts indicate genetic model used for analysis: a additive; Corrected P value at 0.05 is 0.0125 in AAs and 0.0167 in EAs for CHRNA2 
and 0.025 in both EAs and AAs for CHRNA6

rs2292976 rs3735757 rs891398 rs2472553 Freq. SQ FTND

P haplotype P global P haplotype P global

(A) CHRNA2

 African American G C C 54.0 0.0713a 0.744a

G C T 24.8 0.139a 0.220 0.379a 0.099

G G C 10.9 0.823a 0.324a

A G C 9.16 0.0275a 0.00649a

 European American A G C T 11.4 0.769a 0.0686a

G C C C 35.7 0.178a 0.533 0.826a 0.408

G C T C 50.1 0.158a 0.240a

rs9298628 rs892413 rs2217732 Freq. SQ FTND

P haplotype P global P haplotype P global

(B) CHRNA6

 African American T A G 68.4 0.0584a 0.238 0.145a 0.243

C C A 28.9 0.105a 0.0885a

 European American T A G 20.0 0.178a 0.228 0.000947a 0.00792

C C A 79.2 0.122a 0.00121a
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CHRNA2 plays a vital role in other neurologic disorders 
such as epilepsy, with an estimated prevalence in Europe-
ans that ranges from 3 to 8 per 1,000 individuals (Forsgren 
et  al. 2005). The mutation I279N in the α2 subunit (i.e., 
rs104894063) was the first identified functional variant 
associated with epilepsy in CHRNA2; electrophysiologi-
cal investigation of the I279N mutation in HEK 293 cells 
indicates that the α2I279N/β4 receptor has a significantly 
higher sensitivity to the natural agonist than does the wild-
type α2/β4 receptor (Aridon et  al. 2006). Another oocyte 
electrophysiology study found that α2I279N, co-expressed 
with the β2 subunit, causes a gain-of-function effect whose 
distinct biopharmacological profile includes reduced inhi-
bition by carbamazepine and greater nicotine sensitivity 
(Hoda et al. 2009).

Several GWAS and candidate gene studies have revealed 
strong associations between CHRNA6 and ND. However, 
most studies tested CHRNB3–CHRNA6 associations as a 
cluster, in which most of the significant association was 
attributable to variants in CHRNB3; moreover, the asso-
ciation of CHRNA6 SNPs typically did not survive correc-
tion for multiple testing (Hoft et al. 2009b; Saccone et al. 
2009; Zeiger et al. 2008). In the present study, we demon-
strated that CHRNA6 is still significantly associated with 
FTND after correction for multiple testing. In a study by 
Hoft and colleagues (Hoft et  al. 2009a), two SNPs from 
the CHRNA6–CHRNB3 cluster were found to be associ-
ated with smoking quit attempts also: SNP rs2304297 
(P = 0.0044) from CHRNA6 and rs7004381 (P = 0.0024) 
from CHRNB3. Complementing our association study, ani-
mal self-administration studies suggest that β2*nAChRs 
assembled with α6 subunits would be useful pharmacologi-
cal targets for smoking cessation products (Brunzell 2012): 
nicotine self-administration is absent in α6-knockout mice, 
and targeted re-expression of the α6 subunit in the VTA of 
α6-KO mice promptly restores nicotine self-administration 
(Pons et  al. 2008). Further, several in vitro electrophysio-
logical, synaptosome-release assay, and cyclic-voltammetry 
studies have demonstrated that nicotine-mediated elevation 
of dopamine release is blocked following antagonism of 
α6β2*nAChRs with α-CTX MII (Champtiaux et al. 2003; 
Drenan et al. 2008; Perez et al. 2009, 2010; Salminen et al. 
2007; Zhao-Shea et al. 2011). Finally, an in vivo function 
study of α6*nAChRs in mesolimbic DA neurons has shown 
that the elevation of DA release caused by nicotine can be 
inhibited by intra-VTA infusion of α-CTX MII, implicating 
α6β2*nAChRs in the regulation of this effect (Gotti et al. 
2010). Collectively, the association and functional studies 
of CHRNA6 suggest that α6*nAChRs are strong candidates 
for drug-development research on smoking cessation.

Recently, CHRNA6 has been found to be associated, 
not only with ND, but also with alcohol dependence; three 
SNPs (rs1072003, P  =  0.015; rs892413, P  =  0.0033; 

and rs2304297, P =  0.012) were associated with alcohol 
dependence in the National Youth Survey Family Study in 
a sample that was mostly EAs (Hoft et al. 2009a). Another 
study showed that two haplotypes of the CHRNA6, CCCC 
and TCGA, formed by SNPs rs10087172, rs10109429, 
rs2196129, and rs16891604, were associated with 
heavy  alcohol  consumption (P  =  0.004 and P  =  0.035, 
respectively) and with increased alcohol intake (P = 0.004) 
for the CCCC haplotype in a Spanish population (Landgren 
et al. 2009).

In sum, our results indicate that both CHRNA2 and 
CHRNA6 are significantly associated with ND. Such asso-
ciation with ND at both the individual SNP and haplotype 
level makes these genes good subjects for research on 
molecular mechanisms of dependence. A better understand-
ing of the role of these genetic variants—especially the 
functional variants—may provide key insights for pharma-
cologic targeting to reduce or possibly eliminate some of the 
addictive properties of nicotine in susceptible individuals.
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