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Abstract Dyskeratosis congenita (DC) is an inherited

bone marrow failure and cancer predisposition syndrome

caused by aberrant telomere biology. The classic triad of

dysplastic nails, abnormal skin pigmentation, and oral

leukoplakia is diagnostic of DC, but substantial clinical

heterogeneity exists; the clinically severe variant Hoyeraal

Hreidarsson syndrome (HH) also includes cerebellar

hypoplasia, severe immunodeficiency, enteropathy, and

intrauterine growth retardation. Germline mutations in

telomere biology genes account for approximately one-half

of known DC families. Using exome sequencing, we

identified mutations in RTEL1, a helicase with critical

telomeric functions, in two families with HH. In the first

family, two siblings with HH and very short telomeres

inherited a premature stop codon from their mother who

has short telomeres. The proband from the second family

has HH and inherited a premature stop codon in RTEL1

from his father and a missense mutation from his mother,

who also has short telomeres. In addition, inheritance of

only the missense mutation led to very short telomeres in

the proband’s brother. Targeted sequencing identified a

different RTEL1 missense mutation in one additional DC

proband who has bone marrow failure and short telomeres.

Both missense mutations affect the helicase domain of

RTEL1, and three in silico prediction algorithms suggest

that they are likely deleterious. The nonsense mutations

both cause truncation of the RTEL1 protein, resulting in

loss of the PIP box; this may abrogate an important pro-

tein–protein interaction. These findings implicate a new

telomere biology gene, RTEL1, in the etiology of DC.

Introduction

Dyskeratosis congenita (DC) is an inherited bone marrow

failure syndrome caused by germline defects in telomere

biology genes (Savage and Bertuch 2010). The classic triad

of dysplastic nails, skin pigmentation, and oral leukoplakia

is diagnostic, but substantial clinical heterogeneity exists;

patients may also have pulmonary fibrosis, liver disease,

esophageal, urethral, or lacrimal duct stenosis, develop-

mental delay, and/or other complications. Individuals with

DC are at very high risk of bone marrow failure (BMF),

myelodysplastic syndrome, and cancer (Alter et al. 2010).

Hoyeraal Hreidarsson syndrome (HH) is a clinically

severe variant of DC. In addition to features of DC, patients

with HH have cerebellar hypoplasia, severe immunodefi-

ciency, enteropathy, and intrauterine growth retardation.

The clinical consequences of DC manifest at variable ages

and in different patterns, even within the same family.

Independent of the classic triad, lymphocyte telomere

lengths less than the first percentile for age are diagnostic

of DC (Alter et al. 2012).

The inheritance of DC is variable, with germline

mutations reported in X-linked ([XL] DKC1), autosomal

dominant ([AD] TERC, TERT, or TINF2), and autosomal

recessive ([AR] TERT, CTC1, NOP10, NHP2, or WRAP53)

patterns (Nelson and Bertuch 2012; Walne et al. 2012)
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accounting for approximately one-half of classic DC cases.

The reported AR mutations in TERT are homozygous

missense mutations, whereas WRAP53 and CTC1 AR

inheritance is due to compound heterozygous mutations. In

addition to the different modes of DC inheritance, genetic

anticipation has been reported in TERC, TERT, and TINF2

pedigrees (Armanios et al. 2005; Savage and Bertuch 2010;

Vulliamy and Dokal 2008); this phenomenon is marked by

increasing severity in the clinical phenotype and shorter

telomeres with each successive generation.

In order to advance understanding of the genetic etiol-

ogy of DC and related telomere biology disorders, we

conducted exome sequencing on two families with DC.

Novel variants in biologically and genetically plausible

genes were evaluated by targeted sequencing. This led to

the discovery of germline mutations in the regulator of

telomere elongation helicase 1, RTEL1, as a new cause of

both AR and AD DC.

Results

We performed whole exome sequencing (WES) on two

families with children affected by the clinically severe DC

subtype, Hoyeraal Hreidarsson syndrome (HH) (Table 1).

The probands were clinically tested and negative for

mutations in DKC1, TERC, TERT, TINF2, NOP10, NHP2,

and WRAP53. We specifically assessed exome sequencing

coverage of the known DC genes, including CTC1, muta-

tions in which were recently discovered to cause DC

(Keller et al. 2012). Variants identified in WES were

evaluated in AD, AR, and XL inheritance models

(‘‘Materials and methods’’, Online Resource 2). WES

variants of interest were validated to rule out false positive

findings using an alternative sequencing technology

(‘‘Materials and methods’’). In both families, the most

biologically plausible gene containing novel or extremely

rare variants was regulation of telomere elongation helicase

1 (RTEL1, OMIM #608833). RTEL1 is an evolutionarily

conserved DNA helicase that is important in telomeric

replication and stability (Uringa et al. 2012). Depletion of

murine Rtel1 from mouse embryonic stem (ES) cells

results in loss of telomeric sequence and chromosomal

abnormalities upon differentiation (Ding et al. 2004).

Family NCI-164 includes two brothers with HH, a

healthy mother with short telomeres, and a healthy father

with normal telomeres (Table 1; Fig. 1). An RTEL1

variant, g.20:62324600C[T (p.Arg1010X, NM_032957),

resulting in a premature stop codon in exon 30 was present

in both the affected siblings and their mother, indicating

AD inheritance (Table 2; Fig. 2). This mutation has been

reported twice in the Exome Sequencing Project (ESP)

database with a minor allele frequency (MAF) of 0.015 %,

but is not present in 1,000 Genomes, Kaviar, or dbSNP,

implying that the prevalence of this mutation in the general

population is much lower than 0.015 %. This truncation

results in the loss of the PCNA (proliferating cell nuclear

antigen) interacting protein (PIP) motif (Fig. 2). It is likely

that genetic anticipation contributes to the clinical status of

the children, since the mother is currently healthy. This

pattern of genetic anticipation, including the presence of

clinically silent mutation carriers, has been seen previously

in DC (Armanios et al. 2005; Savage and Bertuch 2010;

Vulliamy et al. 2004), and has been used to inform DC-

related gene discovery (Savage et al. 2008).

Family NCI-180 includes a male with HH whose mother

and brother, while currently healthy, both have very short

telomeres (Table 1; Fig. 1). The healthy father has normal

telomeres. The proband, brother, and mother share two novel

variants in RTEL1: g.20:62319931G[T (p.Glu615Asp,

NM_032957), a likely deleterious mutation in a highly con-

served residue in a helicase domain, and g.20:62322230A[C

(p.Gln853Pro, NM_032957), which is likely benign (Table 2;

Fig. 2). In addition, the proband and his father are heterozy-

gous for a mutation g.20:62324564C[T (p.Arg998X,

NM_032957) in exon 30 that results in deletion of the PIP

motif (Fig. 2). The presence of two likely deleterious muta-

tions in the proband and the correspondingly severe pheno-

types indicates compound heterozygous AR inheritance

(Fig. 1). The brother’s inheritance of only the missense

mutation has so far resulted in no obvious clinical manifesta-

tions of disease. However, his telomeres are significantly

below the first percentile for his age and he has hypocellular

bone marrow with a cytogenetic clone. Consequently, he will

be monitored for development of DC-related complications.

Mutations in a DC-associated gene causing both AD and AR

(or compound heterozygous) inheritance of DC is not

unprecedented. For example, individuals with AD TERT

mutations may not have medical problems until middle age,

whereas AR TERT mutations can cause HH with manifesta-

tions in infancy (Marrone et al. 2007; Nelson and Bertuch

2012).

We then performed targeted sequencing of all exons in

RTEL1 in 10 DC and 14 DC-like families who are negative

for mutations in known DC-associated genes (‘‘Materials

and methods’’, Online Resources 3 and 4). DC-like indi-

viduals have short telomeres and features similar to, but not

diagnostic of DC (Savage and Bertuch 2010). We identified

likely deleterious mutations in RTEL1 in one additional,

DC-like proband.

A heterozygous mutation g.20:62320468G[A (p.Ala

645Thr, NM_032957) in exon 22, which encodes part of the

Helicase_C_2 region, was identified in a DC-like patient,

NCI-238-1, who has short telomeres and BMF (Tables 1, 2;

Fig. 1). This residue is highly conserved, and this mutation is

predicted to be deleterious. His family members were not
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available for sequencing; however, his sister has nail dys-

plasia and her telomeres are at the first percentile for age.

Targeted sequencing of RTEL1 also identified common

single nucleotide polymorphisms (SNPs) in patients and

their relatives. Three additional nonsynonymous SNPs

were present in three unrelated patients, but are either

present in other databases (MAF [ 1 %), predicted to be

benign, or not in an evolutionarily conserved region

(Online Resource 3).

Discussion

RTEL1 encodes an essential, evolutionarily conserved

DNA helicase that is important for DNA replication and

telomere elongation. By employing WES followed by

targeted sequencing, we discovered mutations in RTEL1 in

three DC families, indicating that dysfunctional RTEL1 is

a biologically plausible cause of DC, a disorder of aberrant

telomere biology. Clinical data show that RTEL1 mutations

Table 2 Inheritance and in silico analyses of RTEL1 mutations

Family NCI-164 NCI-180 NCI-238

Diagnosis DC, HH DC, HH DC-like

Mode of inheritance Maternal AD Compound heterozygote,

maternal

Compound heterozygote,

paternal

AD

Amino acid changea p.Arg1010X p.Glu615Asp p.Arg998X p.Ala645Thr

Genomic location

(Chromosome 20)b
g.62324600C[T g.62319931G[T g.62324564C[T g.62320468G[A

Codon changec CGA [ tGA GAG [ GAt CGA [ tGA GCG [ aCG

In silico predictions

SIFT N/A Damaging N/A Damaging

PolyPhen-2 N/A Probably damaging N/A Probably damaging

Condel N/A Deleterious N/A Deleterious

ProPhylER N/A Highly conserved (Glu

only)

N/A Conserved (Ala or, less

frequently, Ser)

DC Dyskeratosis congenita, HH Hoyeraal Hreidarsson syndrome, AD autosomal dominant, AR autosomal recessive, N/A not applicable, X

indicates stop codon
a This amino acid prediction is based on NR_037882, the read-through isoform. All others are based on NM_032957/NP_116575
b Annotation based on the reference human genome UCSC build hg19/Genome Reference Consortium GRCh37
c Lower case letter indicates the mutant nucleotide

Fig. 1 Lymphocyte telomere

lengths in families with RTEL1
mutations. Lymphocyte

telomere lengths for DC or

DC-like patients and unaffected

relatives were measured by flow

cytometry with fluorescent

in situ hybridization (Alter et al.

2012). In family NCI-238,

telomere lengths for the two

siblings are shown; however,

genotype data were unavailable

for the sister and parents. In

both the pedigrees and the

telomere length graphs, the

proband is indicated with an

arrow

476 Hum Genet (2013) 132:473–480
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may be associated with very severe clinical symptoms; this

is exemplified by the fact that two of the three probands

with RTEL1 mutations have been diagnosed with HH, the

clinically severe variant of DC. As seen in families with

TINF2 and TERT mutations, genetic anticipation appears to

be evident. However, we cannot rule out the presence of

other disease-modifying factors. Correlations between

clinical manifestations of DC and genetic mutations are

complicated by the presence of disease heterogeneity,

incomplete penetrance, and genetic anticipation. However,

telomere length is an accurate diagnostic indicator (Alter

et al. 2012), and we have found that in eight of nine

patients, RTEL1 mutations correlate with telomeres at or

below the first percentile. The only exception is the father

in family NCI-180, whose telomeres are near the tenth

percentile for his age.

RTEL1 is an essential protein in mice, and depletion

from murine ES cells results in loss of telomeric sequence

and chromosomal abnormalities upon differentiation (Ding

et al. 2004), indicating that it is required to maintain both

telomeric and genomic stability. In mice, RTEL1 is widely

expressed in proliferating cells, including lymphocytes

(Ding et al. 2004). These data support the model that

human RTEL1 influences telomere length and that pertur-

bation of RTEL1 results in a disorder marked by bone

marrow failure and elevated risk of leukemia. More

recently, mouse RTEL1 has been shown to disassemble

T-loops, thereby promoting telomeric replication (Vannier

et al. 2012). In the absence of functional RTEL1, T-loops

are excised by the SLX4 nuclease complex, resulting in

dramatic changes in telomere length. The discovery of

RTEL1 dysfunction in DC marks a potentially novel

mechanism of disease-associated telomere shortening;

other DC genes mediate telomerase activity, localization,

or biogenesis, while RTEL1-associated telomere length

change appears to be telomerase-independent.

The likely deleterious mutations discovered in our DC

families may have significant effects on domains of RTEL1

that are critical for proper protein function. The point muta-

tions are located in conserved helicase domains. The trun-

cations result in loss of the C-terminus, which seems unlikely

to affect the helicase activity. A putative PIP motif in this

region may mediate interactions between RTEL1 and PCNA,

a sliding clamp that functions in DNA replication and repair

and which localizes to stalled replication forks in telomeric

sequence (Verdun and Karlseder 2006). RTEL1 may interact

with PCNA to facilitate replication of telomeres, or to

mediate T-loop stability (Vannier et al. 2012; Wang et al.

2004). However, an interaction between RTEL1 and PCNA

remains speculative, and there may be important domains

other than the PIP motif in the truncated region of RTEL1.

Ongoing functional characterization of the mutations repor-

ted here will elucidate the impact of these mutations on

telomere maintenance and human disease.

Mutations in DNA helicases are associated with other

human disorders, including Bloom’s syndrome, Werner’s

syndrome, Rothmund–Thomson syndrome, and Fanconi

anemia, all of which affect genomic stability and result in

predisposition to cancer (Ellis et al. 1995; Kitao et al. 1999;

Levitus et al. 2005; Yu et al. 1996). The role of the RTEL1

helicase in human disease is just now being explored, but

there is a clear precedent for dysfunctional DNA helicases

leading to diseases of chromosomal instability and increased

cancer risk. Recently, non-coding SNPs in RTEL1 have been

found to be associated with susceptibility to high-grade gli-

oma (Egan et al. 2011; Shete et al. 2009; Wrensch et al. 2009).

DC is a cancer predisposition syndrome; affected individuals

are at an 11-fold increased risk of cancer compared with the

general population. Notably, the risk of tongue squamous cell

cancer is increased by 1,000-fold and the risk of AML is

increased by 195-fold (Alter et al. 2009). These findings

suggest that the RTEL1 locus may influence cancer

Fig. 2 Schematic of RTEL1
genomic structure and

conserved domains. a RTEL1 is

comprised of 35 exons spanning

nearly 40,000 bases of genomic

sequence on chromosome

20q13.33. Exons 20 through 35

have been expanded (blue
boxes). In a and b, the positions

of the mutations in DC patients

are labeled relative to transcript

NP_116575. b Comparison of

amino acid conservation of

RTEL1 homologs (‘‘Materials

and methods’’). Higher percent

identity at a given amino acid

position is indicated by a deeper
purple color
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susceptibility, possibly via alterations in telomere biology.

Similarly, variations in the TERT-CLPTM1L locus have been

implicated in modulating risk of a wide variety of cancers

(Rafnar et al. 2009). TERT encodes the reverse transcriptase

component of the enzyme telomerase and germline mutations

can cause DC and related telomere biology disorders. Taken

together, these data suggest that preserving genomic integrity

through appropriate telomere maintenance is critical for

preventing oncogenesis.

Overall, in our cohort of 57 classic DC and 19 DC-like

families, RTEL1 accounts for approximately 4 % of this

complex telomere biology disorder. Ongoing gene dis-

covery studies are required to more thoroughly understand

the genetic etiology of DC and related disorders, and to

further define the molecular consequences of germline

RTEL1 mutations.

Materials and methods

Patients and families

Families with DC and their relatives are participants in an

IRB-approved longitudinal cohort study at the National

Cancer Institute (NCI) entitled ‘‘Etiologic Investigation of

Cancer Susceptibility in Inherited Bone Marrow Failure

Syndromes’’ (www.marrowfailure.cancer.gov, NCI 02-C-

0052, ClinicalTrials.gov Identifier: NCT00027274). Patients

and their family members complete detailed family history

and medical history questionnaires. We conduct detailed

medical record review, comprehensive questionnaires, and

thorough clinical evaluations of affected individuals and their

relatives at the NIH Clinical Center (Alter et al. 2010). To

date, 57 families with DC have enrolled, including 86

affected and 212 unaffected relatives. Individuals with short

telomeres and features similar to, but not diagnostic of DC,

who lack a DC-associated mutation, are classified as DC-like.

Nineteen families are classified as DC-like and consist of 24

affected individuals and 48 relatives.

All DC and DC-like probands had mutation testing of

DKC1 (if male), TINF2, TERT, TERC, and WRAP53. NOP10

and NHP2 were sequenced in the DC probands only. None of

the patients reported in this study had a germline mutation in

one of these genes. DNA was extracted from whole blood

using standard methods. Telomere length was measured by

flow cytometry with fluorescent in situ hybridization (flow

FISH) in leukocytes of all patients and family members

reported (Baerlocher et al. 2006).

Exome sequencing

Whole exome sequencing for families NCI-164 and NCI-

180 was performed at the NCI’s Cancer Genomics

Research Laboratory. Adapter-ligated genomic DNA

libraries were prepared with the TruSeq DNA Sample

Preparation Kit (Illumina, San Diego, CA, USA) according

to the manufacturer’s protocol, and then amplified by

ligation-mediated PCR, purified with the QIAquick PCR

Purification kit (Qiagen, Valencia, CA, USA), and evalu-

ated electrophoretically. Exome enrichment was performed

with NimbleGen’s SeqCap EZ Human Exome Library

v2.0, targeting 44.1 Mb of exonic sequence (Roche Nim-

bleGen, Inc., Madison, WI, USA). Sample libraries were

hybridized with the EZ Exome Probe Library, and then

DNA was washed and recovered as described in the

NimbleGen SeqCap EZ Library SR protocol. The exome-

enriched libraries were amplified by ligation-mediated

PCR, purified, and evaluated as above. The resulting post-

capture enriched multiplexed sequencing libraries were

used in cluster formation on an Illumina cBOT and paired-

end sequencing was performed using an Illumina HiSeq

following Illumina-provided protocols for 2 9 100-cycle

sequencing. Exomes were sequenced to sufficient depth to

achieve a minimum threshold of 80 % of coding sequence

covered with at least 15 reads (see Online Resource 1),

based on UCSC hg19 ‘‘known gene’’ transcripts (http://

genome.ucsd.edu/). This minimum threshold resulted in an

average coding sequence coverage of 160 reads.

Exome analysis and variant prioritization

The human reference genome and the ‘‘known gene’’ tran-

script annotation were downloaded from the UCSC database

(http://genome.ucsc.edu/), version hg19 (corresponding to

Genome Reference Consortium assembly GRCh37). Reads

were aligned to the hg19 reference genome using the Novo-

align software version 2.07.14 (http://www.novocraft.com).

Duplicate reads based on paired ends aligning to the same

start locations due to either optical or PCR artifacts were

marked and dropped from further analysis using the Mark-

Duplicated module of the Picard software version 1.67

(http://picard.sourceforge.net/) using default parameters.

Alignments for each individual were refined using a local

realignment strategy around known and novel sites of inser-

tion and deletion polymorphisms using the RealignerTar-

getCreator and IndelRealigner modules from the Genome

Analysis Toolkit (GATK, http://www.broadinstitute.org/

gatk/) (DePristo et al. 2011). Variant discovery and geno-

type calling of multi-allelic substitutions, insertions and

deletions were performed on all individuals simultaneously

using the UnifiedGenotyper module from GATK with the

minimum call quality parameter set to 30. Annotation, fitting

genetic models, and filtering of each variant locus were per-

formed using a custom locally developed software pipeline

using data from the UCSC GoldenPath database (http://

hgdownload.cse.ucsc.edu/goldenPath/hg19/database/), the
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ESP6500 dataset from the Exome Variant Server, NHLBI

Exome Sequencing Project (ESP), Seattle, WA (http://evs.

gs.washington.edu/EVS/) (accessed August 2012), the

Institute of Systems Biology KAVIAR (Known VARiants)

database (http://db.systemsbiology.net/kaviar/) (Glusman

et al. 2011), the National Center for Biotechnology Infor-

mation dbSNP database (http://www.ncbi.nlm.nih.gov/

projects/SNP/) (Sherry et al. 2001) build 137, and the 1,000

Genomes (http://www.1000genomes.org/) (1000 Genomes

Project Consortium 2010). Variants were also annotated for

their presence in an in-house database consisting of 366

whole exomes that were sequenced in parallel with our DC

families. Variants within each family were filtered and cate-

gorized as indicated in Online Resource 2.

Candidate variant validation

Primers for sequencing were designed using Primer3

software (http://jura.wi.mit.edu/rozen/papers/rozen-and-

skaletsky-2000-primer3.pdf). The BLAT feature on the

UCSC Genome Browser (ucsc.genome.edu) and NetPrimer

software (http://www.premierbiosoft.com/netprimer/index.

html) were used to evaluate sequence specificity and

oligo folding irregularities. Primers were provided by

IDT Technologies (Coralville, Iowa, USA). See Online

Resource 4 for primer sequences. All samples were

amplified using KAPA2 RobustHotstart Readymix (2X)

(Kapa Biosystems, Johannesburg, South Africa) and the

following cycling conditions: 3 min at 95�, followed by 30

cycles of 15 s at 95�, 15 s at 60�, 15 s at 72�, followed by

10 min at 72�. Amplicons were purified using Agencourt’s

Ampure XP beads, then libraries were constructed and

barcoded using the Ion Xpress Plus Fragment Library Kit

(Life Technologies, Carlsbad, CA, USA). DNA tagged

beads were generated for sequencing using Life Technol-

ogies’ OneTouch and run on an Ion 316 chip on the Ion

PGM Sequencer (Life Technologies). The default TMAP

aligner and variant caller were used to generate a variant

list per sample.

In silico analysis

PolyPhen-2 (Adzhubei et al. 2010) (http://genetics.bwh.

harvard.edu/pph2), SIFT (Kumar et al. 2009) (http://

sift.jcvi.org), and Condel (Gonzalez-Perez and Lopez-Bigas

2011) (http://bg.upf.edu/condel/home) were used to predict

the severity of RTEL1 amino acid substitutions. Multiple

sequence alignments were generated for homologous RTEL1

protein sequences using M-Coffee (Wallace et al. 2006) and

T-Coffee (Notredame et al. 2000) (http://www.tcoffee.org) to

evaluate conservation. Alignments were generated with

NCBI Reference Sequence proteins NP_116575 (Homo

sapiens), NP_001124929 (Pongo abelii), NP_001091044

(Bos taurus), NP_001160137 (Mus musculus), and

NP_001013328 (Danio rerio). Jalview (http://www.jalview.

org) (Waterhouse et al. 2009) was used to visualize and for-

mat the alignments. ProPhylER (Binkley et al. 2010)

(http://www.prophyler.org) was also employed to examine

the evolutionary constraint on each affected amino acid.
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