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Abstract Diseases such as type 2 diabetes (T2D) result

from environmental and genetic factors, and risk varies

considerably in the population. T2D-related genetic loci

discovered to date explain only a small portion of the T2D

heritability. Some heritability may be due to gene–environ-

ment interactions. However, documenting these interactions

has been difficult due to low availability of concurrent genetic

and environmental measures, selection bias, and challenges

in controlling for multiple hypothesis testing. Through gen-

ome-wide association studies (GWAS), investigators have

identified over 90 single nucleotide polymorphisms (SNPs)

associated to T2D. Using a method analogous to GWAS

[environment-wide association study (EWAS)], we found five

environmental factors associated with the disease. By focus-

ing on risk factors that emerge from GWAS and EWAS, it is

possible to overcome difficulties in uncovering gene–envi-

ronment interactions. Using data from the National Health and

Nutrition Examination Survey (NHANES), we screened

18 SNPs and 5 serum-based environmental factors for

interaction in association to T2D. We controlled for

multiple hypotheses using false discovery rate (FDR)

and Bonferroni correction and found four interactions

with FDR \20 %. The interaction between rs13266634

(SLC30A8) and trans-b-carotene withstood Bonferroni

correction (corrected p = 0.006, FDR \1.5 %). The

per-risk-allele effect sizes in subjects with low levels of

trans-b-carotene were 40 % greater than the marginal

effect size [odds ratio (OR) 1.8, 95 % CI 1.3–2.6]. We

hypothesize that impaired function driven by rs13266634

increases T2D risk when combined with serum levels of

nutrients. Unbiased consideration of environmental and

genetic factors may help identify larger and more relevant

effect sizes for disease associations.

Abbreviations

T2D Type 2 diabetes mellitus

GWAS Genome-wide association study

EWAS Environment-wide association study
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SNP Single nucleotide polymorphism

BMI Body mass index

FBG Fasting blood glucose

T1D Type 1 diabetes
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living in Utah
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ASW HapMap population of African ancestry from

Southwestern United States
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Introduction

Complex diseases like type 2 diabetes (T2D) have multi-

factorial etiologies, with genetic and environmental factors

playing roles (Schwartz and Collins 2007). Genome-wide

association studies (GWAS) have identified many common

single nucleotide polymorphisms (SNPs) associated with

disease (Hindorff et al. 2009b; Visscher et al. 2012). How-

ever, individual SNPs confer modest risks, and cumula-

tively, they account for only a limited portion of missing

heritability (Manolio et al. 2009), and they have little

prognostic utility (Meigs et al. 2008). Furthermore, it has

been reported that the availability of entire genomes may

not be clinically informative (Roberts et al. 2012). As a

result, many models have been proposed or re-introduced

to describe the genetic basis of complex disease (Gibson

2011; McClellan and King 2010).

Gene–environment interactions have been an important

concept in evolutionary biology. For example, gene–envi-

ronment interactions result in phenotypic plasticity, where

a given genotype produces different phenotypes in

response to different environmental conditions. The spec-

trum of possible phenotypes, such as variation in disease

risk, is known as the ‘‘reaction norm’’ (Pigliucci 2001).

Thus, interactions may account for some of unexplained

disease risk and/or improve our understanding of genetic

basis of risk. In human disease epidemiology, gene–envi-

ronment interactions describe the effect size of the com-

bination of genetic and environmental factors as different

than the effects of each factor alone (Hunter 2005; Thomas

2010). In the following, we consider this type of statistical

gene–environment interaction.

Statistical interaction may offer hints about biological

interaction, where genetic and environmental factors

jointly determine physiological effects on a molecular or

cellular level (Wang et al. 2010). Biological interactions

may be informative of disease etiology. For example,

genetic risk for bladder cancer associated with variants of

the NAT2 gene, a gene that plays a possible role in

metabolism of tobacco smoke constituents, is known to be

larger when considering smoking status of individuals

(Rothman et al. 2010). Thus, identification of robust sta-

tistical/epidemiological interactions can be seen as a first

step toward creation of hypotheses relevant to disease

pathophysiology.

We have created a method called environment-wide

association study (EWAS). EWAS finds environmental

factors associated with disease (Patel et al. 2010, 2012b;

Tzoulaki et al. 2012). EWAS is analogous to GWAS in

which it evaluates multiple environmental factors and has

proper adjustment for the multiplicity of comparisons. The

associations that emerge are validated across different

datasets. In sum, EWAS is a way to unify differences

between genetic and environmental association studies and

to accelerate our knowledge regarding potential environ-

mental influences on health and disease (Ioannidis et al.

2009).

Most studies in this area examine genetic or environ-

mental factors. However, it is still rare for both types of

factors to be measured in human tissue concurrently. A key

challenge involves choosing which factors to examine.

Analyzing all of them is not possible with current tech-

nology (Thomas 2010), and factors are often selected for

convenience, without sufficient documentation of the

strength of their marginal associations. Given the com-

plexity of gene–environment interaction analyses, there

may be problems with selective analyses and selective

reporting of results in a fragmented and possibly biased

fashion (Ioannidis 2005). For example, many studies do not

account for all the interaction effects that they explore.

Thus, there is a need to select common SNPs and exposures

and systematically screen their interactions to avoid spu-

rious results (Khoury and Wacholder 2009; Patel et al.

2012a).

Here, we used a data-driven and systematic approach for

selecting gene–environment interactions associated with a

common disease such as T2D. Our specific goal was to test

NHANES data (Centers for Disease Control and Preven-

tion (CDC) 2009) for interactions between robust factors

found in GWAS and EWAS. NHANES includes 261

genotyped loci, 266 environmental factors measured in

blood and urine, and clinical measures for the same indi-

viduals. We focused on the top GWAS and EWAS hits,

and systematically investigated SNP–environment interac-

tions associated with T2D. Top GWAS hits were defined as

SNPs that had been associated with T2D in at least one

study. Top EWAS hits had robust associations and low

false discovery rates (FDRs) in multiple cohorts. In our

statistical specification of interactions, we modeled disease

risk due to the combination of genotypic and environ-

mental factors as different than the sum of the risks of each

factor alone (Khoury et al. 1988; Thomas 2010).

A source of major debate for the etiology of T2D is the

thrifty genotype hypothesis, in which thrifty genes pro-

vided advantages to human populations during the hunter–

gatherer era (Diamond 2003; Neel 1962; Zimmet et al.

2001). People with the thrifty genotype stored food energy

efficiently during times of feast, making more available to

them during times of famine (Neel 1962; Zimmet et al.

2001). Thus, in modern societies, thrifty genotypes may
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have become risk genotypes. However, evidence to support

this hypothesis is lacking, and competing hypotheses have

emerged. A data-driven study of interactions between

SNPs and common environmental exposures may shed

light on this debate and to bring to fore its clinical

implications.

Materials and methods

Data and selected genetic and environmental factors

Data came from National Health and Nutrition Examina-

tion Survey (NHANES) (Centers for Disease Control and

Prevention (CDC) 2009). All SNPs available had been

chosen a priori by independent researchers investigating

other topics (Matise et al. 2011). These SNPs were assayed

in two NHANES: 1999–2000 and 2001–2002. Genotypes

were not collected in 2003–2004 and 2005–2006 and have

yet to be released for 2007–2008. Of these, we used 18

SNPs with documented near-GWS associations in T2D (for

examples and references, see Table S1). We computed

allele frequencies of each SNP stratified on race to confirm

their presence. For quality control, we estimated deviation

from Hardy–Weinberg equilibrium (HWE) for each SNP

by race. In NHANES, ethnicity was coded in five groups

(Mexican-American, non-Hispanic black, non-Hispanic

white, other Hispanic, other).

We previously used NHANES data from 1999–2000,

2001–2002, 2003–2004, and 2005–2006 to screen 266

environmental factors measured in blood or urine (Patel

et al. 2010). We identified and tentatively validated five

environmental factors associated with T2D: trans-b-caro-

tene, cis-b-carotene, c-tocopherol, heptachlor epoxide, and

PCB170. The FDR for each association was \10 % in at

least 2 independent surveys. Trans- and cis-b-carotenes

were measured in the 2001–2002, 2003–2004, and

2005–2006 surveys and had a significance threshold under

FDR 10 % for all 3 surveys. c-Tocopherol was measured in

all four surveys. Its FDR was\10 % in 1999–2000, 2003–

2004, and 2005–2006 and\20 % in the 2001–2002 survey.

Heptachlor epoxide was measured in the 1999–2000,

2001–2002, and 2003–2004 surveys. Its FDR was\10 % in

the 1999–2000 and 2003–2004 surveys. PCB170 was

measured in the 1999–2000, 2001–2002, and 2003–2004

surveys and its FDR was \10 % in the 1999–2000 and

2003–2004 surveys. In the current investigation, we ana-

lyzed the 1999–2000 and 2001–2002 surveys.

T2D was defined in survey participants having 8.5-h

fasting blood glucose (FBG) values C126 mg/dL, as

advised by the American Diabetes Association. We

acknowledge neither FBG nor the self-reported diabetes

status distinguishes between Type 1 diabetes (T1D) and

T2D, but given that T2D accounts for over 95 % of all

diabetes cases, we assume most of our cases are T2D. To

increase study power, we combined data from the

1999–2000 and 2001–2002 surveys. Depending on the

genetic and environmental variables tested, there were

841–2,655 controls and 81–274 case subjects.

Each SNP was coded for the number of risk alleles as

designated in the publications citing it (Chen et al. 2010).

Environmental factors were continuous and followed a

long-tailed distribution; thus, they were log-transformed

and standardized (expressed in standard deviation units)

(Patel et al. 2010).

We compared age, BMI, sex distribution, and race in

T2D subjects and controls. Risk alleles of SNPs from the

literature were found and their frequencies in NHANES

subjects were computed by race. We computed baseline

levels of environmental factors in both groups. We asses-

sed the marginal effect between SNPs or environmental

factors on T2D with survey-weighted logistic regression,

adjusting for race, age, sex, and BMI. We also assessed

marginal effects stratified by race.

Baseline characteristics for each subsample

We defined a subsample as a group of survey participants

available for each interaction test. SNPs and environmental

factors were not assayed equally among subjects, so each

subsample contained a different number of participants.

We computed baseline characteristics for each sub-

sample to assess overall differences between them. First,

we computed risk allele frequency stratified by race in the

HapMap as follows: CEU (Americans of European decent

living in Utah), ASW (Americans of African ancestry liv-

ing in the Southwest), and MEX (Americans of Mexican

ancestry living in Southern California) (Frazer et al. 2007).

We ascertained whether SNPs might be correlated with

serum levels of environmental factors. We evaluated the

correlation between genetic and environmental factors

through survey-weighted linear regression, regressing log

base 10 of the environmental exposure variable on each

genetic variable, adjusted for race, sex, age, and BMI.

Systematic interaction screen between SNPs

and environmental factors

Next, we screened the 90 possible pairs for interaction (18

genetic loci times 5 environmental factors; Fig. 1a, b). We

utilized survey logistic regression to associate each pair of

factors to T2D, incorporating a multiplicative interaction

term and main effects of both factors. Each model was

adjusted by age, sex, race, and BMI.

NHANES is a complex multi-staged survey and we

accounted for its sampling methodologies as recommended

Hum Genet (2013) 132:495–508 497

123



by the National Centers for Health Statistics (NCHS) (CDC

and National Center for Health Statistics (NCHS) 2003).

Specifically, we used 4-year survey probability weights

corresponding to the smallest subsample analyzed to

accurately estimate point estimates of effects (Vittinghoff

et al. 2005). We also accounted for clustering and stratifi-

cation of the survey to compute standard errors and p val-

ues accurately (Vittinghoff et al. 2005). We used SAS

version 9.2 and the ‘‘PROC SURVEY’’ suite of commands,

as also recommended by the NCHS (CDC and National

Center for Health Statistics (NCHS) (2003). Restricted data

were accessed with permission through a Research Data

Center (RDC) in Hyattsville, Maryland.

Multiplicity correction and false discovery rate

estimation

Bonferroni multiplicity correction adjusts the threshold for

statistical significance by the number of statistical tests

conducted. Since our tests were not independent, we esti-

mated the total number of effective genetic loci and envi-

ronmental exposures tested jointly by accounting for the

correlation between selected factors. This approach esti-

mates the number of hypotheses for a group of correlated

factors and has been applied to the study of SNPs (Nyholt

2004). We expanded the method to environmental factors.

For the 18 SNPs, we calculated the correlation between

SNPs stratified by race, and concluded that there were 17.7

effective genetic factors. For the 5 environmental factors,

we calculated 4.41 effective factors. Thus, the total number

of effective tests was 78.1 (17.7 9 4.41). The adjusted

level of significance for a single test with a threshold of

p = 0.05 was 0.0006 (0.05/78.1).

We also calculated the FDR (Storey 2002), the expected

ratio of the number of false positives to the total number of

positives, or the expected fraction of results drawn from the

null distribution at a given significance level (Benjamini

and Hochberg 1995). To estimate the number of false

positives, we generated a distribution of null test statistics

corresponding to an interaction term, while preserving the

main effects of the SNP and exposure terms, using a

parametric bootstrap method (Bůžková et al. 2011).

The parametric bootstrap methodology is a randomiza-

tion technique that simulates the distribution of test sta-

tistics for the interaction term under the null hypothesis of

no interaction. To create the null distribution of test sta-

tistics corresponding to the interaction term (bG9E), we fit a

logistic regression model omitting the interaction term

(bG9E = 0), while leaving parameters that modeled the

main effects of the environmental factor, SNP, and age,

Fig. 1 Comprehensive testing

and screening for gene-

environment interactions in

T2D. a Genetic and

environmental factors were

chosen by their strength of

marginal association in GWAS

and EWAS; b each SNP/

exposure pair was tested for

interaction in association to

disease in a logistic regression

model adjusting for other risk

factors and main effects of

exposure and SNP; c we used a

modified Bonferroni correction

to control for multiple

hypotheses were and the FDR

was estimated. FDR false

discovery rate
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sex, race, and BMI. We ‘‘bootstrapped’’ (randomized with

replacement) fitted dependent values (predicted odds for

diabetes) from the null model and refit the interaction

model described above, adding the covariate corresponding

to the interaction between SNP and environmental factor

(bG9E). To simulate a null distribution of test statistics, this

procedure was repeated 100 times. The FDR was estimated

as the ratio of interaction terms deemed significant in the

simulated distribution to all results deemed significant in

the real data.

The specific bootstrapping procedure was as follows:

1. We screened all 90 interaction pairs and collected all

p values corresponding to the coefficient of the

interaction, bg9e. We called these p values Preal. These

models were specified as:

Logit T2Dð Þ ¼ aþ bg � gþ be � eþ bgxe � g � e

þ other covariatesð Þ Model 1ð Þ

Here, ‘‘g’’ denotes the SNP coded by the number of

risk alleles and ‘‘e’’ is the environmental factor, mean-

centered and standardized by the standard deviation.

2. For each of the 90 interaction pairs, we computed the

model corresponding to ‘‘no interaction,’’ or bg9e = 0:

Logit T2Dð Þ ¼ aþ bg � gþ bg � e

þ other covariatesð Þ Model 2ð Þ

The predicted values for Logit(T2D) are called Y.

3. From Model 2 corresponding to bg9e = 0, we boot-

strapped sample (sample with replacement) Y. They

were used as dependent values for Model 1, which

corresponded to the interaction model. We collected

p values corresponding to the interaction term bg9e.

4. Steps 2 and 3 were repeated 100 times, leading to

100 9 90 (9,000) models. The set of 9,000 p values

collected in this way was called Pnull.

5. We estimated the FDR for a given significance level.

For example, for a significance level of 0.05:

FDR(0.05) = ((#Pnull \ 0.05)/100)/(#Preal \ 0.05).

Power calculations for interactions

Sample sizes, genetic risk allele frequency and marginal

OR, and environmental exposure marginal OR were used

to compute power to detect moderate-to-high interaction

effects (interaction OR = 1.5 and 2.0) at p value of 0.01

(FDR \18 %). We assumed marginal effects of genetic

factors observed among NHANES cohorts (genetic mar-

ginal OR = 1.0) and environmental factors OR as

observed in EWAS (exposure marginal OR = 1.5). We

used Quanto software for these calculations (Gauderman

and Morrison 2009).

Analyses stratified by race and consideration of other

T2D risk factors

Our main analysis scan included all participants from

diverse ancestral groups, as reflected in NHANES. Given

that the strongest evidence for T2D associations has come

from studies of Caucasians, we also performed interaction

analyses stratified by race.

We investigated whether eight other candidate T2D

risk factors interact with 18 SNPs. These other factors

included BMI and pulse rate (a proxy for physical fitness).

They also included self-reported intake variables derived

from a 24-h dietary questionnaire. In this questionnaire,

NHANES participants were queried regarding foods they

consumed in 24 h prior to the survey. Variables derived

from this questionnaire include total energy (as calories),

carbohydrate, monounsaturated fat, polyunsaturated fat,

total saturated fat, and total fat consumed in 24 h. As

above, all variables were standardized by the population

mean and standard deviation. Interaction models were

specified as above (main effects and multiplicative

interaction term), adjusting for BMI, self-reported race,

sex, and age. Sample sizes for these tests were greater

than in our main analyses (N = 278–291 cases, 3,066–3,139

controls).

Results

Methodological overview

Figure 1 shows a schematic overview of our approach to

search for interacting SNPs and environmental factors

associated with T2D (defined as fasting blood glucose

C126 mg/dL as recommended by the American Diabetes

Association). We used a dataset containing measurements

for SNPs and environmental factors and chose data with

strong evidence of association of marginal effects in

GWAS and EWAS.

GWAS provide a framework for assembling robustly

replicated sets of common SNPs with genome-wide sig-

nificance [GWS, p \ 5 9 10-8 (Pearson and Manolio

2008)]. As noted above, EWAS provides a way to search

for and validate environmental factors associated with

disease (Patel et al. 2010). We selected environmental

factors with significant associations in 2–4 independent

surveys after accounting for the multiplicity of analyses

and adjusting for demographic factors.

First, we examined the separate marginal effects of each

SNP/genetic variant (‘‘G’’) or each environmental factor

(‘‘E’’) on T2D. Next, we computed correlations between

each environmental factor and SNP (total of E 9 G corre-

lations) to ascertain the degree of their dependence.
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Each environmental factor and SNP (total of E 9 G

statistical tests) was tested for interaction while adjusting

for age, sex, BMI, and race (self-reported) (Fig. 1b) in

association to T2D. Finally, we accounted for multiplicity

of analyses with both Bonferroni-adjusted p values and

FDR estimation (Fig. 1c).

Baseline characteristics of cohorts

Table 1 shows that the mean ages of diabetics and non-

diabetics who participated in the 1999–2002 surveys dif-

fered (56 years for diabetic vs. 40 years for non-diabetics),

as did their sex (39 % female diabetic vs. 52 % female

non-diabetic), and mean BMI (32 vs. 27 kg/m2).

Risk allele frequency and genetic marginal associations

Figure S1 shows estimated allele frequencies and main

effects of the risk allele for each of the 18 SNPs in the two

NHANES. Risk allele frequencies were [5 % (or \95 %)

for all of the ethnicities, except for rs1801282 (97 % risk

allele frequency/3 % minor allele frequency) in blacks

(Figure S1). We estimated deviation from HWE per race

through a Chi-squared test. Gross deviations from HWE

were not found in the Mexican-American, non-Hispanic

white, and non-Hispanic black races (p [ 0.05).

Three of 18 SNPs were marginally associated with T2D

at significance level of 0.05 after adjustment for age, sex,

race, and BMI. They were rs10923931 (NOTCH2),

rs7903146 (TCF7L2), and rs13266634 (SLC30A8) (Figure

S1). These data are uncorrected for multiple hypotheses,

given that these SNPs have been associated with T2D in

populations of European descent (Table S1).

We computed the marginal effect sizes for each SNP in

non-Hispanic whites, non-Hispanic blacks, and Mexican-

Americans to assess the potential effects of race on the

marginal estimates (Figure S1). We did not find any strong

associations for most of the 18 loci (uncorrected p [ 0.05

for most SNPs for all races). Notable exceptions were

rs13266634 (SLC30A8, p = 0.05 for non-Hispanic white),

rs2237895 (KCNQ1, p = 0.04 for non-Hispanic black),

rs8050136 (FTO, p = 0.001 for Mexican-Americans),

rs7903196 (TCF7L2, p = 0.02 for non-Hispanic white).

SNPs nominally (p \ 0.05) or marginally (p \ 0.15)

associated with T2D had OR similar to that observed in the

literature (Table S1). However, marginal effects of other

SNPs were null (OR 1.0–1.1), to be expected given our

smaller cohorts (NHANES) and small effects observed in

GWAS (Table S1).

Environmental factor marginal associations

We had detected five environmental factors in our T2D

EWAS (Patel et al. 2010). Figure S2 shows marginal T2D

associations between diabetics and non-diabetics and

average serum levels of these factors. The pollutant factors

PCB170 and heptachlor epoxide had adjusted odds ratio of

1.7 and 1.5, respectively (p = 0.01, adjusted for age, sex,

race, and BMI) for a 1 SD change in logged exposure. The

nutrient factor c-tocopherol had an adjusted odds ratio of

1.5 (p \ 0.001) and two b-carotene factors were associated

with protection from T2D, with odds ratios of 0.6

(p = 0.003 and 0.006). While we observed some differ-

ences in mean serum levels of environmental factors

between races, the directions of effect size estimates were

consistent between them (Figure S2).

To study interactions between genotypes and environ-

mental factors, we computed the sample sizes available for

each pair of environmental factor and SNP, defined here as

‘‘subsamples.’’ Subsamples contained 81–274 diabetic case

participants and 841–2,655 control participants. In spite of

the differences in absolute numbers, the percentage of

diabetics per subsample was constant at 9–10 % (Figure

S3A).

Table 1 Baseline differences between type 2 diabetics (fasting blood glucose C126 mg/dL) and non-diabetics for participants in the 1999–2002

NHANES

Diabetics (FBG C126 mg/dL) Controls (FBG \126 mg/dL) N (diabetics)

Mean 95 % CI Mean 95 % CI

Age 55.7 52.9–58.4 39.9 38.8–40.9 6,476 (456)

Female 39 % 52 % 6,476 (456)

Body mass index (kg/m2) 31.9 30.4–33.3 26.9 26.6–27.1 6,332 (436)

Race

Non-Hispanic white 66 % 57–74 70 % 66–75 6,476 (456)

Mexican 7 % 5–9 7 % 5–9

Black 12 % 8–14 11 % 9–16

Other Hispanic 8 % 3–10 7 % 1–16

Other 7 % 3–6 5 % 1–13
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Power calculations for genotype–environment interac-

tions depend on minor allele frequency, environmental

factor variability, the ratio of cases to controls, and mar-

ginal associations to disease (Gauderman and Morrison

2009). We estimated the minor allele frequencies in our

NHANES participants (5–44 %), the ratio of cases and

controls for each genotype–environment factor pair (8–

10 %), and assumed standardized environmental variables

(SD = 1). Further, we assumed a genetic marginal OR of

1.0 and environmental factor OR of 1.5 as observed in

these NHANES participants (Figure S1, S2). Under these

assumptions, we determined power of 50–100 % (median

93 %) to detect an interaction OR of 2.0 for a significance

threshold a = 0.01 (corresponding to FDR \20 %) (Gau-

derman and Morrison 2009) (Figure S3B).

Subsample characteristics

Figure S4A, B shows our estimates of the per-subsample

risk allele frequency and estimates of the genetic marginal

effect size. Overall, we found few differences in risk allele

frequency between subsamples by race (Figure S4A). Fur-

ther, we found little difference between risk allele frequency

between non-Hispanic whites, Mexican-Americans, and

non-Hispanic blacks compared to the CEU, MEX, and ASW

HapMap populations (Frazer et al. 2007) (Figure S4A).

Correlations between SNPs and environmental factors

We found little correlation between the 18 SNPs and the 5

environmental factors (Figure S5A–E). There was a nom-

inal negative association between rs10923931 and hepta-

chlor epoxide (p = 0.02), where levels of heptachlor

epoxide decreased 10 % per risk allele. We also observed a

negative association between rs10923931 and cis-b-caro-

tene (p = 0.04), where levels of heptachlor epoxide

decreased 5 % per risk allele.

Correlations among environmental factors

We computed the pair-wise correlations between each

of the environmental factors (Table S2) to assess their

interdependency. There was moderate-to-low correlation

between most factors (q ranging from -0.2 to 0.34). For

example, there was a low inverse correlation between

both versions of b-carotene and c-tocopherol (q = -0.2);

however, we observed high correlation between cis-b-car-

otene and trans-b-carotene (q = 0.96).

Screening for SNP by environment interactions

To study interactions between the 18 SNPs and the 5 envi-

ronmental factors, we tested 90 interactions using survey-

weighted logistic regression adjusted for age, sex, race, and

BMI. Figure 2 is a Manhattan-style plot showing results for

the 90 interaction terms. Seven results (5 SNPs and 4 envi-

ronmental factors) had p values B0.05 (FDR B23 %). FDRs

for these seven results were between 1.5 and 23 %. We

discuss interactions that have reached FDR\25 % here.

Our top interaction was between trans-b-carotene (a

nutrient marker) and the non-synonymous SNP rs13266634

(SLC30A8). Specifically, higher levels (defined as 1 SD

above the mean) of this nutrient factor appeared to have a

protective effect. The interaction was significant beyond the

Bonferroni-adjusted cutoff level (interaction p = 5 9 10-5,

Bonferroni adjusted p value 0.006, FDR = 1.5 %). At lower

levels of trans-b-carotene (defined as 1 SD below the mean),

the per-allele effect size/OR was 1.8 (95 % CI 1.3–2.6),

which was 40 % greater than the marginal effect (Fig. 3a).

We also estimated the environmental risk for the different

genotypes. For example, the adjusted OR per change in trans-

b-carotene levels (environmental effect size) was protective

in subjects with two risk alleles for the SNP (adjusted OR 0.5,

95 % CI 0.4–0.7), while the effects were negligible in sub-

jects with B1 risk alleles (Figure S6), suggesting protective

effects of trans-b-carotene for individuals with two risk

alleles. We observed similar effects for cis-b-carotene and

rs13266634 (Fig. 3a).

We observed an opposite effect in subjects with the

rs13266634 risk alleles as levels of c-tocopherol rose (inter-

action p = 0.009, FDR = 18 %, Fig. 3a); c-tocopherol had

an adverse effect in combination with the rs13266634 risk

genotype. When c-tocopherol levels were 1 SD higher than

the mean, the adjusted OR was 1.6 (adjusted 95 % CI 1.3–2),

a 25 % increase in per-allele adjusted OR when compared to

the marginal effect (Figure S1). Genetic risk in subjects below

the mean levels of c-tocopherol appeared mitigated.

We did not detect a marginal individual association

between intergenic SNP rs12779790 and T2D, but we did

observe an interaction with this locus and trans-b-carotene

(Fig. 3a). The protective effect of trans-b-carotene

increased 50 % in subjects with two risk alleles, compared

to 0.6 for its marginal per-SD effect (Figure S6). This was

an adjusted per-SD environmental factor OR of 0.3 (95 %

CI 0.2–0.5).

Similarly, we did not detect a marginal association

between rs2237895 (KCNQ) and T2D, but we saw environ-

mental risk of PCB170 equal to 2.8 (95 % CI 1.7–4.5, Figure

S6) for individuals with two risk alleles. This was twofold

greater than the marginal estimate of 1.7 (Figure S2).

Interactions stratified by race

We computed interaction estimates separately for each

race. As expected, estimates for non-Hispanic whites were

comparable to those of all participants (Fig. 3a, b).
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However, the study was underpowered for observing

interaction effect sizes in Mexican-Americans or non-

Hispanic blacks (Figure S7A, B). We observed amplified

effects for some per-race stratified interactions. For example,

non-Hispanic blacks with low levels of cis-b-carotene and

risk alleles for rs12779790 had a threefold increased risk for

T2D compared to the overall sample (Figure S7A). Simi-

larly, Mexican-Americans with low levels of trans-b-caro-

tene and risk alleles for rs4712523 (CDKAL1) also had

twofold increased risk for T2D compared to all participants

(Figure S7B).

Interactions adjusted by cis-b-carotene

The interaction OR conferred by the combination of cis/

trans-b-carotene and rs13266634 was similar and in the

same direction (Fig. 3). Furthermore, the interaction OR

between c-tocopherol and rs13266634 ran in the opposite

direction. To assess independence of interactions, we re-

estimated the interaction OR for the top findings while

adjusting for cis-b-carotene in addition to age, sex, BMI,

and race (Figure S8). After adjusting for cis-b-carotene, our

inferences were unchanged. For example, for low trans-

b-carotene, the per-allele adjusted OR for rs13266634 was

2.0 (95 % CI 1.4–2.8; interaction p = 2 9 10-4) after

adjustment for cis-b-carotene. At high levels of c-tocoph-

erol, the per-allele OR for rs13266634 was 1.5 (95 % CI

1.1, 1.8; interaction p = 0.06). The interaction OR for our

top findings was independent of serum cis-b-carotene

levels.

Untransformed environmental factor levels

Environmental factors were log-transformed to achieve

linearity. To assess sensitivity of this transformation on our

interaction OR, we recomputed models for our top findings

without log transforming the environmental factors. We

centered and standardized each environmental factor by

their raw mean and SD, and recomputed the interaction OR

while adjusting for the same covariates above. In conclu-

sion, log transforming the environmental factors did not

lead to sizable changes in interaction OR as compared to

using the non-logged factors for our top findings (Figure

S9). For example, the adjusted OR for participants with

1 SD lower than the mean for trans-b-carotene was 1.8

(95 % CI 1.4–2.5) per one allele change in rs13266634,

comparable to the estimate computed using log-transfor-

mation of trans-b-carotene.

Limited evidence to support interactions with other risk

factors

BMI, physical fitness, energy intake, carbohydrate intake,

and fat intake are well-known risk factors for T2D. We

assessed eight variables representing these factors in

interaction with the 18 SNPs tested in this study. We were

unable to uncover substantial interaction effects that would

survive multiple comparison control (Figure S10). The

lowest p value was 0.02, corresponding to FDR of 100 %.

We did observe a modest interaction between BMI and

rs8050136 (FTO) (uncorrected interaction p value = 0.03).

Fig. 2 Significance values

of interaction term

[-log10(p value) for interaction

term of pair of factors]. SNPs

are on the x axis and

environmental factors are color-

coded above each SNP. Markers

alternate between filled and

open for each locus. The y axis

shows -log10(p value).

Interactions with p value B0.05

are annotated with their FDR.

The dotted line denotes the

Bonferroni threshold. One

finding (the interaction between

rs1326634 and trans-b-carotene;

FDR = 1.5 %) was above the
line
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rs8050136 is an obesity-related locus whose association

with T2D is explained primarily through its effect on BMI

(Zeggini et al. 2007).

Discussion

We have shown that it is possible to screen for gene–

environment interactions by integrating results from GWAS

and EWAS. Our most promising results are candidates for

prospective studies in additional independent cohorts.

We chose environmental factors and SNPs with strong

evidence for marginal associations in EWAS and GWAS.

However, it would also be possible to evaluate interactions

that lack strong evidence. Given the small marginal effects

for most common SNPs, many genuine associations do not

reach GWS and remain false negatives (Ioannidis et al.

2011). Some may have strong interactions with environ-

mental factors (Khoury and Wacholder 2009), and may

only be discovered if appropriate joint environmental

variables are considered. However, choosing them from

millions of non-GWS SNPs would be a significant chal-

lenge. In addition, testing for interactions is power-inten-

sive (Hunter 2005), and testing a large number would

impose a significant power and multiplicity burden (Tho-

mas 2010). It has been argued that strict Bonferroni mul-

tiplicity corrections need not be used when considering

factors derived from previous observations (Rothman

1990). However, we counter that interaction effects need

not exist between factors that have robust evidence from

EWAS and GWAS. Further, by estimating the FDR, we

present a more powerful way to prioritize findings versus

the Bonferroni correction.

Selecting environmental factors to test for interaction is

even more difficult. In contrast to SNPs, there is no high-

throughput platform that captures environmental factors

with low measurement error. This lack of measuring

capacity limits data.

Fig. 3 Per-risk allele effect

sizes for top putative

interactions with p \ 0.05.

a Estimates for all races,

b non-Hispanic whites. Markers
denote interaction OR computed

at 1SD below mean exposure

levels, at the mean, or at 1 SD

greater than the mean. Marker

sizes are proportional to inverse

variance

Hum Genet (2013) 132:495–508 503

123



We were able to use a prior EWAS to systematically

screen 266 T2D-environmental factors measured in serum

and urine. We selected five factors with the strongest

support for further testing. An advantage of our approach is

that it allows for hypothesis generation while keeping the

total number of tests lower than testing all possible factor

pairs. However, it is still very important to account for

multiple hypothesis testing. We used multiplicity correc-

tion and FDR, but other approaches may also be employed

(Ioannidis 2006). Other alternatives exist to filter the

hypothesis space of interactions, such as prioritizing

interacting factors based on evidence of physical or toxi-

cological interaction (Patel et al. 2012a).

There were other challenges in this study. First, we had

low-to-moderate power to detect moderate interaction

effects for some of the interactions we tested. Not sur-

prisingly, the p values and effect sizes of results were

modest and only one survived Bonferroni correction. We

also obtained modest FDR estimates for the other highest-

ranking interactions. However, we observed that the top

interactions between these SNPs and EWAS factors were

stronger than the interactions between the any of the same

SNPs and other conventional risk factors for T2D, such as

caloric intake, BMI, and physical fitness. We conclude that

our top findings are ideal candidates for extensive valida-

tion through replication in higher-powered investigations.

Replication studies can investigate trends in SNP inter-

actions with various environmental entities in populations

of different ancestry. Population stratification (Smith et al.

2007) is one type of bias for the phenotypic effect of SNPs.

Although our analysis adjusted and stratified for race, to

date, the SNPs identified by GWAS are best characterized

in Caucasian populations. Genetic effects for GWAS-dis-

covered markers may be different in other groups (Hayes

et al. 2007; Ioannidis 2009; Shu et al. 2010; Tsai et al. 2010;

Unoki et al. 2008; Yamauchi et al. 2010). For example, one

study of African–American heart disease patients replicated

17 SNPs found in subjects of European descent. The study

identified only one SNP (rs7903146 TCF7L2) associated

with T2D in African–Americans from a list of 15 SNPs

common to this study, including rs13266634 (SLC30A8)

(Lettre et al. 2011). Little is known about gene–environ-

ment interactions in populations of different ancestry and

this idea should be investigated.

The potential imbalance of each interaction test was a

limitation of this study. Ideally, each interaction pair

should have the same participants. However, NHANES

subjects did not all undergo the same tests. Our smallest

subsamples were those with Heptachlor Epoxide and

PCB170. These factors gave high marginal effects, but

their analyses were lower powered relative to other subs-

amples. Our results may be biased and not as generalizable

as tests with larger sample sizes.

There are few documented examples of interaction

effects between T2D, GWS SNPs and diverse environ-

mental or dietary factors (Cornelis et al. 2009). We have

been able to hypothesize about possible new ones. For

example, the strongest evidence for interaction in our data

was between rs13266634, a non-synonymous coding SNP

in the SLC30A8 gene and three nutrient factors, trans- and

cis-b-carotene, and c-tocopherol. SLC30A8 is expressed in

pancreatic islets and localized in insulin secretory granules

of islet b cells. It appears to modulate insulin secretion and

storage (Chimienti et al. 2004, 2005). Several reports have

found diet-dependent glucose intolerance and insulin

secretion abnormalities in SLC30A8 knockout mice

(Lemaire et al. 2009; Nicolson et al. 2009; Pound et al.

2009). rs13266634 has been associated T2D in numerous

GWAS [e.g., Sladek et al. (2007), Table S1], and can

influence insulin secretion following glucose challenge

(Staiger et al. 2007). Thus, this SNP may be important in

T2D pathogenesis. Our study enabled us to hypothesize

that impaired insulin secretion driven by rs13266634 may

increase T2D risk if combined with high or low levels of

specific nutrients.

Alternatively, c-tocopherol and b-carotene may be

markers of other dietary components. b-Carotene is a lipid-

soluble dietary factor correlated with fruit and vegetable

consumption (Block et al. 2001), components that are

associated with T2D prevention (Carter et al. 2010). In

contrast, the richest sources for c-tocopherol include soy-

bean oils and margarine (Wagner et al. 2004), components

with higher fatty acid content. Fatty acids influence b-cell

function and have been shown to even potentiate insulin

secretion among individuals genetically predisposed to

T2D (Ashcroft and Rorsman 2012). Of interest, vitamin E

appears to modify GWAS-identified SNPs associated with

serum lipid levels, metabolic traits that are risk factors for

T2D (Dumitrescu et al. 2012).

One hypothesis under debate regarding the etiology of

T2D is the thrifty genotype hypothesis, in which T2D risk

genotypes provided advantages for indigenous human

populations. Now, in times of more readily available

nutrients and calories, a result of a different environment,

these thrifty genotypes are now risk genotypes. However,

evidence to support existence of such thrifty genes or

interactions with these environmental factors and behaviors

is lacking. To this end, competing hypotheses have

emerged, including the ‘‘thrifty phenotype’’ (Hales and

Barker 2001) and ‘‘drifty genotype’’ (Speakman 2008),

whereby predisposition to metabolic diseases are a result of

mismatch in nutrition environments between early (pre-

childhood) and adult life or due to random genetic drift,

respectively. Further, more recent events in human history,

such as famine, may have played a role to enrich thrifty

genes in certain populations (Diamond 2003). Perhaps one

504 Hum Genet (2013) 132:495–508

123



reason behind lack of formal evidence to support these

hypotheses may be that other constituents of the modern

lifestyle, such as those indicated by EWAS (in addition to

higher overall energy intake), may be interacting with

genotypes that conferred advantages to early human pop-

ulations. Future studies should examine the role of other

indicators of modern lifestyle and environment on T2D as

we have attempted here.

There was some unavoidable asymmetry in our selec-

tion of SNPs and environmental factors. We chose

SNPs with documented robust associations with T2D and

environmental factors with strong associations to T2D in

NHANES. Only three variants were significantly associ-

ated with T2D overall, and only two were significantly

associated with T2D in race-stratified analyses. This pat-

tern was anticipated, given the small marginal effects of

these genetic factors.

While interactions may be informative of causality

(Davey Smith 2010), these findings are subject to bias. For

environmental factors, confounding and reverse causality are

major issues (Ioannidis et al. 2009). Little is known about the

causal nature, if any, of these factors and T2D (Song et al.

2009). Our findings must be confirmed in independent, larger

populations. Prospective studies will be critical.

The SNPs we examined may have robust marginal

associations to T2D, but could only tag the actual causal

SNP. Our power is decreased for tagging SNPs that are not

in complete linkage disequilibrium with the causal SNP.

More importantly, etiological inference might be hindered

if the causal SNP is unknown.

Nevertheless, these findings may have important impli-

cations for personalized medicine (Chan and Ginsburg

2011) or the ‘‘missing heritability’’ debate (Manolio et al.

2009). For example, Roberts et al. (2012) have recently

quantified the difficulty in predicting disease risk using

entire genomes of individuals. However, Roberts et al.

(2012) only considered genetic or environmental main

effects and interactions were not considered. On the other

hand, Aschard et al. (2012) recently provided theoretical

arguments that gene–environment interactions are unlikely

to improve risk prediction. However, only a limited num-

ber of interactions (maximum of 10) were considered in

these simulations. It is possible that inclusion of many

interaction effects may increase prediction. We hypothe-

size that perhaps the lack of predictive capacity in the

Roberts et al. investigations and predicted by the Aschard

et al. simulations arises from not considering multiple

interactions between environmental exposures and the

genome. To test the hypothesis empirically that multiple

interactions may influence heritability estimates, we would

require relatedness information between participants cur-

rently unavailable in NHANES. Further, to test if multiple

interactions influence risk prediction, we would require

samples with same environmental and genetic measures for

all participants. Nevertheless, we demonstrate one way of

identifying multiple interactions to test in these contexts in

future investigations.

Infrastructure-related challenges remain in this area

(Hunter 2005). First, unlike common SNPs (Hindorff et al.

2009a), we lack a complete list of candidate environmental

factors. Screening and validating gene–environment inter-

actions is power-intensive, and will require both environ-

mental and genetic measures to be measured in multiple

studies (Ioannidis et al. 2009), augmentation of GWAS

with environmental data (Khoury and Wacholder 2009),

and adoption of measurement standards (e.g., Hamilton

et al. 2011). A systematic approach to investigating the

interactions of environment and the individual genome

may help explain a substantial component of disease risk,

lead to hypotheses regarding disease pathology, or help

shed light on the debate on the genetic basis of disease

(Gibson 2011).
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