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Abstract Gliomas account for approximately 80 % of all
primary malignant brain tumors and, despite improvements
in clinical care over the last 20 years, remain among the
most lethal tumors, underscoring the need for gaining new
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insights that could translate into clinical advances. Recent
genome-wide association studies (GWAS) have identified
seven new susceptibility regions. We conducted a new
independent GWAS of glioma using 1,856 cases and 4,955
controls (from 14 cohort studies, 3 case—control studies,
and 1 population-based case-only study) and found evi-
dence of strong replication for three of the seven previously
reported associations at 20q13.33 (RTEL), 5p15.33 (TERT),
and 9p21.3 (CDKN2BAS), and consistent association sig-
nals for the remaining four at 7p11.2 (EGFR both loci),
8q24.21 (CCDC26) and 11q23.3 (PHLDBI). The direction
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and magnitude of the signal were consistent for samples
from cohort and case—control studies, but the strength of
the association was more pronounced for loci rs6010620
(20q,13.33; RTEL) and 1s2736100 (5p15.33, TERT) in
cohort studies despite the smaller number of cases in this
group, likely due to relatively more higher grade tumors
being captured in the cohort studies. We further examined the
85 most promising single nucleotide polymorphism (SNP)
markers identified in our study in three replication sets (5,015
cases and 11,601 controls), but no new markers reached
genome-wide significance. Our findings suggest that larger
studies focusing on novel approaches as well as specific tumor
subtypes or subgroups will be required to identify additional
common susceptibility loci for glioma risk.

Introduction

Gliomas account for approximately 80 % of all primary
malignant brain tumors (Kohler et al. 2011) and, despite
improvements in clinical care over the last 20 years,
remain associated with considerable morbidity, with the
most common histological subtype, glioblastoma (GBM)
having a median survival of only 15 months (CBTRUS
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2012). To date, the only established environmental risk
factor is exposure to moderate-to-high doses of ionizing
radiation (Bondy et al. 2008). A heritable component of
glioma is supported by: the twofold elevated risk in individ-
uals with a positive family history (Hemminki et al. 2009;
Malmer et al. 2003; Scheurer et al. 2007; Wrensch et al. 1997);
an increased risk observed in rare genetic syndromes (Farrell
and Plotkin 2007); a possible moderately penetrant risk locus
in the 3’ untranslated region of TP53 (Stacey et al. 2011); and
recent identification by genome-wide association studies
(GWAS) of common susceptibility variants at S5pl15.33
(TERT), 8q24.21 (CCDC26), 9p21.3 (CDKN2A-CDKN2B),
20q13.33 (RTELI), 11q23.3 (PHLDBI), and two independent
signals at 7p11.2 (EGFR) (Sanson et al. 2011; Shete et al.
2009; Wrensch et al. 2009).

To search for additional common genetic variants, we
conducted a new independent GWAS in 1,856 cases and
4,955 controls ascertained from 14 cohort studies, 3 case—
control studies, and 1 population-based case-only study
(Table 1). Previous GWAS studies were based on case—
control samples only. Our study was designed to include a
large number of incident cases from cohort studies (556 out
of 1,856, i.e., 30 % of all cases) to minimize potential bias
to glioma with longer survival.
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Results

Study-specific population characteristics are summarized in
Table 1. The mean age of cases ranged from 48.7 years in
the NIOSH Upper Midwest Health Study to 73.5 years in
the Multi-Ethnic Cohort. 55.1 % of glioma cases were of
the glioblastoma subtype, with a larger percentage of high-
grade tumors (WHO III or IV) observed in the cohort
(74.7 %) versus case—control (64.5 %) studies (Supple-
mentary Table 1).

After quality control metrics were applied to the scan
data, 559,977 SNPs were available for analysis in 1,856
cases and 4,955 controls (details in “Materials and meth-
ods”). Concordance between known duplicates was greater
than 99.95 %. The main effect model was adjusted by sex,
age, study, and seven eigenvectors (to account for small
differences in population substructure). Examination of the
Q—Q plot indicated the likelihood of additional loci asso-
ciated with glioma risk (Fig. 1). The genomic control
lambda for the study is estimated at 1.006, suggesting the
lack of issues related to differences in the underlying
population substructure.

The results of this genome-wide association scan
confirmed the previously reported seven regions as risk
susceptibility loci for glioma (Fig. 2). Specifically, we
replicated three of seven previously reported associations
at 20q13.33 (RTEL), 5pl15.33 (TERT), and 9p21.3
(CDKN2BAS) (Table 2). Associations for the remaining
loci were consistent with reported findings with respect to
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the direction of the odds ratios, but were not statistically
significant at the genome-wide level (i.e., p < 5.0 x 107%).
When results were examined separately for samples from
the cohort versus case—control studies, the direction and
magnitude of the signal were generally consistent. How-
ever, the strength of the association was more pronounced for
loci rs6010620 (20q,13.33; RTEL) and rs2736100 (5p15.33,
TERT) in the cohort studies despite the smaller number of
cases in this group (Table 3). Conversely, the strength of the
association for loci at 11q23.3 (PHLDBI) and 9p21.3
(CDKN2BAS) was higher in case—control studies.

We further examined associations for previously repor-
ted loci by gender and tumor subtype (Tables 4, 5). In
analyses by gender, the signals at 8q24.21 (CCDC26)
rs4295627 and 7p11.2 (EGFR) rs2252586 were stronger in
women compared with men in our data (p value for het-
erogeneity 0.0037 and 0.057, respectively). However, this
effect modification by gender was not observed in the joint
data from the UK, US-MDA, French, and German repli-
cation groups. By tumor subtypes, the three regions most
strongly associated with glioma risk overall at 5p15.33
(TERT), 9p21.3 (CDKN2B), and 20q13.33 (RTELI) were
mainly associated with glioblastoma. Associations with the
marker at 8q24.21 (CCDC26) appeared more pronounced
for oligodendroglioma, while the signal at 11q23.3
(PHLDBI) was preferentially associated with low-grade
glioma.

In addition to previously reported loci, we identified 85
previously unreported loci with associations of p trend
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Fig. 1 Quantile-Quantile (Q-Q) plot of observed versus expected
P values in the Glioma GWAS The analysis was adjusted by sex, age,
study, and seven eigenvectors. The genomic control lambda is 1.006

~log1e(p)

Chromosome

Fig. 2 Manhattan plot of the association results. Chromosomal
locations of p values derived from 1-df trend tests from logistic
regression model adjusted for study sites, age, gender, and seven
eigenvectors on 1,856 cases and 4,955 controls

<4.0 x 10~* after removing probable genotyping artifacts,
known associations, and highly correlated SNP markers
(r* > 0.6). We performed an in silico replication by a
meta-analysis with data from three previously reported
GWAS studies which provided data on a total of 5,015
cases and 11,601 controls (Table 1) (Sanson et al. 2011;
Shete et al. 2009; Wrensch et al. 2009). Summary measures
(odds ratios and 95 % confidence intervals) were obtained

@ Springer

from each study and a meta-analysis was performed using
an inverse variance fixed effect model. However, none of
these associations reached statistical significance at the
genome-wide association level (Supplementary Table 2).
A similar exercise was undertaken for 85 promising loci
identified in combined data from the UK, US-MDA,
French, and German replication groups, but again, none
of these associations reached statistical significance at
p <5.0 x 107% (Supplementary Table 3).

Discussion

In this study, we present the data from a new independent
GWAS of glioma based on 1,856 cases and 4,955 controls.
While we did not observe any novel locus that reached
genome-wide significance, the new scan provided further
evidence for confirmation of the established loci. Similar
to previously published reports, we note that TERT
152736100, CDKN2B 134977756, and RTELI rs6010620
were most strongly associated with glioblastoma, CCDC26
1s4295627 with  oligodendroglioma, and PHLDBI
rs498872 with low-grade glioma (Egan et al. 2011; Jenkins
et al. 2011; Simon et al. 2010). These results suggest dif-
ferent genetic etiologies for different subtypes of glioma
and underscore the importance of considering tumor het-
erogeneity in GWAS studies.

Although we observed differential associations for the
two loci on 8q24.21 (CCDC26) and 7pll1.2 (EGFR) by
gender in our data, effect modification by gender was not
observed for these loci in the joint data from the UK, US-
MDA, French, and German replication groups, suggesting
that the observed gender differences in our data could have
been due to chance. However, it will be important to re-
examine potential effect modification by gender in larger
datasets, along with consideration of potential risk covar-
iates of interest such as allergy or smoking (Lachance et al.
2011; Schoemaker et al. 2010).

Previous GWAS of glioma were based on case—control
studies only, which would generally not include rapidly
fatal gliomas. One concern of results from these studies is
that associations may be influenced by survival and
therefore potentially bias toward glioma with longer sur-
vival. It is noteworthy that in our GWAS scan, the strength
of the association was more pronounced for rs6010620
(20q,13.33; RTEL) and rs2736100 (5p15.33, TERT) in the
cohort studies despite the smaller number of cases in this
group. These regions have been particularly associated
with high-grade glioma in other studies (Egan et al. 2011,
Jenkins et al. 2011; Simon et al. 2010), and the differences
in cohort versus case—control results in our scan likely
reflects the fact that a higher proportion of highly fatal
tumors (WHO Grade III and IV) were captured by the
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case)

Other allele
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case)
Female

95 %
ucC

95 %
LCI

Score
(Cntrl/case) p value

Subjects

freq (Cntrl/

case)

Male

Other allele

Alleles
(Ref/
other)

Gene

Table 4 Risk estimates for Glioma for previously reported Glioma GWAS signals by gender

Locus
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9.04E—01

0.873

6.38E—05 0.766 0.671

1,691/792 8.46E—02 0.858 0.721

1.33E—-05 0.774 0.689 0.869 0.506/0.438 1,691/791

3,258/1,063

0.506/0.436
0.193/0.155
0.269/0.310
0.205/0.197
0.422/0.484
0.444/0.502
0.319/0.330
0.221/0.170
0.102/0.128

G/T
AIG
G/A
T/G
A/G
T/C
C/IT

RTEL1,TNFRSF6B G/A

TERT

rs2736100

9.10E—01

1.021
1.489

1.017  0.184/0.161

1.213

3,261/1,063 8.06E—02 0.870 0.744

rs11979158 EGFR

1s2252586

5.76E—02

1.115

1.288
1.365
1.288
1.316

1,693/792 5.84E—04
1.071

0.265/0.310
0.191/0.240

0.946

1.071

3,261/1,062 2.77E—01

EGFR

1.604 3.70E—03
1.467 9.71E—01

1.162
1.130
1.153
0.931

1.46E—-04

1,692/791
1,693/791

1.145

0.990 0.857
1.292
1.259

3,260/1,064 8.96E—01

CCDC26

rs4295627

1.44E—04
4.45E—05

3.38E—-01
1,693/792 5.26E—05 0.717 0.610 0.843

1.449  0.425/0.477

1.152
1.123

1.17E—-05

3,255/1,062 8.03E—05

3,258/1,061

CDKN2BAS

rs4977756

1.502  6.22E—01

1.232

1,688/791
1,690/791

0.445/0.504
1.186  0.304/0.326

1.413

CDKN2BAS

rs1412829
rs498872

8.29E—-01
7.04E—01
1.416 6.68E—01

1.049 0.928

4.42E—01
3,261/1,064 4.66E—07 0.687 0.594 0.796 0.245/0.182

3,261/1,061

ARCNI1,PHLDB1

rs6010620
rs4809324

1.165 0.957

1.27E—-01

1,691/791

1.313  0.113/0.130

1.099 0.920

3,261/1,059 2.97E—-01

RTEL1,TNFRSF6B T/C

Models adjusted for sex, age, study, and seven eigenvectors

cohort studies as compared to the case—control studies.
Similarly, stronger results for the CCDC26 and PHLDBI
variants in the case—control studies are consistent with
previous associations of these loci with low-grade tumors.
Nonetheless, the overall results from GliomaScan, which
comprised a large number of incident gliomas from cohort
studies, support GWAS associations based on previous
case—control studies. Our data thus suggest that previously
reported associations are generalizable to incident glioma
cases.

Our study had adequate power to detect variants of
moderate effect sizes for common allele frequencies.
However, we did not observe additional signals with in
silico analysis in three previously reported scans totaling
5,015 cases and 11,601 controls. This suggests that the
underlying architecture of genetic susceptibility to glioma
may not include as large a proportion of common variants
as has been seen for other cancers to date. Alternatively,
the underlying heterogeneity of glioma may limit our
ability to identify more highly significant variants. For
example, recent advances in understanding of glioma
subtypes (e.g., proneural, neural, mesenchymal) based on
gene expression ( Cancer Genome Atlas Research Network
2008; Phillips et al. 2006), somatic mutations (e.g., IDHI)
(Yan et al. 2009), and global patterns of methylation (gli-
oma CpG island methylator pheynotype; G-CIMP)
(Noushmehr et al. 2010) suggest that there are important
subgroups of glioma which may represent distinct patho-
logical entities. Still, given the relatively small sizes of the
glioma scans to date, and in order to comprehensively
define the catalog of common variants associated with risk
for glioma (Park et al. 2010), further genome-wide asso-
ciation studies will need to involve sufficiently large study
populations along with analysis of tumor subtypes to assess
these risks.

Materials and methods
Study participants

Studies participating in GliomaScan are described in
Table 1 and comprise 1,856 glioma cases and 4,955 con-
trols from 14 cohort studies, 3 case—control studies, and 1
community-based case-only study. Cases were newly
diagnosed glioma (ICDO-3 codes 9380-9480 or equiva-
lent), and controls were cancer free at the time of glioma
diagnosis. Cases and 2,429 newly genotyped controls (pre-
QC) were scanned with the Illumina 660 W chip. Newly
genotyped controls for this project were selected in a 2:1
ratio, frequency matched on age, sex and race/ethnicity.
GWAS data were already available on 2,591 controls and
12 cases from cohorts that had participated in the
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Table 5 Risk estimates for Glioma for previously reported Glioma GWAS signals by tumor subtype

Subtype Locus Gene Alleles Other allele freq  Subjects Score OR 95 % 95 %
(Ref/other) (Contr/case) (Contr/cases) p value LCI UCI
Glioblastoma rs2736100  TERT G/T 0.506/0.416 4,949/970  1.82E—10 0.700 0.627 0.781
rs11979158 EGFR A/IG 0.190/0.136 4,952/970  4.33E—04 0.760 0.652 0.886
rs2252586  EGFR G/A 0.268/0.317 4,954/969  2.62E—03 1.198 1.065 1.347
rs4295627  CCDC26 T/G 0.200/0.200 4,952/971  2.30E—-01 1.087 0.948 1.247
rs4977756  CDKN2BAS AIG 0.423/0.508 4,951/969  1.93E—10 1.418 1.273 1.580
rs1412829  CDKN2BAS T/C 0.444/0.523 4,943/969  1.31E—08 1.371 1.229 1.529
rs498872 ARCNI1,PHLDBI1 C/T 0.314/0.291 4,951/969  1.32E—01 0913 0.811 1.028
rs6010620 RTEL1,TNFRSF6B G/A 0.229/0.173 4,954/971  2.43E—07 0.696 0.606 0.799
rs4809324  RTEL1,TNFRSF6B T/C 0.106/0.138 4,952/968 2.38E—02 1.205 1.025 1.416
Oligodendroglioma rs2736100  TERT G/T 0.502/0.442 2,131/248  245E—-02 0.802 0.661 0.972
rs11979158 EGFR A/G 0.181/0.169 2,132/248  6.16E—01 0.937 0.727 1.208
rs2252586  EGFR G/A 0.274/0.317 2,134/248  1.69E—01 1.157 0940 1.426
rs4295627  CCDC26 T/G 0.196/0.270 2,133/248  1.88E—04 1.533 1.223 1.922
rs4977756  CDKN2BAS A/G 0.428/0.444 2,132/248  4.14E—01 1.083 0.895 1.311
rs1412829  CDKN2BAS T/C 0.456/0.468 2,128/247  445E—01 1.078 0.888 1.309
rs498872 ARCNI1,PHLDBI1 C/T 0.311/0.381 2,132/248  1.07E—03 1.396 1.142 1.707
rs6010620 RTEL1,TNFRSF6B G/A 0.237/0.188 2,134/248  2.99E—-02 0.766 0.601 0.975
rs4809324  RTEL1,TNFRSF6B T/C 0.114/0.098 2,132/246  2.28E—01 0.818 0.590 1.135
Other rs2736100  TERT G/T 0.505/0.489 4,195/223  7.29E—-01 0.966 0.794 1.175
rs11979158 EGFR AIG 0.189/0.193 4,197/223  4.44E—-01 1.102 0.860 1.411
rs2252586  EGFR G/A 0.271/0.314 4,199/223  2.05E—01 1.147 0.928 1.420
rs4295627  CCDC26 T/G 0.202/0.236 4,198/222  2.29E—02 1.313 1.038 1.660
rs4977756  CDKN2BAS A/G 0.423/0.464 4,196/221  6.17E—02 1.205 0.991 1.467
rs1412829  CDKN2BAS T/C 0.446/0.498 4,189/223  1.86E—02 1.267 1.040 1.543
rs498872 ARCN1,PHLDBI1 C/T 0.315/0.363 4,196/222  2.85E—02 1.261 1.024 1.552
rs6010620 RTEL1,TNFRSF6B G/A 0.229/0.211 4,200/223  4.06E—01 0.904 0.712 1.147
rs4809324  RTEL1,TNFRSF6B T/C 0.107/0.113 4,198/222  8.89E—01 1.023 0.747 1.400
Low-grade glioma 152736100 TERT G/T 0.502/0.463 2,131/337  1.19E-01 0.871 0.733 1.036
rs11979158 EGFR A/G 0.181/0.175 2,132/337  5.62E—01 0.935 0.745 1.174
rs2252586  EGFR G/A 0.274/0.282 2,134/337  8.77E—01 0.985 0.814 1.192
rs4295627  CCDC26 T/G 0.196/0.236 2,133/337  8.05E—02 1.206 0.977 1.488
rs4977756  CDKN2BAS A/G 0.428/0.444 2,132/337  5.83E—01 1.049 0.884 1.244
rs1412829  CDKN2BAS T/C 0.456/0.467 2,128/336  6.01E—01 1.047 0.881 1.245
rs498872 ARCNI1,PHLDB1 C/IT 0.311/0.374 2,132/337  1.19E-03 1.349 1.125 1.617
rs6010620  RTEL1,TNFRSF6B G/A 0.237/0.191 2,134/337  2.97E—-02 0.786 0.633 0.977
rs4809324  RTEL1,TNFRSF6B T/C 0.114/0.108 2,132/337  5.79E—01 0.924 0.699 1.222
High-grade glioma rs2736100 TERT G/T 0.506/0.422 4,949/1,181  2.29E—10 0.720 0.650 0.797
rs11979158 EGFR A/G 0.190/0.141 4,952/1,182  4.84E—04 0.779 0.677 0.897
rs2252586  EGFR G/A 0.268/0.318 4,954/1,181 1.78E—-03 1.190 1.067 1.328
rs4295627  CCDC26 T/G 0.200/0.206 4,952/1,183  1.11E—-01 1.108 0.977 1.257
rs4977756  CDKN2BAS A/G 0.423/0.497 4,951/1,181  5.19E—09 1.347 1.218 1.489
rs1412829  CDKN2BAS T/C 0.444/0.516 4,943/1,181  2.47E—-08 1.333 1.205 1475
rs498872 ARCNI1,PHLDB1 C/T 0.314/0.309 4,951/1,180  8.27E—01 0.988 0.886 1.101
rs6010620  RTEL1,TNFRSF6B G/A 0.229/0.166 4,954/1,183  3.56E—10 0.662 0.582 0.754
rs4809324  RTEL1,TNFRSF6B T/C 0.106/0.137 4,952/1,178  2.27E—02 1.191 1.025 1.384

Models adjusted by sex, age, study, and seven eigenvectors. Subjects of age >80 years were excluded from OTHER subtype analysis; Subjects of
age >70 were excluded from both OLIGO and LO-GR analyses

@ Springer



1886

Hum Genet (2012) 131:1877-1888

PANSCAN study (pancreatic cancer GWAS), CGEMS
studies (Hunter et al. 2007; Landi et al. 2009; Yeager et al.
2007), and the NCI lung cancer GWAS (Landi et al. 2009).
These were scanned with the commercial HumanHap 550
or HumanHap 610 Illumina SNP arrays.

Study design

We conducted a new genome-wide association scan of
glioma (GliomaScan) to validate previously reported risk
regions and to attempt to identify additional novel risk loci.
Details of the 19 studies participating in GliomaScan are
provided in Table 1. We evaluated 85 additional loci of
potential interest by conducting a fixed-effects meta-anal-
ysis using in silico data from three previously reported
genome-wide association scans in a total of 5,015 cases and
11,601 controls (Sanson et al. 2011; Shete et al. 2009;
Wrensch et al. 2009).

Genome-wide SNP genotyping

All GliomaScan samples were genotyped at the NCI Core
Genotyping Facility (CGF, Division of Cancer Epidemi-
ology and Genetics (DCEG), National Cancer Institute,
Bethesda, USA). Samples from the UK, MD Anderson
Cancer Center, France, and Germany were genotyped as
described previously (Sanson et al. 2011; Shete et al. 2009;
Wrensch et al. 2009). Summary estimates were provided
from previously genotyped studies for the purpose of meta-
analysis.

Quality control assessment

Genotyping was attempted for a total of 5,084 GliomaScan
samples on Illumina 660 W arrays at the CGF. After
excluding 6 samples due to laboratory processing error,
5,078 samples remained (2,215 cases, 2,859 new controls
and 4 QC samples). Genotype clusters were estimated with
high performing samples having overall completion rates
greater than 98 %, and genotype calls for the rest of the
samples were based on the clusters defined by the high
performing samples only. Additionally, 2,591 previously
scanned (on 550 or 610 chips) controls and 12 previously
scanned individual cases from ATBC, CLUE, CPSII,
HPFS, NHS, NYUWHS, PHS, PLCO, SMWHS, and WHS
were included.

SNP assays were excluded if they had less than 90 % of
completion rate, or had extreme deviation from fitness for
Hardy—Weinberg proportion (p < 1 x 107'%). Participants
were excluded based on: (1) completion rates lower than
94-96 % as per the QC groups (n = 420 samples); (2)
abnormal heterozygosity values of less than 25 % or
greater than 35 % (n = 45)—some samples were excluded

@ Springer

for both low completion rates and abnormal heterozy-
gosity, and the total number of unique samples excluded
for either criteria was 438; (3) unexpected duplicates
(n = 8 forming 4 pairs) and one sample that also failed
due to low completion rate; (4) sex discordance between
self-reported and the imputed gender by X chromosome
heterozygosity (n = 9); (5) one sample from each unex-
pected inter-study duplicates (n = 20); and (6) phenotype
exclusions (due to ineligibility or incomplete information)
(n = 27). Utilizing a set of 12,000 unlinked SNPs (pair-
wise ¥ < 0.004) common to all GWAS chips (Yu et al.
2008), 215 subjects with less than 80 % European
ancestry were excluded from downstream analyses based
on STRUCTURE analysis (Falush et al. 2007) and PCA
(Price et al. 2006). For the planned 154 duplicate pairs,
concordance was 99.96 %.

The final participant count for the association analysis
was 1,856 cases and 4,955 controls. A total of 559,977
SNPs were available for analysis in one or more studies.
Each participating study obtained informed consent from
study participants and approval from its institutional
review board (IRB) for this study and obtained IRB certi-
fication permitting data sharing in accordance with the NIH
Policy for Sharing of Data Obtained in NIH Supported or
Conducted Genome-Wide Association Studies (GWANS).
The dbGaP data portal provides access to individual-level
data from the NCI scan ONLY to investigators from cer-
tified scientific institutions after approval of their submitted
Data Access Request.

Statistical analysis

The association between the 559,977 SNPs and risk of
glioma was estimated by the odds ratio (OR) and 95 %
confidence interval (CI) using unconditional logistic
regression assuming a trend effect genetic model with 1
degree of freedom. PCA analysis revealed seven significant
(p < 0.05) eigenvectors when included in the NULL model
(logistic regression with dummy variables for sex, age, and
study). The main effect model was adjusted by sex, age,
study, and seven eigenvectors. In addition to overall anal-
yses of SNP associations, models were also examined by
gender and stratified by the following tumor subtypes:
glioblastoma (ICDO-3 codes 9440, 9441, 9442, 9443),
oligodendroglioma/mixed glioma (ICDO-3 codes 9382,
9450, 9451, 9460), low-grade glioma (grade I or II
according to current WHO classifications), or high-grade
glioma (grade III or IV according to current WHO classi-
fications) (ICD-O 2000; Louis et al. 2007). Top-ranked
SNPs for further follow-up were selected based on the
p value for additive trend, after known hits and loci in high
linkage disequilibrium (pairwise * value > 0.6) were
removed.
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Meta-analysis

For the 85 loci of interest, each participating center pro-
vided the results of logistic regression analysis for indi-
viduals of European ancestry (CEU) adjusted for age and
study-specific factors (e.g., study site). The following
information was provided for each SNP: minor allele fre-
quency (MAF), genotype counts for both cases and con-
trols, risk allele, per allele odds ratio (OR), associated 95 %
confidence intervals, and the associated p value of 1 degree
freedom (df) test of the trend effect for the SNP. Summary
estimates for each center were combined using a fixed-
effect meta-analysis.

Data analysis

Data analysis and management were performed with GLU
(Genotyping Library and Utilities version 1.0), PLINK and
SAS® version 9.2 (Raleigh, NC, USA).

URLSs

CGEMS portal: http://cgems.cancer.gov/

CGF: http://cgf.nci.nih.gov/

GLU: http://code.google.com/p/glu-genetics/
EIGENSTRAT: http://genepath.med.harvard.edu/ ~reich/
EIGENSTRAT.htm

STRUCTURE: http://pritch.bsd.uchicago.edu/structure.html
PLINK: http://pngu.mgh.harvard.edu/ ~ purcell/plink/
SAS: http://www.sas.com/
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