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Abstract The interest in performing gene–environment

interaction studies has seen a significant increase with the

increase of advanced molecular genetics techniques.

Practically, it became possible to investigate the role of

environmental factors in disease risk and hence to inves-

tigate their role as genetic effect modifiers. The under-

standing that genetics is important in the uptake and

metabolism of toxic substances is an example of how

genetic profiles can modify important environmental risk

factors to disease. Several rationales exist to set up gene–

environment interaction studies and the technical chal-

lenges related to these studies—when the number of

environmental or genetic risk factors is relatively small—

has been described before. In the post-genomic era, it is

now possible to study thousands of genes and their inter-

action with the environment. This brings along a whole

range of new challenges and opportunities. Despite a

continuing effort in developing efficient methods and

optimal bioinformatics infrastructures to deal with the

available wealth of data, the challenge remains how to best

present and analyze genome-wide environmental interac-

tion (GWEI) studies involving multiple genetic and envi-

ronmental factors. Since GWEIs are performed at the

intersection of statistical genetics, bioinformatics and epi-

demiology, usually similar problems need to be dealt with

as for genome-wide association gene–gene interaction

studies. However, additional complexities need to be con-

sidered which are typical for large-scale epidemiological

studies, but are also related to ‘‘joining’’ two heterogeneous

types of data in explaining complex disease trait variation

or for prediction purposes.

Introduction

Experimental studies in model organisms have provided

several evidences of interactions between genes and expo-

sures. For a review about the utility of mouse models in the

detection of gene–environment interaction effects and the

limitations on their application, we refer to Willis-Owen

and Valdar (2009). These animal models may be helpful in

suggesting candidate gene–environment interactions, but
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epidemiological studies—although more complicated—are

needed if we ever want to have a complete understanding of

the genetic architecture of complex human diseases. Most

common complex diseases are believed to be the result of

the combined effect of genes, environmental factors, and

their interactions. Throughout this document, we will use

the terms exposure and environment interchangeably.

The term ‘‘gene–environment interaction’’ is often

loosely used as referring to the interplay of gene and

environment in some way. A first clear reporting of dif-

ferent categories of gene–environment interactions dates

back from 1938 as referred to in Smith et al. (2008). Here,

we define it via ‘‘biological’’ or ‘‘statistical’’ interaction. A

biological gene–environment interaction occurs when one

or more genetic and one or more environmental factors

participate in the same causal mechanism in the same

individual (Rothman et al. 2008; Yang and Khoury 1997).

One popular and appealing formal definition of ‘‘biological

interaction’’ invokes the sufficient component cause model

of causation. In this setting, there is one sufficient com-

ponent cause that involves both the genetic and environ-

mental exposure (Rothman and Greenland 1998; Tchetgen

Tchetgen and VanderWeele 2012) (we note that this defi-

nition of ‘‘biological interaction’’ does not imply anything

about the biochemical mechanism of how genes and

environment combine to cause disease).

In contrast, the statistical interactions, which are typi-

cally defined as modifications of the effect on one factor by

the levels of the other factor in some underlying scale

(Bhattacharjee et al. 2010; Greenland 2009; Siemiatycki

and Thomas 1981; Thompson 1991), do not imply any

inference about a particular biological mode of action.

Statistical interactions can be clustered variously based on

the specificity of the underlying statistical models. The

common classification distinguishes between ‘‘quantitative

interaction’’ and ‘‘qualitative interaction’’. Quantitative

interaction refers to the presence of a factor (e.g., an

exposure) that modified the magnitude of the effect of a

second factor (e.g., a mutation) without changing the

direction of the effect. On the other hand qualitative inter-

action refers to situation where a factor will either cancel or

reverse the effect of another factor. For additional details on

these definitions, see Clayton (2009) or Thomas (2010a).

For example of statistical models of interactions see, for

example, Wright et al. (2002) or Dempfle et al. (2008).

Gene–environment interaction effects have been inves-

tigated for a wide range of candidate genes and exposures

for many complex traits, such as cancer, depression, type 2

diabetes, and asthma (Franks 2011; Hunter 2005; Lesch

2004; Stern et al. 2002; Vercelli 2010; Wu et al. 2011).

However, only a handful of the large number of reported

statistically significant interactions has been replicated,

despite well-powered replication efforts for some

influential preliminary reports (Cornelis et al. 2011; Dunn

et al. 2011; Risch et al. 2009). The candidate gene inter-

action literature suffers from many of the same problems

that plagued the literature on marginal effects of candidate

genes, including small sample sizes and inappropriate (or

lack of) adjustment for multiple testing. Moreover, repli-

cation in the context of gene–environment interaction

effects faces additional challenges, including differences in

exposure measurement protocols across studies, differences

in the scale of reported gene–environment interaction

effects, and differences in the distribution of exposures

across studies. The candidate gene interaction literature can

therefore only provide limited guidance on the number and

size of gene–environment interaction effects expected to

truly exist in human populations, although it does suggest

that large and pervasive interaction effects are unlikely.

Genome-wide approaches to identify loci involved in

gene–environment interactions have just begun to appear in

the peer-reviewed literature (Ege et al. 2011; Hamza et al.

2011; Paré et al. 2010). For example, Ege et al. (2011)

recently completed a genome-wide environment interac-

tion (GWEI) study for childhood asthma and farming

exposures in the context of GABRIEL (A Multidisciplinary

Study to Identify the Genetic and Environmental Causes of

Asthma in the European Community). Although this study

was well powered to detect gene–environment interactions

for common alleles, no interactions were statistically sig-

nificant, not even those interactions involving genetic

markers in genes previously reported to show interactions

(Ober and Vercelli 2011). Developing methods to over-

come the conceptual, technical, and methodological hur-

dles GWEI studies involve is the focus of much ongoing

methodological work.

Gene–environment interaction at the age of genome-

wide data has been recently discussed in several reviews

(Dempfle et al. 2008; Hunter 2005; Khoury and Wacholder

2009; Thomas 2010a, b). In this review, we focus on

strategies and methodological aspects of genome-wide

association study of gene–environment interactions. In

particular, we provide an overview of possible analytical

choices in relation to researchers’ aims and beliefs. Simply

stated, what are the main advantages and disadvantages of

the existing approaches based on the goal: identifying new

genetic variants involved in gene–environment interac-

tions, identifying gene–environment interaction per se or

screening for potential interactions without testing?

The quest for gene–environment interactions

The interest in studying the combine effect of genes and

environmental factors in the etiology of common multi-

factorial disease has grown up in parallel with the study of
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their genetic component only. In the past 10 years large

investments have been made trying to elucidate some of

these mechanisms. The UK Medical Research Council, the

Wellcome Trust, and the Department of Health, for

example, have launched in 2002 the BioBank UK study, a

prospective cohort study of 500,000 individuals, which

attempts to integrate the genetic and environmental com-

ponents of disease risk (Wright et al. 2002). The National

Institutes of Health (NIH) has initiated the Genes, Envi-

ronment, and Health Initiative (GEI). It includes the Gene

Environment Association Studies (GENEVA) consortium

which was established to facilitate the identification of

variations in gene-trait associations related to environ-

mental exposures (Cornelis et al. 2010). More recently, the

Kaiser Permanente Research Program on Genes, Environ-

ment, and Health (RPGEH) and the University of Cali-

fornia San Francisco have launched a new resource for

studying disease, health, and aging. In this project, DNA

and exposure to environmental factors are collected for

more than 100,000 samples.

Besides pharmacogenomics, which represent a particular

(and promising) field of study for gene–environment

interaction (Meyer 2000; Wright et al. 2002), there are three

common arguments that have been emphasized for

searching for the presence of gene–environment interac-

tions in common multifactorial diseases. First, for most of

the identified genetic variants in genome-wide association

studies (GWAS), the mechanisms through which genetic

variants contribute to the associated complex phenotypes

remains largely unknown. Second, the predictive potential

of common genetic variants that have been extensively

studied in genome-wide scan appears to be limited (Gibson

2010; Visscher et al. 2010; Yang et al. 2010). Third, the

common SNPs that have been identified so far only explain

a small proportion of the variance of complex traits.

Overall, interaction effects with environmental factors are

considered one possible key to a better understanding of the

genetic architecture of complex traits (Manolio and Collins

2007; Zuk et al. 2012). Gene–environment interactions

might also be further translated into improvement in our

ability to predict disease risk and be of utility for various

personalized medicine applications, such as targeting indi-

viduals that may need costly intervention (Rothman et al.

1980).

However, this ideal picture needs to be balanced by our

current knowledge of statistical interaction effect in epi-

demiology. First, it is notoriously difficult to make infer-

ence regarding biological mechanisms from epidemiologic

data, and interaction reflects a level of complexity that

makes such inference even harder (Clayton 2009; Green-

land 2009; Siemiatycki and Thomas 1981; Thompson

1991). Second, interactions are unlikely to dramatically

improve risk prediction if they have only moderate effects

or if the number of interactions is low (Aschard et al. 2012).

Third, the identification of any interaction effect is recog-

nized as an extremely challenging task and the lack of

discoveries clearly confirms this issue. Hence a reasonable

consensus is that gene–environment interaction studies may

at least help in the discovery of new genetic variants and

new environmental risk factors, (Gauderman and Thomas

2001; Kraft et al. 2007; Manolio and Collins 2007), which

remains an important step toward our understanding of

complex diseases.

Our ability to attain some of these goal increases with

the growing number of rich heterogeneous data resources,

with data available on genetics, family history, physical

and behavioral characteristics, life-style, intra-individual

changes over time, etc. However, it also comes with some

caveats. Despite the fact that these data allow the investi-

gation of more complex, possible non-linear relationships

between genetic and non-genetic factors, it remains the

question whether the toolbox that is available to date

contains sufficiently refined tools and methodologies to be

applied in a genome-wide context. Compared with the total

number of papers published on gene–environment inter-

actions, GWEI studies only represent a handful of studies

(Fig. 1). While we believe gene–environment interaction

are more and more studied at the genome-wide scale, the

low number of publications may be partially explained by

the non-publication of negative results. It may indicate that

there is still room for novel approaches and rigorous

strategies that can overcome some of the hurdles scientists

are facing when performing a GWEI study.

Fig. 1 Number of papers in PubMed with (‘‘gene–environment’’ or

‘‘gene-by-environment’’ or ‘‘gene 9 environment’’) and ‘‘interac-

tion’’ in the title or abstract (in blue). Furthermore, the number of

papers is shown which additionally to the previous search term also

contain (‘‘genome-wide’’ or genomewide) in the title or abstract (in

red). It should be noted that this search only retrieves ‘‘potential’’

GWEI studies and that the real numbers of GWEI studies are

probably even lower than the reported counts
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What are possible complicating factors in GWEI

studies?

Confounding

Confounding may occur when independent variables are

associated with one another and with the outcome of

interest. In epidemiology it refers to a situation when an

extraneous variable that cause the phenotype under study is

also associated with a predictor of interest that is not causal

(i.e., that is not on the ‘‘causal pathway’’ of the phenotype).

The existence of confounding variables can make it diffi-

cult to establish a clear causal link between the studied

predictor and the outcome unless appropriate methods are

used to adjust for the effect of the confounders. However,

dealing with known confounders is relatively easy. It can

be minimized or controlled by a study design or by

employing appropriate data analysis methods such as

multiple regression or stratification analyses (Demissie and

Cupples 2011; Rothman et al. 2008). Dealing with

unknown confounders is obviously much trickier, although

recent work has shown that unknown confounders of the

interacting factors may not necessarily bias the estimation

of interaction effect per se (Tchetgen Tchetgen and Van-

derWeele 2012). It should also be noted that the case-only

technique is more likely to be subject to confounding. For

example, when analyzing related individuals, family-his-

tory, which is related to genetic susceptibility as well as

life-style exposures, may create artificial dependencies

between a mutation and an exposure. Such confounding

effects may invalidate the case-only test while it may be

easily handled by using family-data methods (Thomas

2000). Confounding due to latent population substructures,

when unintentionally including groups of different ethnic-

ity, is also known to have a larger impact on the validity of

the case-only test of interaction than on the case–control

interaction test (Wang and Lee 2008).

Exposure measurement error and misclassification

The detection of G–E interactions can be severely ham-

pered by unreliability in the assessments of exposures.

Measurement challenges for underlying key exposures

(e.g., diet, physical activity, air pollution parameters)

present important barriers to interaction identification, but

equally the assessment of their marginal impact on disease

trait (Prentice 2011). Measurement error (or misclassifi-

cation when explanatory variables in regression models

are categorical) is a well-known issue in association

studies that can both bias point estimates and generate

invalid association. In general, conventional parametric

and non-parametric regression techniques are no longer

valid when errors in the predictors are expected. Improved

study design and methods for corrections have been

widely discussed in studies of a single factor (Bashir and

Duffy 1995). More recently, attention has been given to

the impact of exposure measurement error in G–E inter-

action studies (Carroll et al. 2006; Wong et al. 2004).

Despite the fact that various solutions are around to

handle measurement error during the statistical analysis

(Garcia-Closas et al. 1998, 1999; Lindstrom et al. 2009;

Lobach et al. 2011; Thomas 2010b), these methods are

not widely used in practice, even for smaller-scaled G–

E interaction studies. Another consideration about expo-

sure measurement error is that the error structures of

environmental exposures may differ across populations

and this could have implications for how interactions are

detected and interpreted.

In practice, misclassification is usually addressed from

two perspectives: (a) how to correct for misclassification

in statistical test and (b) how to define the trade-off

between sample size and measurement precision to max-

imize statistical power. The common approach to account

for misclassification in statistical test is to use validation

studies. It consists in measuring repeatedly a fraction of

the sampled subjects with the same error-prone instrument

to obtain estimates of misclassification probabilities.

Various statistical techniques can be built on this frame-

work. Some of them have been recently described by

Zhang et al. (2008) who also introduce simple and prac-

tically useful concepts to minimize the biases of all

parameters of interest in the presence of both genotyping

and exposure misclassification errors. Unfortunately, val-

idation or repeated measurement data that is required to

apply such methods in practice are not available in typical

studies. When the misclassification issue is considered at

the design stage, the perspective is slightly different.

Since improving the measurement can be achieved by

taking repeated measurements for all individuals (pro-

vided the error in repeated measures is uncorrelated), the

question is how to balance quantity and quality. Obvi-

ously, for a fixed total number of subject evaluations, the

use of multiple measurements per subject would result in

a halving of sample size. Wong et al. (2003) provide

arguments for this strategy by showing that smaller

studies with reasonably accurate measurement might be

more efficient than larger studies with poor assessment of

exposure and outcome when the goal is testing for inter-

action per se. However, this result does not necessarily

hold when the goal is rather to identify genetic variants

while allowing for potential interaction effect. In this case,

testing for global genetic effect over multiple exposure

strata may conserve reasonable power when misclassifi-

cations remain low, while the standard test of interaction

can suffer a dramatic loss of power (Lindstrom et al.

2009).
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Population stratification and population dependencies

Concerns about the widespread of population stratification

or the bias it may induce have been raised before. Several

approaches to population stratification in main effects

GWAS studies are available and commonly in use (Price

et al. 2010). Population stratification also becomes an issue

in G–E interaction studies if subpopulation membership

based on genetics is associated with the outcome, the

genetic effect, and the environmental exposure. In contrast

to GWAS studies, it is less clear how to correct for pop-

ulation stratification and cryptic relatedness in GWEI

studies, since strata or degrees of relatedness may be

related to the environmental exposure under investigation.

It was recently shown that principal component methods,

that have been popular for correction of population strati-

fication in GWAS studies, can be used for adjustment of

gene–gene or gene–environment dependence due to pop-

ulation stratification in interaction studies (Bhattacharjee

et al. 2010).

Alternatively, one can use family-based methods that

condition on parental genotypes, which are thought to be

robust against population stratification (Laird and Lange

2006). However, recent work by Shi et al. (2011) showed

that the standard family-based tests of gene–environment

interaction can be biased when the tested genetic variant is

not itself the causal variant but a proxy for it (i.e., in

linkage disequilibrium with the causal) and the studied

exposure does participate in population structure (i.e.,

when the exposure is correlated with the genotypic strata).

They present a solution to correct for such bias when

exposure is binary which consists in adjusting for a family-

based measure of the exposure distribution. Explicitly they

fit a saturated model for the genetic main effect within

strata defined by the siblings’ exposure profile (exposure

need to be collected for an unaffected sibling). Although

the empirical extent of the example presented by Shi and

colleagues is unknown, there are realistic scenarios where

such bias may occur; especially when analyzing recently

admixed population such as African–American or Latino

(Kraft 2011).

Dynamics of gene–environment interactions

Many exposures change over time and may be prevalent

in one population and rare or absent in another. Thus,

the amount of population variation in a disease that can

be explained by one or more exposures may not be

generalized from one population to another or from one

time period to another (Pearce 2011). The dynamic

‘‘behavior’’ of an exposure is a function of its prevalence

over time in an individual and in a population of inter-

est. The nature of the exposure may also be relevant in

terms of G–E interaction effects (e.g., the dose and route

of exposure, when exposure first or last occurred, or

whether exposures were periodic, continuous, intermit-

tent, or single events). Furthermore, there could be crit-

ical windows of exposure (etiologically relevant exposure

periods), when the exposure is more or less likely to

contribute to, or may even have opposing effects on, a

disease process. This includes, for example, conception,

fetal development, early childhood, and adulthood,

before or after the menopause. Several studies have

already been successful in identifying such effects

(Balansky et al. 2012; Bouzigon et al. 2008; Doherty

et al. 2009; Lo et al. 2009). As mentioned earlier, the

calendar time period may also be important since many

exposures and exposure opportunities change over time

(e.g., environmental tobacco smoke, environmental pol-

lution, processed foods, and pharmaceutical drugs).

To the extent that this is possible in ongoing and

future prospective cohort studies, exposure should be

periodically re-assessed over the course of a study. The

ideal design would be a life course approach in which

exposure information is collected at different time points

throughout an individual’s life. Such a study would be

cost-prohibitive for most investigators, but very large

cohorts of individuals that include extended measurement

to a range of exposures and genetic data are now in

progress. The aforementioned RPGEH project, for

example, includes comprehensive longitudinal health

information over long period and will offer the oppor-

tunity to explore some of these aspects. Finally, gene-by-

‘timing of exposure’ effects might also be amenable to

study in animal model systems (models from conception

to death). Such model systems may help to inform the

potential critical windows of exposure and relevant

mechanisms in humans.

Power and sample size

Perhaps one of the greatest challenges in GWEI studies is

that of power (Bookman et al. 2011; Murcray et al. 2011;

Thomas 2010a). Inadequate sample sizes give rise to

underpowered studies and increase the occurrence of false-

positive and false-negative findings. Only a handful of

software packages or programs are available to compute

sample size and power for G–E interaction studies

(Dempfle et al. 2008). For a simple interaction model

between a single genetic variant and binary or continuous

exposure, Murcray et al. (2011) derived the sample size

required to achieve 80 % power, for a variety of G–

E interaction tests, while correcting for multiple testing at

the genome-wide level. Their study clearly shows that for

moderate to low effects, the required sample size for

classical tests is likely to be extremely large, larger than for
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similar tests of marginal effects with the same amplitude.

Obviously, the improved efficiency (increasing power

while keeping the same sample size) by using one meth-

odology over another, will highly depend on the mode of

interaction. Simulation strategies such as the one developed

by Amato et al. (2010), accommodating non-linear inter-

actions, may further help in elucidating the scenario’s in

which a particular method performs best. Unfortunately,

most studies deriving sample size and power calculations

in simulated data assume no error in the assessment of

genetic factors nor environmental factors, whereas these

are known to induce power loss (Garcia-Closas et al. 1999;

Tung et al. 2007). It leaves no doubt that there is still room

for additional simulation strategies of G–E interactions,

allowing for differential modes of interaction, that are

flexible to incorporate some of the aforementioned com-

plicating factors.

Methods

Defining aims and fitting the context

We have compiled a list of papers which define or explore

(via simulation or theoretic development) the properties of

methods for investigation of gene environment interactions

(Table 1). The methods papers listed cover a range of study

designs from family-based to case–control to case-only

methods. While not exhaustive, the list covers the majority

of such research papers published prior to development of

this review. In particular, the entries of Table 1 address

whether the method is applicable to gene–gene interac-

tions, whether the method is tailored to genome-wide

studies or candidate gene studies, and for which type of

outcome the method is tailored (i.e., binary, continuous,

etc.). While many of the methods can be extended beyond

what has currently been described, we limited our cate-

gorization to those situations explicitly discussed in the

research paper. The table demonstrates the sheer number of

methods that are available and illustrates the difficulty in

determining which method is appropriate for a given study/

situation. For many methods, there is no clear point of

comparison or clear choice as to which method is superior.

Naively, any data analysis can be decomposed in three

tightly linked cornerstones: (1) the analysis type which is in

a one-to-one correspondence with the problem type or

research question, (2) the sampling design which aims to

maximize the efficiency for a fixed number of individual,

and (3) the (statistical) model or methodology which

summarizes the (statistical) answer to the research

question.

We do not address specifically the measurement type of

the variables included, which is related in GWEI studies to

traits, genetic markers and exposures. A discussion of the

types of genetic markers (e.g., SNPs or CNVs) or mea-

surement scales of exposure variables falls outside the

scope of this work. We merely want to highlight that the

most commonly used genetic markers used in GWEI

studies are SNPs and that the most popular coding is

additive, while other type of genetic variations such as

CNV (e.g., Karageorgi et al. 2011) or epigenetic markers

are barely used. Related to the popularity of the case–

control design, traits are often quantified via a binary

variable (see also Table 1), although many quantitative

traits have also been studied at the genome-wide scale. We

discuss below study designs and statistical models that

allow handling either binary or quantitative outcome or

both.

Cornerstone 1: research problem

Methodological requirements for identifying G–E interac-

tions are largely driven by the research question and the

viewpoint. From a public health perspective, the objec-

tive will usually be testing for genetic variant while

allowing for interaction or testing for public health

interactions (Siemiatycki and Thomas 1981). In such a

situation one may use analytic methods making

assumptions about the functional form of models and/or

effects being modeled and derive an appropriate test to

derive effect size estimates and test the hypothesis of

interest. In human genetics, two popular analysis types

are linkage and association studies. G–E interaction

studies in linkage studies may involve performing expo-

sure stratified analyses (e.g., Colilla et al. 2003) or G–

E interaction testing strategies using sib-pairs (e.g., Dizier

et al. (2003) for a review). Here, we will restrict attention

to genetic association problems.

It is less clear what test of interaction is most appro-

priate when the goal of the study is to draw inference about

biological mechanism. A significant test for interaction—

whether from a multiplicative odds ratio model or additive

absolute risk model for disease traits, or from additivity for

log-transformed or untransformed continuous traits—need

not imply biological interaction, just as biological inter-

action need not imply statistical interaction (Greenland

2009; Siemiatycki and Thomas 1981; Thompson 1991).

The observed distribution of traits across the strata defined

by genotype and exposure may be suggestive of underlying

biological mechanism, but it is suggestive at most. For-

mally testing whether a hypothesized null interaction

model is contradicted by observed epidemiologic data

requires careful mathematical modeling of how the pro-

posed biological mechanism would affect the observed trait

distributions—and such modeling will always require

untestable assumptions (Thompson 1991).
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Table 1 Overview of methods papers for studying of gene–environment interactions

Manuscript Manuscript

typea
Marker

designb
Subject

designc
Outcome

typed
Aime Analysis

approachf
Population

stratification

addressed

Applicable to

gene–gene

interaction

Albrechtsen et al. (2007) 2, 3, 4 1, 2 3 1, 2 1 2 No Yes

Andrieu and Goldstein (2004) 2, 3 2 2, 5 1 1 1 No No

Aschard et al. (2011) 2, 3 1, 2 2, 3, 4 1, 2 1 1 No No

Bureau et al. (2005) 2, 3, 4 2 2 1 1, 5 2 No Yes

Bůžková et al. (2011) 2, 3 2 2 1, 2 1 1, 2 No Yes

Cattaert et al. (2010) 2, 3, 4 2 4, 5 2 1, 3, 5 2 No Yes

Chanda et al. (2009a) 2, 3, 4 2 1, 2 2 1, 3, 5 2 No Yes

Chanda et al. (2009b) 2, 3, 4 2 2 1, 5 1, 3 2 No Yes

Chanda et al. (2008) 2, 3, 4 2 2 1, 5 1, 5 2 No Yes

Chanda et al. (2007) 2, 3, 4 2 2 1, 5 1, 3 2 No Yes

Chatterjee et al. (2006) 2, 3, 4 2 1, 2 1, 2 1, 2 2 No Yes

Chatterjee et al. (2005) 2, 3 1, 2 5 1 1, 2 1 Yes No

Chen et al. (2009b) 2, 3 2 1, 5 1 1, 2 1 Yes No

Chen et al. (2008) 2, 3 2 2 1 1 1 Yes No

Chen et al. (2007) 2, 3, 4 2 2 1 1, 2, 5 2 No Yes

Cheng (2006) 2, 3, 4 1, 2 4 1 1, 2 1 No Yes

Cordell et al. (2004) 2, 3 1, 2 5 1 1 1, 2 No Yes

Culverhouse et al. (2004) 2, 3, 4 2 4 2 1, 3, 5 2 No Yes

Dai et al. (2010) 2,3 1,2 2,3 1,2 1 1 No No

Efird (2005) 2, 3 2 2 1 1, 2 1 No No

Fan et al. (2011) 2, 3, 4 2 2 1 1, 3, 5 2 No Yes

Fardo et al. (2012) 2, 3 2 5 1, 2 1 1 Yes No

Gauderman et al. (2010) 2, 3 1, 2 5 1 1 2 No No

Gauderman and Faucett (1997) 2, 3 3 5 2 1 2 No No

Geneletti et al. (2011) 5 2 4 1 1 1 No No

Gu et al. (2009) 2, 3, 4 1, 2 4 1 2 1 Yes No

Hoffmann et al. (2009) 2, 3 1, 2 5 1 1 1 Yes No

Kazma et al. (2011) 2, 3 1, 2 4 1 1, 2 1 No No

Kraft et al. (2007) 2, 3 1, 2 2, 4 1, 2 1, 2 1 No No

Hothorn et al. (2006) 2, 4 3 1, 2 1, 2, 3, 4 1, 3 2 No Yes

Lake and Laird (2004) 2, 3 1, 2 5 1 1 1 Yes No

Lee and Chang (2006) 2 2 1, 4 1 1 1 No No

Li and Conti (2009) 2, 3, 4 1, 2 2 1 1, 2 1 No No

Lim et al. (2005) 2, 3 2 5 1 1 1 Yes No

Lobach et al. (2011) 2, 3, 4 1, 2 2 1 1 2 No No

Lou et al. (2008) 2, 3, 4 2 5 1, 2 1, 3, 5 2 No Yes

Mahachie John et al. (2011) 2, 3 2 4 2 3, 5 2 No Yes

Maity et al. (2009) 2, 3, 4 2 2 1 1, 2 1 No No

Manning et al. (2011) 2, 3 1, 2 2, 3, 5 1, 2 1 1 No No

Mi et al. (2011) 2, 4 2 5 1, 2 2 1 No No

Moerkerke et al. (2010) 2, 3 2 5 1 1 1 Yes No

Mukherjee et al. (2007) 2, 3, 4 2 2 1 1, 2 1 Yes No

Mukherjee and Chatterjee (2008) 2,3, 4 1, 2 2 1 1, 2 1 Yes No

Mukherjee et al. (2010) 2, 3, 4 2 2 1 1, 2 1 No No

Paré et al. (2007) 2, 3, 4 1, 2 1, 3 2 1 2 No Yes

Ritchie et al. (2007) 2, 3 2 2 1 1, 3 2 No Yes

Schaid (1999) 1, 2 2 2, 5 1 1, 3 1 Yes No
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Cornerstone 2: design

Similar to other epidemiologic studies, the success of G–

E interaction studies largely depends on the selection of an

optimal study design. Most common designs used for

genetic association studies of main effect can be used to

search for interactions. It includes family-based designs,

such as nuclear families (parents and offspring) and sib

designs (case and siblings), as well as common population-

based designs, such as prospective cohorts and case–con-

trol data. Particular G–E interaction designs such as case-

only designs have obtained increased popularity due to

their properties and/or easy adoption. Randomized clinical

trials are being curtailed to address the pharmacogenetic

aspects of G–E interactions. However, the requirement of

large sample sizes to achieve reasonable statistical power

in genome-wide G–E interaction studies has catalyzed the

development of more efficient designs over the past few

years (Bookman et al. 2011). In the sequel, we briefly

discuss some of the most popular designs. For a detailed

summary of advantages and disadvantages of some of these

designs in the context of complex trait gene–environment

interaction studies, we refer to Weinberg and Umbach

(2000), Dempfle et al. (2008) and Thomas (2010a).

Family-based designs can be of great interest for GWEI

studies, since they usually require weaker assumptions on

distributions of genetic and environmental factors than

population-based designs (Liu et al. 2004). They can be

more efficient when rare mutations are involved and can be

robust against population stratification, although as noted

earlier they still may be subject to bias in the later situation

(Shi et al. 2011). Statistical tests built for family-based

design are usually more robust than those built for the

analysis of unrelated individuals. For example, Moerkerke

Table 1 continued

Manuscript Manuscript

typea
Marker

designb
Subject

designc
Outcome

typed
Aime Analysis

approachf
Population

stratification

addressed

Applicable to

gene–gene

interaction

Struchalin et al. (2010) 1, 2, 3 1, 2 3, 4 2 1 1 No No

Tan et al. (2007) 2, 3 2 5 1 1, 3 1 No Yes

Tanck et al. (2006) 2, 3, 4 2 5 2 1, 2 2 No Yes

Tchetgen Tchetgen and Robins (2010) 2, 3 2 1 1 1 1 No Yes

Tzeng et al. (2011) 2, 3, 4 2 4 2 1, 3, 5 2 Yes Yes

Umbach and Weinberg (2000) 3, 5 2 5 1 1, 5 1 Yes/no No

Van Der Sluis et al. (2008) 2, 3 2 5 2 1, 3 1 Yes No

Tweel and Schipper (2004) 2, 3, 4 2 2 1 1, 2 1 No Yes

Vansteelandt et al. (2008) 2, 3 2 5 1, 2 1 1 Yes No

Wakefield et al. (2010) 2, 3, 4 1, 2 2 1 1 2 No Yes

Wang et el. (2009) 2, 3, 4 2 2 1 1 1 No Yes

Witte et al. (1999) 3 2 2, 5 1 1, 3 1 Yes/no No

Wu et al. (2009) 2, 3 2 2 1 1 1 No No

Wyszynski and Diehl (2001) 5 2 1, 5 1 5 1 No No

Yoshida and Koike (2011) 2, 3, 4 2 2 1 1 2 No Yes

Yu et al. (2012) 2, 3, 4 2 2 1 1, 2 2 No Yes

Zhang et al. (2011) 2, 3, 4 1, 2 2 1, 2 1 2 No Yes

We have categorized the methods in terms of several features related to the type of studies or data to which the methods are meant to be applied.

Some features of some methods would benefit from slightly different categorizations; we chose these as they allow the vast majority of methods

to be described using similar terms. While many of the methods can or have been extended beyond what has currently been described, we limited

our categorization to those situations explicitly discussed in each research paper. For example, some methods may be easily applicable to gene by

gene interactions, but unless it was clear based on first principles or explicitly described in the paper, we labeled that paper ‘‘no.’’

Explanation coding:
a Overview (1), new method (2), simulated data (3), applied (4), other (5)
b GWAS (1), candidate gene (2), other (3)
c Case only (1), case/control (2), cohort (3), other-unrelateds (4), relateds (5)
d Binary (1), continuous (2), censored (3), multivariate (4), discrete but other than binary (5)
e Testing (1), modeling (2), power or sample Size (3), exposure assessment (4), other (5)
f Single-gene based (1), multiple gene-based (2), other (3)
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et al. (2010) extended FBAT-I and established a test that is

doubly robust. The approach is valid if either the model for

the main genetic effect holds or if the model for the

expected environmental exposure holds, but not necessarily

both. Vansteelandt et al. (2008) used causal inference

methodology to establish a family-based test for G–

E interaction that is robust against unmeasured confound-

ing due to population stratification and Fardo et al. (2012)

extended that methodology to test for G–E interaction in

family based studies with phenotypically ascertained

samples.

Bias and efficiency of several family designs (e.g., using

parents, siblings, cousins or ‘‘pseudo-sibs’’) have been

studied under a range of situations by many authors

(Chatterjee et al. 2005; Cordell 2009; Schaid 1999; Whit-

temore 2007; Witte et al. 1999). However, there is no

single design that fits all purposes or is optimal for all

scenario’s, since utility and performance depend on disease

prevalence, frequency of risk allele and risk exposure,

underlying genetic model and modes of interactions, and

on the goal of the study. For example, Chatterjee et al.

(2005) showed some efficiency advantage of case-sibling

designs compared with case-parent designs in a variety of

settings. But the latter remains of interest for the estimation

of the genetic association parameter (i.e., the odds ratio

associated with the gene variant among subjects with

environmental exposure).

Despite the advantages of family-based design, popu-

lation-based design has been often preferred for genetic

association studies. Ascertainment of non-relatives is

logistically more convenient and potential population

stratification can easily be estimated and controlled for in

population-based data using genotype data from markers

that are unlinked to the loci under study. Among possible

population-based designs, cohort studies have long been

recommended for G–E interaction studies (Clayton and

McKeigue 2001). However, these remain extremely

expensive and time consuming. Moreover, cohort studies

are of limited use for the investigation of very rare dis-

eases, which may require unrealizable large sample sizes.

Because of this drawback, the standard case–control design

(either nested in a cohort design or derived from a retro-

spective study) rose as the gold standard for association

studies of genetic main effects (Clayton and McKeigue

2001) and is widely used in gene–environment interaction

studies. Case–control designs are also often preferred to

partial-collection designs (e.g., case-only, case-parents),

since they might offer a better compromise between cost

and efficiency (Liu et al. 2004). Statistical tests that are

built within this framework are robust to a range of

assumptions, such as G–E independence (although see

Lindstrom et al. 2009). They generally allow unbiased

estimation of all parameters that are of interest in the G–

E study, although dealing with bias due to exposure mis-

classification remains challenging [see works from Garcia-

Closas et al. for examples of impact on multiplicative

interactions (Garcia-Closas et al. 1998) and impact on

additive interactions (Garcia-Closas et al. 1999)].

The case-only design is probably the most discussed

alternative to case–control data. It has been proposed as a

less expensive design when the goal is to assess interaction

effects only (Piegorsch et al. 1994; Umbach and Weinberg

1997). It relies on the assumption of independence between

the genetic and environmental factor in the population.

When this assumption is valid, departures from a multi-

plicative relative risk model can be evaluated by testing the

association between G and E in cases only. This test (as

well as other approaches that rely on G–E independence)

has repeatedly been shown to be more efficient than other

approaches. The flip side is that when the assumption does

not hold, statistical tests based on cases only give rise to

inflated type I error rates. Whether the aforementioned

independence assumption is a reasonable one in GWEI

settings is debatable. Artificial G–E dependencies can be

created in multiple situations. Population stratification, for

example, can create correlation between genotypes and

environmental exposures in the study population (Chat-

terjee et al. 2005; Umbach and Weinberg 1997). Elbaz and

Alperovitch (2002) have also shown that substantial cor-

relation may appear between genetic risk factors and risk

exposure of late-onset diseases in the presence of com-

peting risks and interaction effects. Although bias in case-

only designs is likely to be uncommon in practice (Dennis

et al. 2011; Liu et al. 2004), using this particular design

remains controversial (Albert et al. 2001). Moreover, sev-

eral studies have shown that interactions opposite to the

main genetic effect might not be captured within case-only

data (Liu et al. 2004; Mukherjee et al. 2011).

Apart from the somewhat more traditional designs from

the previous paragraphs, a range of alternative ascertain-

ment schemes have been proposed in the literature, all with

the aim to identify gene–environment interactions. Some of

these designs include both related and unrelated controls

(Andrieu and Goldstein 2004; Chen et al. 2009b) to

increase power while others have addressed specific gene–

environment interaction patterns. For example, Chen et al.

(2009b) proposed a two-stage study design where a case-

only study is performed at the first stage, and a case-parent/

case-sibling study is performed at the second stage on a

random subsample of the first-stage case sample as well as

their parents/unaffected siblings. Whittemore (2007), on

the other hand, discussed potential designs in studies that

attempt to assess associations between lifestyle or envi-

ronmental exposures and disease risk in carriers of rare

mutations. Andrieu et al. (2001) also addressed the issue of

rare risk factors, considering either rare mutations or rare
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environmental exposure. They proposed the counter-

matching design which consists in increasing the number

of subjects with the rare factor without increasing the

number of measurements that must be performed.

Cornerstone 3: methodology

In the context of GWEI analyses, several analytical routes

can be followed (Fig. 2). Some of these roads to travel by

are more ‘‘natural’’ with specific study designs (Table 1).

Parametric and semi-parametric approaches

Many researchers have built upon the comforting regres-

sion framework in developing customized approaches to

detect G–E interactions, including ordinary regression,

penalized regression (Park and Hastie 2008), and logic

regression (Schwender and Ruczinski 2010). In general, the

joint effect of a genetic variant G and a given exposure E

on a phenotype Y is often defined with the simple model:

g EðYÞð Þ ¼ b0 þ bGGþ bEE þ bGEG� E þ bZZ ð1Þ

where G is the number of allele (coded 0, 1, 2), E is con-

tinuous or categorical, Z represents a set of covariates one

may adjust for, b is the linear effect of each component and

g() the link function is the logit for dichotomous Y and the

identity for quantitative Y. This model is a simplification, in

that it ignores possible dominance effects. Still, just as the

additive model has good power over a wide range of

possible dominance models and has become the primary

test statistic used in most GWAS (Lettre et al. 2007), the

additive main and interaction effects will be detectably

non-zero for a wide range of true dominance models, and

the proportion of variance explained by the missing dom-

inance effects will be quite small for most models.

Simplification is common in classical frequentist

approaches, where adding degree of freedom can reduce

statistical power. Or to quote the parallel from Kooperberg

and Leblanc (2008) with a cake: ‘‘if we want to divide the

power over all possible interactions, nobody will get more

than a crumb, and no-one will taste how good the cake is;

we are better off dividing the cake among those people we

believe to enjoy it.’’ For example, a saturated linear model

for a trichotomous E will have nine degree of freedom (df)

compared with four df for the Eq. (1). In fact the same

strategy has been used in most GWAS of marginal effect

for the same reason.

It is important to note that even a simple model as

Eq. (1) may encounter statistical issues. Especially, recent

works from Tchetgen Tchetgen and Kraft (2011) have

shown that when the main effect of continuous E, bE in

Eq. (1), is mis-specified, the likelihood ratio test, score test,

and Wald test statistics of the main effect of G and the

interaction effect can have incorrect type-1 error rates. This

issue, which has been shown to be due to underestimation

of the variance of bGE, can be solved using different

techniques (Cornelis et al. 2011): (a) using a more flexible

model for the environmental main effect (e.g., adding

quadratic and cubic term for the exposure); (b) using a

robust ‘‘sandwich’’ estimator of the variance, and

(c) modeling a continuous exposure by using general cat-

egorical variables.

A Bayesian framework gives the opportunity to make a

step further in modeling the complexity of interaction

effects. It provides a rational and quantitative way to

consider a range of hypothesis in a single analysis. For

example, Bayesian methods can be used to consider

simultaneously multiple genetic models, some of them

including diverse interaction effects, and to evaluate the

posterior probability of each of these models [e.g., Crain-

iceanu et al. (2009) and Zhang and Liu (2007)]. They also

allow for multiple assumptions, which can be used to build

composite estimators. If one wants to quantify the rele-

vance of the G–E independence assumption (discussed in

further sections), they offer solutions to trade off between

bias and efficiency in a data adaptive way (Li and Conti

2009; Mukherjee et al. 2010). Finally, they allow incor-

porating biological information and knowledge accumu-

lated in previous association studies, so that interaction

effects can be weighted by their plausibility. However,

despite their potential advantages, Bayesian approaches

have been only sparsely used in genetic association studies

and their advantages and limits from a modeling point of

view need to be studied further. In particular, many

hypothesized models are likely to be roughly equally

consistent with the observed data for realistic sample sizes,

making it difficult to infer which model provides the best

fit: the cake will be split among so many people that

nobody will get more than a crumb.

Screening for variants involved in interaction when inter-

acting factor are unknown Most genetic variants having

effect through interactions with other risk factors are also

likely to display marginal linear effect. For example, using

random parameters for model (1) to simulate data—spe-

cifically, generating main effects and interaction effects

independently of each other—will produce genetic variants

with marginal effect almost 100 % of time. This suggests

one can simply test for marginal effect with power being

almost only related to sample size, unless (as discussed

below) the state of nature is such that most true models

include interaction effects, but these are offset by the main

effects so that the marginal genetic effects are quite small.

This is especially useful if potential interacting factor are

unmeasured or when interaction effects are expected to be

difficult to assess.
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Interaction models with small or no marginal genetic

effects are theoretically possible (Culverhouse et al. 2002;

Song et al. 2010). If such interactions are common, then

this will have significant consequences for how we go

about searching for the genetic basis of complex pheno-

types and will obviously limit the interest of screening for

marginal effect. However, such models have not yet been

observed and confirmed in real data. This has led some to

suggest that increasing sample size and testing for the

marginal linear effect in agnostic GWAS scans might be

the most powerful approach in most cases, while using

more complex models might have only limited advantages

(Clayton and McKeigue 2001; Hirschhorn and Daly 2005;

Wang et al. 2005). The large success of this strategy in

detecting genetic variants in GWAS has provided argu-

ments in this direction, but the small amount of heritability

explained by the ‘‘GWAS variants’’ is a potential rebuttal

to the efficiency of this strategy.

When searching for quantitative trait loci (QTLs) an

alternative for screening for the presence of interactions

without using potential interacting factors is to test for

homogeneity of variances across genotypic classes (Paré

et al. 2010). The rationale is that, if the magnitude and the

direction of the effect of a QTL differ depending on other

genetic or non-genetic factors, the variability of the phe-

notypic outcome among individuals carrying the risk allele

is likely to be larger than among the non-carrier. Hence,

under the assumption that the main effect of the QTL affect

neither the within-genotype variance nor the between-

genotype variance, testing for heteroscedasticity will test

for the presence of potential interactions. Note that heter-

ogeneity of variances may be explained not only by the

presence of interactions, but also by other biological

mechanisms or other association patterns such as linkage

disequilibrium with variants with large effect size

(Takeuchi et al. 2011). Simulation studies have shown that

Fig. 2 Possible strategies for

GWEI depending on aim
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the power of the test, which depend on the main effect of

the unknown interacting factors (having an optimal power

for specific magnitude of main effect of E), was limited

when applying genome-wide significance threshold (Paré

et al. 2010; Struchalin et al. 2010). Despite this limited

power, testing for homogeneity of variance remains of

great interest for the identification of gene–environment

interactions. Because the test is potentially sensitive to a

broader range of interaction effects than the test of mar-

ginal effect (such as effects in opposite direction), it can be

used for example in two-step approaches to screen for

candidate variants that will be tested further for gene–

environment interactions. The potential of this approach

has been recently demonstrated in a genome-wide associ-

ation study of C-reactin and soluble ICAM-1 conducted in

the Women’s Genome Health Study (Paré et al. 2010).

Interestingly one of the identified G 9 E interactions was

replicated in an independent study (Dehghan et al. 2011).

Leveraging interaction effect to improve detection of

marginal effect When a locus is expected to have residual

marginal effects conditional on others factors tested for

interaction, an efficient strategy is to use composite null

hypothesis where both main effect and interaction effects

are tested jointly (Kraft et al. 2007): explicitly, testing the

null hypothesis that the genetic variant has no effect on any

strata or based on Eq. (1) H0: bG = 0 or bGE = 0. This can

be done using a multivariate Wald test or a likelihood ratio

test comparing a model including effect of E and Z only

versus a model including effects of G, GE, E, and Z. A

simple alternative when exposure is binary or categorical is

to test for marginal genetic effect in strata defined by

exposure E. The joint test can then be computed as the sum

of Chi-squared for association derived from each stratum.

Since the samples are independents, the sum follows a Chi-

square with the degree being equal to the strata for E.

For case–control studies, the test for such joint effect

can be performed using standard logistic regression, the

more powerful retrospective likelihood approach (Chat-

terjee and Carroll 2005; Cornelis et al. 2011) can exploit an

underlying gene–environment independence assumption or

using the empirical Bayes approach (Chen et al. 2009a;

Mukherjee and Chatterjee 2008) that can data-adaptively

relax the independence assumption. An extension from the

family-based test for the joint test of gene main effect and

G–E interaction (FBAT-J) has been recently proposed for

dichotomous traits in trios and sibships (Hoffmann et al.

2009). The test assumes the genotype and the environment

are independent conditionals on the parental mating type. If

the assumption does not hold, the test will have an inflated

type I error rate (Weinberg and Umbach 2000).

By allowing for heterogeneous genetic effect among

genetic or environmental strata one can maximize the

statistical power to detect the locus while minimizing the

loss of power when genetic effect is homogeneous. Simu-

lation studies have shown that a joint test for a main

genetic effect and interaction effect is likely to have higher

statistical power than the marginal test or the standard one

degree of freedom test in presence of moderate interaction

effect or when interaction effect is in opposite direction to

the main effect (Kraft et al. 2007). Conversely, in the

presence of a small interaction effect, the marginal test may

conserve the highest power.

Methods for meta-analysis of multiple parameters have

been recently described so that estimates of effects from

the joint test can also be combined across independent

sample. In particular, Manning et al. (2011) have described

a general approach, while Aschard et al. (2011) have

extended the aforementioned principle of analyzing sample

stratified by environmental factors. The first approach

should be used when analyzing quantitative exposures and

in situations where the samples within each cohort have to

be analyzed as a whole (e.g., in family data where one has

to account for correlation among individuals). The second

approach essentially offers practical advantage and it can

be more flexible in situations where environmental cate-

gories may differ among the cohort analyzed. The first

genome-wide application of the joint test has been pub-

lished recently by Hamza et al. (2011). They identified a

new genetic variant associated with Parkinson’s disease

and replicated the signal in independent samples.

As any test modeling interaction effect per se, the joint

test is limited by the multiple testing issues in large-scale

data. Hence, it is only applicable in situations where there

is a measured factor that might interact with the tested

locus. Nevertheless, some have shown that the joint test

can be built in framework where multiple potential effect

modifiers can be considered for a single locus. Strategy for

testing can then be defined by averaging the effect of a

given locus over other factors (Ferreira et al. 2007) or by

testing the maximum joint test over a range of possible

model (Chapman and Clayton 2007). It has been also

suggested that degree-of-freedom for such joint tests can be

reduced using Tukey style one-degree-of-freedom model

for interaction between groups of related genetic or/and

environmental variables (Chapman and Clayton 2007;

Chatterjee et al. 2006; Ciampa et al. 2011).

Testing for interaction per se Besides TDT-like extension

for G–E interaction as FBAT-I and its extension (Hoff-

mann et al. 2009; Lake and Laird 2004; Moerkerke et al.

2010) that are applicable to nuclear families data only, the

traditional test for interaction consists in evaluating the

term bGE from Eq. (1). This test is relatively robust com-

pared with many other approaches, although as described

previously, misspecification of the main effect of a
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continuous E may increase type I error rate. The main

concern when applying this simple test in genome-wide

data is its limited power (see ‘‘Power and sample size’’).

Two types of strategies have been discussed to increase

detection: (a) to use multi-stage approaches to reduce

multiple testing burden; and (b) to leverage additional

assumption on the data analyzed to improve efficiency.

Since the seminal paper from Marchini et al. (2005),

multi-stage approaches using sequential test are considered

as realistic approaches in GWAS. Even if not demon-

strated, their work suggests that such strategy may improve

the power of identifying interaction effects in GWAS.

Since then diverse analysis strategies have been proposed,

most of them focusing on the gene–gene interaction, which

face a strong multiple testing issues in GWAS. However,

these approaches can also be applied in the context of G–

E. Examples include screening on genetic marginal effects

(Kooperberg and Leblanc 2008; Macgregor and Khan

2006), or screening on a test that models the G–E associa-

tion induced by an interaction in the combined case–con-

trol sample (Murcray et al. 2009). Simulation studies

suggest that such approaches can be more powerful than

traditional single-stage approach in which a huge penalty

needs to be paid for multiple testing. Using a two-step

strategy allows for less stringent thresholds of significance

in the second step, since genetic markers have been pri-

oritized in step one for their likely involvement in G–

E interactions. While these methods became popular,

questions have risen on how power and type 1 error are

influenced by the correction among the two steps. While

the two stages have been shown to be virtually independent

in simulation study when screening on marginal effect

(Kooperberg and Leblanc 2008; Marchini et al. 2005),

recent work from Dai et al. (2010) provides proof of

asymptotic independence of marginal association statistics

and interaction statistics in linear regression, logistic

regression, and Cox proportional hazard models when

analyzing rare disease. Hence, in many situations the

family-wise type I error rate might be controlled using

classical Bonferroni correction for number of interaction

tested at the second step only or by using permutation when

markers considered at the second step are correlated.

Making assumption about the data analyzed to increase

power of statistical test is a common principle. For binary

trait such as disease status, the most popular one is the G–E

independence assumption that allows testing for interaction

in case-only data by testing for association between G and

E among the cases using

logitðGÞ ¼ c0 þ cEE þ cZZ: ð2Þ

Under the assumption of G–E independence in the whole

population or G–E independence in controls for rare dis-

ease, testing for H0: cE = 0 is equivalent to testing for H0:

bGE = 0 from Eq. (1). When the assumption holds this

method has the maximum power compared with most other

approaches that leverage the G–E independence, except in

the situation where the main effect of G or E is in opposite

direction to the interaction effect (Mukherjee et al. 2011;

Murcray et al. 2011). However, it has also disadvantages:

the main effect of G and E cannot be estimated and the type

I error can be highly inflated when the assumption does not

hold.

A range of other approaches have been proposed to

leverage this assumption while providing a trade-off

between increased power and controlled type I error rate

(Chatterjee et al. 2005; Chen et al. 2009a; Cheng 2006;

Mukherjee and Chatterjee 2008; Mukherjee et al. 2007).

For example, when data on both cases and controls are

available in a study, then one can be much more flexible

than case-only analysis in studies of gene–environment

interaction irrespective of whether the independence

assumption is valid or not. One can use a retrospective

likelihood approach (Chatterjee et al. 2005) under the

gene–environment independence assumption to obtain very

efficient estimate all of the parameters of a general logistic

regression model. On the other hand, if violation of the

gene–environment independence assumption is suspected,

one can perform data-adaptive methods such as an empir-

ical Bayes technique (Chen et al. 2009a; Mukherjee and

Chatterjee 2008), which can be robust to violation of the

independence assumption and yet can be more powerful

than traditional case–control analysis when the indepen-

dence assumption is valid. Other alternatives to the case-

only test include multi-step approaches in a single sample

(Gauderman et al. 2010; Murcray et al. 2009), multi-sam-

ple design (Chen et al. 2009b), and approaches that use

Bayesian framework (Li and Conti 2009; Mukherjee et al.

2010). One should note that, based on recent reports, dif-

ferences in performances between these methods only exist

at the margin and they always depend on the type of model

simulated (see Mukherjee and Chatterjee (2008) for a

detailed comparison of several of these methods).

Exploratory or agnostic approaches

Traditional statistical methods such as multivariable linear

or logistic regression are ill equipped to incorporate all

possible pairwise interactions among a large number of

markers and exposures, let alone higher-order interactions.

However, for complex diseases or traits the influence of

non-linear or higher-order gene–gene and G–E interactions

may be appreciable. Therefore, researchers are faced with

difficult decisions to make their analysis practically feasi-

ble within computational and modeling restrictions

(Maenner et al. 2009). The common alternative is to move

away from the classical hypothesis testing framework and
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estimation of statistical significance level, and to use

‘‘model free’’ approaches or to adopt an agnostic approach

to identify gene–environment interactions. Different anal-

ysis approaches from machine learning or data mining are

needed to manage the high dimensionality of genome-wide

analysis studies and large-scale data collections.

Interdisciplinary collaborations have led to the adoption

of approaches from one community to another, especially

in the field of gene–gene interactions. These include data

segmentation methods (Tryon 1939), tree-based methods

(Breiman et al. 1984), pattern recognition methods (Ripley

1996), and (non-)linear dimension reduction methods

(Fodor 2002). A list of examples of these in the context of

gene–gene interactions is given in Van Steen (2012).

Unfortunately, the adoption of these methods in genome-

wide based G–E interaction detection is not as ‘‘frequent’’

as it is for genome-wide epistasis studies. In the following,

we elaborate on two techniques that deserve more attention

in the context of GWEI studies: tree-based and multifactor

dimensionality reduction (MDR) derived techniques.

Because the number of possible genetic model can be

quite large, exploratory methods are often built on a trade-

off and assume or favor some specific interaction models.

Recursive partitioning approaches, such as random forests

(Breiman et al. 1984; Schwarz et al. 2010)—a flexible and

efficient data mining method based on regression or clas-

sification trees—also face such issues. Random forests do

not model interaction variables per se but they allow for

interactions (or complex non-linear relationships) in the

sense that they evaluate classification ability of particular

combination of values taken by sets of predictor variables.

Because of the independence assumption used during node

splitting of ‘‘trees’’ these methods have been shown to have

limited ability to detect pure interaction effects (McKinney

et al. 2009). Notably, the recent SNPInterForest approach

(Yoshida and Koike 2011) performed very well in suc-

cessfully identifying pure epistatic interactions with high

precision and was still more than capable of concurrently

identifying multiple interactions under the existence of

genetic heterogeneity. Hence, extensions that relax the

independence assumption within a conditional inference

framework (Hothorn et al. 2006) and improved procedures

to extract interaction patterns from random forest (Yoshida

and Koike 2011) make the random forest methodology

particularly attractive for GWEI studies. Different variable

importance measures have been proposed in the literature,

including a joint importance measure which extends the

idea of single importance to multiple importance, and can

be useful especially for interactions (Bureau et al. 2005).

Note that correlated predictors and varying predictor cat-

egories or measurement scales are likely to exist in G–

E studies and that care needs to be taken in the selection of

the importance criterion. For instance, Strobl et al. (2008)

identified the mechanisms causing the bias for permutation

importance scores and developed a conditional variable

importance which reflects the true impact of each predictor

variable more reliable than the original permutation vari-

able importance measure.

As an application example, Maenner et al. (2009) ana-

lyzed coronary heart disease cases from the Framingham

Heart Study by first identifying influential SNPs for age of

onset of early coronary heart disease using a random forest

approach. Variable importance scores from a RF analysis

provide measures to determine important SNPs and envi-

ronmental exposures taking into account interactions

without specifying a genetic model (Lunetta et al. 2004).

Second, generalized estimating equations were used to

evaluate the statistical significance of main effects and

interactions of previously detected SNPs and smoking

status (Maenner et al. 2009) (however, note that such sig-

nificance level should be taken with caution since the

selection at the ‘‘mining step’’ potentially overfits the data).

The authors used a simple solution to handle family

structure within their data by considering a binary family

indicator as covariate for building the random forest.

Similarly, Zhai et al. (2011) performed a two-step approach

with initial screening for SNPs associated with environ-

mental measures by random forest and further analysis

based on case-only logistic regression to obtain parameter

estimates for the selected variables.

Tree-based methods might be a relevant alternative to

logistic regression methods for identifying genes without

strong marginal effects and of robustness to genetic het-

erogeneity where different subsets of genes can lead to a

phenotype of interest (Lunetta et al. 2004). Random forests

outperformed Fisher’s exact test when several risk SNPs

interact (Lunetta et al. 2004) and behave more robustly

when a high number of unassociated noise SNPs is present

(Bureau et al. 2005). Another interesting approach com-

bining regression models and tree-based methodology is a

semi-parametric regression model, named partially linear

tree-based regression model (PLTR) (Chen et al. 2007).

The linear regression part of their model can control effi-

ciently for confounders and provide the possibility to cor-

rect for linear main effects of variables so that a

parsimonious summary of the joint effect of genetic and

environmental variables is obtained.

Also non-parametric data mining methods such as MDR

(Ritchie et al. 2001) are the subjects of a trade-off. In

contrast to logistic regression and random forests, MDR

can be used to detect G–E interactions in the absence of

any main effects. MDR can be applied to smaller sample

sizes than logistic regression which needs enough obser-

vations to model all main and interactions effects. How-

ever, the ‘‘reduction’’ step consists in splitting the different

combination of two variables (defined by E and G) in two
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groups of high risk versus low risk. This allows a range of

model to be tested. But the interaction is summarized in a

single binary parameter and is therefore unlikely to capture

the full complexity of interactions (e.g., a gradient of effect

across different combinations). Several extensions and

variations of the MDR method have been proposed to

address initial shortcomings of MDR (including the lack of

correction for lower order effects, and the too stringent

reduction into two risk groups). Model-based MDR (MB-

MDR) (Calle et al. 2010) and its extension to family data,

family MDR (FAM-MDR) (Cattaert et al. 2010), enable

adjustments for possible confounders and the handling of

various phenotypes, e.g., continuous, categorical, or cen-

sored. In particular, MB-MDR uses a reduction into a one-

dimensional variable with three levels, i.e., high risk, no

evidence, low risk, and potentially a continuum of risk

groups (Calle et al. 2010; Cattaert et al. 2010). While

comparing MB-MDR to MDR in the presence of noise, i.e.,

genotyping error, phenocopy and genetic heterogeneity,

MB-MDR was found to have increased power in most

situations, especially for genetic heterogeneity, phenocop-

ies, and minor allele frequencies. Previous to applying the

MB-MDR method, FAM-MDR uses a preparation step

where familial correlation free traits are obtained as

residuals from a polygenic model (hence, hereby adjusting

for potential population stratification). FAM-MDR out-

performed pedigree-based MDR (PGMDR) (Lou et al.

2008) in terms of handling multiple testing, empirical

power, and efficient use of available information from

complex and extended pedigrees (Cattaert et al. 2010) and

is therefore a promising alternative to the classical MDR

derivatives to explore gene–environment interactions. One

disadvantage of MDR is that its computational burden

increases with the number of SNPs and the order of con-

sidered interactions. A parallel algorithm of MDR and MB-

MDR has been implemented by Bush et al. (2006) and Van

Lishout et al. (2011), respectively. Despite these efforts,

filtering methods to preselect a subset of candidate factors

and stochastic search algorithms (e.g., simulated annealing

and evolutionary algorithms) are needed to assist

researchers in the exhaustive search for interactions in

genome-wide association studies. Knowledge about the

pros and cons of these filtering approaches (as applied to

genome-wide epistasis settings) will be most beneficial for

GWEI studies and the availability of an entire exposome.

Duell et al. (2008) compared MDR to focused interac-

tion testing framework and logistic regression for identifi-

cation of higher-order interaction effects in a case–control

study using 26 polymorphisms and smoking as possible

environmental risk factor. Little concordance existed

between MDR and interaction testing framework with

regard to the interaction factors. This finding may be

caused by the different interaction modeling methodologies

behind the approaches. The authors recommend using

multiple approaches for data screening and analysis to

detect potentially new risk factor combinations. More

comparative studies are actually needed, examining dif-

ferences between traditional (often regression-based)

approaches with untraditional (often data-mining) methods

in the context of GWEI studies. The study from Duell et al.

(2008) also highlights the difficulties in computing a

comprehensive significance level for exploratory methods.

Overall, one should remember that there is no straightfor-

ward way to define a null hypothesis and to test it in these

exploratory approaches. However, strategies to statistically

evaluate the significance of models obtained through data

mining procedures are now discussed in the literature (e.g.,

Pattin et al. 2009) and more might be developed in the

future.

Out-of-the-box approaches

Information theoretic metrics allow for complex interac-

tions between genetic variations and environmental factors

without any modeling but have not yet been widely applied.

Based on the total correlation information (TCI) (Chanda

et al. 2007), Chanda et al. (2008) developed the phenotype-

associated information (PAI), which is robust against

dependencies between environmental and genetic factors.

Furthermore, these authors suggest a greedy search algo-

rithm (AMBIENCE) where potential variable combinations

associated with a phenotype of interest are selected based

on lower order PAI values and the interaction between the

determined relevant variable subsets is re-evaluated using

the more parsimonious k-way interaction information. This

approach is particularly suitable for large-scale data sets.

The method was extended to quantitative traits (Chanda

et al. 2009a), when normally distributed within each strata

of the gene–environmental variable combination. Wu et al.

(2009) and Fan et al. (2011) used test-statistics developed

from information theoretic metrics to detect G–E interac-

tions associated with discrete phenotypes. While the mutual

information-based test statistic of Wu et al. (2009) is

applicable to two-way interactions, Fan et al. (2011) also

consider higher order interactions. An extension of their

computationally efficient approaches to quantitative traits

and family data would increase the applicability and flexi-

bility of information theoretic metrics further.

To prioritize genetic and environmental variables for

follow-up sequencing studies, Chanda et al. (2009b) pro-

posed to calculate the interaction index (defined as the sum

of the average interaction contribution of each considered

kth order interaction for the given variable) for each vari-

able. Comparing their approach with the restricted parti-

tioning method (RPM) (Culverhouse et al. 2004), Chanda

et al. (2009b) found high concordance between the two
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methods for one-variable combinations but not for the two-

variable combinations. In contrast to, for instance, MDR

and RPM, the greedy search algorithm AMBIENCE

(Chanda et al. 2008) allows for higher dimensional datasets

but disables the detection of pure epistasis effects. An

alternative approach to the search algorithm might be to

use an information-theoretic metrics as objective function

in a dimensionality reduction method as MDR for which

variables could be pooled into high-risk and low-risk sets

based on their PAI value (Fodor 2002).

Recently, rule-based classifier algorithms have been

introduced in the context of genetic interaction studies,

whereas they had proven their utility non-genetic datasets

in the past (Tan et al. 2006). Rule-based classifiers generate

classification models using a collection of ‘‘if … then …’’

rules. The algorithms are computationally feasible and

allow the inclusion of both categorical and continuous

variables. For a comparison of rule-based classifiers in the

context of G–E interactions, we refer to Lehr et al. (2011).

Alternatively, GWEI studies may benefit from neural

networks (NN) (Gunther et al. 2009) and their modifica-

tions, e.g., genetic programming neural networks (GPNN)

(Ritchie et al. 2007) and grammatical evolution neural

networks (GENN) (Motsinger et al. 2006).

Unlike logistic regressions, neural networks do not

explicitly use interaction terms for modeling data. There is

no easy way to assess whether interaction is present using a

neural network, nor to derive clear interpretations of esti-

mated weights (Gunther et al. 2009). The GPNN algorithm

attempts to generate optimal neural network architecture

for a given data set and—in contrast to classical NN—does

not rely on the pre-specification of inputs and architecture

(Ritchie et al. 2007). Although these types of approaches

are often regarded as a black box, the flexibility of neural

network-based approaches in model development clearly is

a major advantage, especially when highly complex data

structures with challenging gene–gene or G–E interaction

structures need to be modeled.

GWEI and GWAI studies

Large-scale G–E interaction studies and large-scale gene–

gene interaction studies, via the common genetic compo-

nent they involve, share quite a number of challenges:

high-dimensionality, computational capability, the

absence/presence of marginal effects, the multiple testing

problem, and genetic heterogeneity. These challenges and

possible solutions in the context of genome-wide associa-

tion gene–gene interaction (GWAI) studies have been

discussed elsewhere (Van Steen 2012).

When environmental risks are investigated, usually the

focus is on a single exposure or several exposures from

particular category, for instance, involving air and water

pollution, occupation, diet, stress and behavior, or types of

infection. However, in the context of a genome-wide

screen for loci involved in interactions, a marker may

interact with an exposure from any category, or multiple

exposures within or across categories. The effect of a

marker may differ across strata defined by more than one

exposure (e.g., the effect of a breast cancer marker might

be different among women with a high Gail score, which

summarizes several non-genetic breast-cancer risk factors,

and women with a low Gail score). Along those lines, it is

believed to be crucial to combine the genome with an

entire ‘‘exposome’’ (i.e., the totality of environmental

exposures from conception onwards) (Wild 2005). This

idea is similar to evaluating the effects of genetic variants

in a particular genetic background, as summarized by high-

dimensional genetic data (Phillips 2008; Tzeng et al. 2011;

Van Steen 2012). Methods for the measurement of the

‘‘exposome’’ are lagging far behind methods for measuring

genomic variation. However, instead of characterizing the

entire exposome, it should be feasible to identify at least

critical components at several stages in an individual’s life

and consider these in the G–E analysis (Rappaport and

Smith 2010). The Bayesian paradigm is promising in this

sense, since latent variables can potentially be used to

capture genetic variation and models can be developed

allowing environment effects to vary across different

genetic profile categories (Yu et al. 2012).

GWEI studies may benefit from the abundance of

methodologies that are available in the context of large-

scale genetic association or epistasis screenings (Khoury

and Wacholder 2009). We believe that there are several

reasons for the limited translation of GWAI to GWEI

methodologies. First, genome-wide G–E interaction studies

have only recently become possible through several orga-

nized large-scale data collections (Davis and Khoury 2007)

containing both genetic and good quality environmental

measurements. Still, germline variations are static and can

be captured at any time point, while exposures can change

over time and are not always measured at the relevant time

period (measurement at baseline or at interview may not

reflect the relevant windows of exposure and will not

reflect lifetime exposure). Hence some GWAI methods are

likely to be underpowered since they are not designed to

account for such variations. Second, GWEI studies involve

factors that are measured on different scales. GWAI studies

usually involve one type of genetic markers that have been

pre-processed and underwent high quality control proce-

dures. The measurement type (coding) is regarded to be the

same for all SNPs in the analysis. An environmental factor

can be continuous, categorical, or binary, whatever reflects

the true underlying nature best. Combining different mea-

surement scales within one approach, and inclusion of
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factors with differential degrees of accuracy, measurement

error or variability poses additional complications [e.g., in

random forests approaches (Strobl et al. 2007, 2008)].

Third, for GWAI studies there is a consensus on how to

deal with missing genotypes. Several procedures have been

developed to ‘‘impute’’ missing data in this context, for

instance, using HapMap reference data. Clearly, the tax-

onomy of Little and Rubin (1987) and bio-statistical

knowledge about missing data handling in epidemiology

now need to be combined with missing data handling

techniques commonly adopted in statistical genetics. We

refer to recent work of Lobach et al. (2011) that discusses

exposure measurement error and genotype missing data in

the context of a small-scaled gene–environment interaction

analysis. Fourth, GWEI studies may face additional

methodological challenges when the original GWAS study

is based on shared publicly available controls. It has been

now well established that use of shared controls, after

appropriate adjust for population stratification using prin-

cipal component and related methods, produces valid

inference for detection of genetic main effects. For studies

of gene–environment interaction, however, one needs more

caution as the exposure distribution for the underlying

population of the controls may be quite different from the

exposure distribution for the underlying population from

which the cases were drawn. Further, data on relevant

environmental exposures of interest may not often be

available on publicly available studies. In such situation,

one can use a case-only analysis to examine multiplicative

gene–environment interaction, but such inference is

inherently limited as we have noted earlier. Fifth, meta-

analytic approaches to boost power of GWEI studies are

usually limited to parametric G–E detection methods that

result in estimable effect sizes (Aschard et al. 2011;

Manning et al. 2011). Model misspecification is one of the

major concerns in meta-analysis contexts (Pereira et al.

2011; Pereira et al. 2009). General approaches are needed

that require no assumption on modes of action in the meta-

analytical context of GWEI studies. Finally, meta-GWEI

studies will further benefit from continuing efforts to

improve the accuracy of epidemiological questionnaires of

medical records, occupational records, and other proxy

measurements of environmental factors, as well as the

development of low-cost, validated, and standardized

environmental measures, (Bookman et al. 2011; Khoury

and Wacholder 2009).

Future perspectives

The detection of G–E interactions is usually based on

making inferences from statistical interactions that are

observed at a population level, the most popular

methodologies being based on regression paradigms. The

most interesting types of G–E interactions are those that are

coined ‘‘non-removable’’, in the sense that the evidence of

(statistical) interaction exists when no obvious monotone

transformation of the trait exists (i.e., rescaling of the trait)

that removes the interaction. Uher (2008) argued that

concerns about statistical models and scaling can be

addressed by integration of observed and experimental

data, assuming, however, that we already have identified

‘‘interesting’’ environmental risk factors. Most of these risk

factors for common complex diseases have not yet been

identified, and for those that have been identified, the mode

of action is not well known. Moving from a hypothesis-

driven to a hypothesis-generating viewpoint (i.e., from a

limited selection of candidate environmental risk factors to

an exposome) magnifies some of the issues involved in

interaction detection, with agents that may be highly

structured or inter-connected in epidemiological or bio-

logical networks. Fortunately, lessons can be learnt from

similar settings, such as those generated by GWAI data.

Several efforts are being made to tackle some of the

identified hurdles in this manuscript (Engelman et al. 2009)

and a steady increase in GWEI studies is observed (refer to

Fig. 1). Although most of the identified interactions have

not yet been confirmed, the first GWEI results suggest the

importance of testing for G–E interactions. Adopting an

interdisciplinary attitude and a systems biology view, using

out-of-the-box strategies and non-linear mathematics that

are less known in epidemiology (Knox 2010) may help

identify interacting factors and better understand gene–

environment interplay.

A G–E interaction effect in a population is dependent

upon the distribution of genetic and environmental factors

in the population of interest. Obviously, the distribution of

environmental and genetic factors can be quite different

between individuals and across populations. Thus, some

observed G–E interaction effects, including those involving

epigenetic phenomena, might be detected in one population

but be absent in another. We wish to emphasize that in

valid epidemiologic comparisons, controls should be a

random sample of the population from which the cases

arise. If a control were to become a case, would he or she

be selected as a case in your study?

The availability of the entire sequence of the human

genome offers enormous opportunities. It is now possible

to obtain data on rare variants as well as common variants,

for complex disease association studies. The effects on

dimensionality are enormous, but Wray et al. (2011) have

argued that genes identified via GWAS studies harboring

common variants are likely to be good candidates for the

identification of rare variants, which can then (theoreti-

cally) be investigated for their relationship with a disease

trait. The role of rare variants (relative to more common
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variants) in complex disease etiology is still unclear. It has

been proposed that multiple rare variants through LD may

be responsible for some of the common variant hits from

recent GWAS (so called synthetic associations); however,

this has been deemed unlikely (Anderson et al. 2011).

Large-scale sequencing efforts will be required to fully

investigate the genetic architecture of complex disease

etiology. Understanding how one or more rare variants may

interact with each other and with environmental exposures

will be an extremely difficult task to accomplish. Many

thousands of participants will be required even to evaluate

main effects of rare variants. The analysis of interactions

between rare variants and environmental exposures will be

very challenging for the same reasons it is difficult for

common variants. Moreover, if we are willing to believe

that most chronic diseases are a result of numerous subtle

perturbations in exogenous and endogenous exposures and

variation at the epigenomic level, then each individual may

indeed have their own ‘personalized interactome’. This

could have tremendous implications for the study of G–

E and G–G interactions and might help to explain why

even very large consortium efforts have been unsuccessful

at identifying more than a minor fraction of the heritability

of disease.
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