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Abstract Rare variation is the current frontier in human

genetics. The large pedigree design is practical, efficient,

and well-suited for investigating rare variation. In large

pedigrees, specific rare variants that co-segregate with a

trait will occur in sufficient numbers so that effects can be

measured, and evidence for association can be evaluated,

by making use of methods that fully use the pedigree

information. Evidence from linkage analysis can focus

investigation, both reducing the multiple testing burden and

expanding the variants that can be evaluated and followed

up, as recent studies have shown. The large pedigree design

requires only a small fraction of the sample size needed to

identify rare variants of interest in population-based

designs, and many highly suitable, well-understood, and

available statistical and computational tools already exist.

Samples consisting of large pedigrees with existing rich

phenotype and genome scan data should be prime candi-

dates for high-throughput sequencing in the search of the

determinants of complex traits.

Background

Major scientific successes typically build on previous dis-

coveries. This is certainly true of human gene identification

studies. Work in model organisms initially delineated the

principles behind genetic mapping (Sturtevant 1913),

although even in model organisms it took 50 years to

generalize the principles to complex quantitative traits

(Thoday 1961). Over the same period, statistical geneticists

outlined specific approaches needed for gene mapping in

human data, describing early ideas leading to allele-sharing

statistics (Penrose 1935) and the classical lod score

approach (Haldane and Smith 1947; Morton 1955). It then

took another 20 years for development of the first practical

computational algorithms based on pedigree peeling

(Elston and Stewart 1971) with implementation in com-

puter programs (Ott 1974). Another decade passed before

an ample source of necessary markers in the form of DNA-

based variation began to be available (Botstein et al. 1980).

The principles elucidated by these fundamental ideas mean

that all are still in use, although methodologies imple-

menting the ideas, including high-throughput sequencing,

are now vastly cheaper, faster and more efficient.

Once all the pieces were in place, progress toward human

gene identification was rapid. The fundamental underlying

principles coupled with an ample source of markers lead to

early studies that proved feasibility in humans by leading to

genes for both recessive (Riordan et al. 1989) and dominant

(Huntington’s Disease Collaborative Research Group 1993)

genetic diseases. They also relatively quickly lead to early

identification of genes affecting moderately complex traits,

such as early-onset breast cancer (Miki et al. 1994) and Alz-

heimer’s disease (Levy-Lahad et al. 1995; Sherrington et al.

1995). The overall strategy was described as positional clon-

ing (Collins 1991), although more recent studies should more
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properly be referred to as positional sequencing. These early

studies illustrated the power of the pedigree-based design in

leading to genes of interest with rare but highly influential

disease alleles. With this approach, close to 4,500 genes rel-

evant to human disease had been identified by the end of 2011

(Amberger et al. 2011). However, moving from a map loca-

tion to gene identification was difficult because of the poor

resolution of pedigree-based designs (Boehnke 1994), and

most success stories represent Mendelian disorders or essen-

tially Mendelian forms of more complex disorders.

Complex traits have yielded less frequently to this

approach (McClellan and King 2010; Risch 2000). Struggles

with the challenges of complex traits eventually lead to an

alternative push toward use of population-based designs

(Botstein and Risch 2003) under the assumption that much of

complex trait genetics might be explained by common genetic

variation (Collins et al. 1997) and detectable with association

methods. With inexpensive genotyping of very dense SNP

panels, genome-wide association studies in large population-

based samples (GWAS) became common, with[1,200 pub-

lications since 2005 that report at least one association at a

genome-wide significance level (http://www.genome.gov/

gwastudies). There have, of course, been some clear success

stories with identification of the underlying genes, such as

complement H and macular degeneration (Klein et al. 2005).

However, early optimistic predictions about the impact of

these discoveries (Manolio et al. 2008) became more guarded

for two reasons: (1) most GWAS studies have only lead to

associations, with identification and verification of the actual

risk variants a rare outcome (Hindorff et al. 2009); and (2)

most estimated effects are small, thus explaining relatively

little of the estimated genetic variance (Manolio et al. 2009).

Given the small estimated effect sizes for most traits, sample

sizes have now reached enormous sample sizes of up to

hundreds of thousands (Speliotes et al. 2010) of subjects—

several orders of magnitude more than that needed for pedi-

gree-based studies. One current hypothesis is that rare varia-

tion is much more important than was earlier believed

(Manolio et al. 2009). It is also probable that human variation

includes all of the complex features found in model organ-

isms: complex genetic architectures, existence of rare alleles,

and the presence of many influential variants that are in non-

coding regions (Flint and Mackay 2009), and therefore not

easily amenable to functional prediction algorithms (Erlich

et al. 2011).

Investigation of rare variants is the current frontier of

human genetic disease. Ability to extensively survey

existing DNA-based variation is increasingly feasible

through use of rapidly improving high-throughput

sequencing methods (Ng et al. 2010; Roach et al. 2010).

The hypothesis that rare variants are important contributors

to complex human traits is further supported by informa-

tion from (1) early sequencing studies of subjects in the

tails of the distribution of cardiovascular-related quantita-

tive traits (Cohen et al. 2004), (2) indications that rare

variants are more likely than common variants to have

large effects (Bodmer and Bonilla 2008; Gorlov et al.

2011), (3) recent sequencing of regions surrounding seven

genes associated with low-density lipoprotein levels (Sanna

et al. 2011), and (4) large numbers of variants typically

identified in genes affecting Mendelian disorders, such as

familial hypercholesterolemia with[1,100 known variants

(Leigh et al. 2008). Sample size requirements for GWAS of

rare variants would need to increase substantially over

current sample sizes. This leads to the inescapable con-

clusion that designs, other than simple population-based

designs, may be critical, as high-throughput sequencing in

the search for influential rare variation joins the research

toolkit. Use of large pedigrees is one of several important

designs in this context and the focus of this article.

Advantages of family-based designs

Harnessing segregation information

Large pedigrees provide a design that has considerable

power in the search for rare trait variants. In this context,

large pedigrees are those that are individually large enough

to provide a statistically significant result, given good

quality and quantity of data, and use of an efficient analysis

approach. Such pedigrees will typically be at least 20–25

subjects, but will frequently be much larger. The trait loci

may represent single genes with relatively high effects, or

several closely linked loci, each with moderate effects that

together have a large effect (Yazbek et al. 2011). Large

pedigrees intrinsically have more power for detection of

linkage or estimation of effects than do equivalent-sized

samples of smaller families (Wijsman and Amos 1997) or

unrelated subjects, particularly in the presence of rare

variants such as those found in sequence data (Gagnon

et al. 2011; Simpson et al. 2011; Wilson and Ziegler 2011).

If pedigrees are sufficiently large, they can individually

implicate genomic regions. For example, some current

methods, which are modern versions of early allele-sharing

methods, identify shared multilocus segments among small

numbers of subjects. These methods rely on very large

pedigrees with many meioses separating affected subjects

within pedigrees (Leibon et al. 2008; Thomas et al. 2008).

They do not require genotyping of intervening relatives,

with the pedigree structure providing information about the

expected distribution of the number and sizes of such

segments. Large pedigrees, therefore, enable gene mapping

and identification studies to be carried out with relatively

small sample sizes (Wright et al. 1999). The large pedigree

design is thus particularly useful in the presence of locus
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heterogeneity among families. The fundamental disadvan-

tage of pedigree designs is that genomic regions identified

via linkage analysis tend to be relatively large because of

the coarse nature of the meiotic process (Boehnke 1994).

In earlier years, the cost and difficulty of evaluating all

variation in an identified genomic region was a barrier to

identifying the gene(s) driving the evidence for linkage,

particularly in smaller sample sizes for which the impli-

cated regions were particularly large. However, with the

recent revolutionary changes provided by new high-

throughput sequencing technologies, genotyping costs for

follow-up studies in such a region are no longer a major

limitation since the whole region can be evaluated.

Evidence for influence of rare variants often includes

evidence for co-segregation with traits in pedigrees. This is

sometimes carried out in an ad hoc manner without quan-

tification of statistical support (Cruchaga et al. 2012).

However, evaluation for co-segregation between the trait

and variant can be obtained by carrying out a classical

linkage analysis, using one of the many sophisticated and

available approaches that are reviewed elsewhere (Bailey-

Wilson and Wilson 2011). A linkage analysis provides a

suitable and well-calibrated statistical framework for

evaluation of the role of a candidate variant, as demon-

strated in an analysis of lipoprotein lipase gene variants and

LDL size (Hokanson et al. 1999), or a more recent evalu-

ation of a variant identified through high-throughput

sequencing that is implicated in Charcot-Marie-Tooth dis-

ease (Weedon et al. 2011).

Family-based designs enrich for variants of interest. For

example, selection of subjects from families with multiple

affected subjects, or selection of subjects from families with

extreme values, can enrich for multiple copies of a rare variant

(Gorlov et al. 2011; Ionita-Laza and Ottman 2011), providing

improved ability to measure, and detect, the effects of such

variants. A contrast of two recent evaluations of several can-

didate genes for late-onset Alzheimer’s disease provides a

useful illustration (Cruchaga et al. 2012; Gerrish et al. 2012).

In both studies, genes identified through their role in early-

onset AD and dementia were evaluated, with the same four

genes evaluated in both studies. In the family-based study,

investigators were able to use a highly efficient pooled-

sequencing approach in 439 unrelated probands from late-

onset families with multiple affected subjects/family

(Cruchaga et al. 2012). This resulted in identification of a

statistically significant excess of rare variants in these genes in

the probands relative to unrelated controls, with follow-up co-

segregation with the trait in the families used as part of the

evaluation. In contrast, a population-based case–control

sample was *40 times larger, consisting of 17,313 subjects

(Gerrish et al. 2012), but with no preference for family history.

Even a targeted analysis of the four candidate genes produced

no evidence for association with SNPs in the genes tested.

Complexities handled

Large pedigrees provide some protection against the highly

deleterious effects of heterogeneity. This is a key strategy to

obtain interpretable results with relatively modest sample

sizes, even though genetic heterogeneity is inevitable for

complex traits (Sillanpaa and Auranen 2004). Large pedi-

grees can each be more homogeneous with respect to genetic

variation than a combined sample of many smaller families,

while providing enough information to detect linkage within

individual large families. This strategy of using large fami-

lies for initial screening has long been a highly successful

strategy when there is high genetic heterogeneity, as illus-

trated by traits such as hereditary hearing loss (Varilo and

Peltonen 2004) and dilated cardiomyopathy (Hershberger

et al. 2010). The strategy has also been both proposed and

used in the search for loci contributing to complex traits

(Wright et al. 1999). This same strategy of using large pedi-

grees also worked well to identify loci for simulated trait

data as part of Genetic Analysis Workshop 17 (Gagnon

et al. 2011; Simpson et al. 2011; Wilson and Ziegler 2011)

in which evidence for linkage was clearly identified in the

large pedigrees, without a clear comparable signal in

sequence data available for unrelated subjects.

Large pedigree data sets frequently include extensive and

unusually complete phenotype information. Such large fam-

ilies are typically collected by investigators with a deep

interest in the phenotypes, and develop strong rapport with the

subjects. As a result, new phenotypes may be collected on the

same participants over time, and may include expensive or

unusual phenotypes. Examples include the well-known Fra-

mingham Heart Study (Jaquish 2007), the Strong Heart Study

(Lee et al. 1990), and large families with familial combined

hyperlipidemia under study at several institutions (Jarvik et al.

1994; Pajukanta et al. 2003; Rosenthal et al. 2011). Such

samples represent a rich phenotypic resource that can be

mined for biological insight and phenotypic subgroups. A rich

phenotypic data set also can provide the opportunity to iden-

tify pre-clinical phenotypes through evaluation of biomarkers

in unaffected relatives of cases with known primary muta-

tions, as is being attempted in both Crohn’s disease (Hedin

et al. 2012) and early onset Alzheimer’s disease (Morris

2011). All of these sources of information can provide a

unique and informative perspective on the genotype–pheno-

type relationship that is impossible to achieve in huge studies

that depend on combining measures that are jointly collected

in large numbers across different sites.

Pedigrees facilitate error detection. For example, most

sample swaps are not only easy to identify in pedigree

genome scan data, but also can be corrected in silico

(Boehnke and Cox 1997). Similarly, genotype, and even

phenotype, errors are detectable through identification

of low probability situations in meiotic transmissions
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(Buetow 1991; Ehm et al. 1996) with improved detection

derived from using more subjects per pedigree (Mukho-

padhyay et al. 2004). The higher rate of error associated

with high-throughput sequencing means that error detec-

tion methods are likely to increase in importance. Similar

to in silico correction of pedigree error, it is likely that

discrepant sequencing calls can be corrected by capitaliz-

ing on information about genomic segments shared iden-

tical-by-descent within pedigrees. Software for error

detection associated with high-throughput sequencing in

large pedigrees has not yet been released. However, proof-

of-concept studies show that modern computational tools

enable extension of these ideas to error detection with

dense data in large pedigrees (Cheung et al. 2011; Markus

et al. 2011), so that it is only a matter of time before

useable software is available.

Challenges

Use of large pedigrees also introduces certain complica-

tions. Some of these involve requirements for additional

required information, including the complete pedigree

structure, marker allele frequencies, and, for any kind of

multipoint analysis, a meiotic map. A sequence-based map

is not a particularly good proxy (Wijsman et al. 2007), so

invariably some interpolation onto an existing high-quality

meiotic map is necessary (Matise et al. 2007). There are

also particular challenges with using very dense genotype

data, since close markers typically are in linkage disequi-

librium (LD). This affects the prior probability distribution

of haplotype frequencies, which, in turn, strongly affects

analysis results (Ott 1992; Sieh et al. 2007). Attempts to

model the LD genomewide in pedigree analysis have so far

been unsatisfactory (Thomas 2007). Alternatives are to

treat blocks of markers as non-recombining multi-allelic

segments with empirically determined haplotype frequen-

cies (Abecasis and Wigginton 2005; Sieh et al. 2007) or to

thin markers sufficiently to avoid the problem of LD. The

former option has not yet been implemented for large

pedigrees, although it works reasonably well for smaller

pedigrees. The latter is an option that can be used in most

settings, as discussed further below.

Computation

Computations on large pedigrees are no longer the major

bottleneck of the past. While exact computation remains

impractical on large pedigrees with many markers

(Thompson 2011), there are now excellent alternatives.

This makes it possible to include new types of data, such as

genotypes from high-throughput sequencing. Practical

computation on large pedigrees is based on Markov chain

Monte Carlo (MCMC) methods, and implementations have

steadily improved since their inception (Sobel and Lange

1993; Thompson 1994). Existing packages, including

SIMWALK2 (Sobel et al. 2001), MORGAN (Thompson

2005, 2011; Tong and Thompson 2008), as well as other

programs (Thomas et al. 2000), provide excellent results

for analysis of multipoint marker data for pedigrees with-

out a large number of loops. These MCMC methods

sample from the possible underlying inheritance configu-

rations, with the sampled configurations typically used

under a general analytic framework that can incorporate

many different linkage statistics (Sobel and Lange 1996).

Other MCMC-based approaches allow analysis with com-

plex trait models that otherwise are computationally

intractable (Daw et al. 1999; Heath 1997), allowing use of

models that may be more useful for analysis of complex

traits.

The accuracy of results obtained with some MCMC-

based approaches has been extensively tested for a variety

of simulated pedigree structures and marker configurations

(Wijsman et al. 2006). For initial computations on pedi-

grees, the coarse nature of meiosis means that thinning

markers to 1 SNP marker per cM is both acceptable as

measured by little loss of inheritance information despite

reduction in the data used, and is computationally advan-

tageous (Wijsman et al. 2006). This is consistent with

analysis of real data carried out with a variety of methods

(Wilcox et al. 2005) that showed that such marker thinning

did not cause substantial loss of information, even though

some data were then ignored. SIMWALK2 and MORGAN

have comparable performance on sparser marker panels,

such as panels of multiallelic markers. However, for denser

markers, e.g., SNPs or sequence-based markers, the com-

putation time for MORGAN used at the time of compari-

son was two orders of magnitude faster than that of

SIMWALK2 (Wijsman et al. 2006). More recent

improvements have yielded even better performance (Tong

and Thompson 2008).

One current program that also is likely to be useful in

the context of modern genotyping data is gl_auto from the

MORGAN package. This is the first distributed program

that outputs the sampled inheritance patterns so that they

can be used for a variety of analyses without requiring the

end user to understand and modify the more complex

MCMC-based programs. For example, the investigator can

take advantage of the factoring of computations associated

with the markers versus the trait (Sobel and Lange 1996),

or can carry out several different analyses that all depend

on the same sample of inheritance patterns, such as anal-

yses of different traits, or with different analysis methods.

An additional computational cost saving comes from the

program IBDgraph (Koepke and Thompson 2010), which
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recognizes equivalent configurations in the inheritance

patterns so that redundant computations can be avoided:

recent application to a moderately large Alzheimer’s dis-

ease family sped up computations by a factor of 10

(Marchani and Wijsman 2011).

Information

The large amount of underlying variation creates chal-

lenges for use of data generated by high-throughput

sequencing. The extent of this rare variation was first

revealed by early applications of high-throughput

sequencing (Ng et al. 2010; Roach et al. 2010). While

samples of unrelated subjects are either severely under-

powered or exceedingly expensive because of large

required sample sizes, large pedigrees are uniquely suited

for study of rare variants. Large pedigrees also allow effi-

cient use of resources: in order to extract maximal infor-

mation, sequence data on only a small number of subjects

needs to be added to an existing genome scan marker data

set, which typically either already exists or can be gener-

ated relatively cheaply. The two sources of data can easily

be combined and interrogated with available statistical

genetic analysis methods. The linkage analysis results can

also be used as filters to effectively focus investigations on

small segments of the genome (Musunuru et al. 2010;

Smith et al. 2011; Wang et al. 2010), or as weights to

incorporate results from different sources of information

(Roeder et al. 2006). Use of large pedigrees, therefore, can

prevent the twin problems of high cost and low power that

are intrinsic to use of population-based studies of rare

variants. For example, two recent studies were able to

identify causal variants in pedigrees of sizes 24 and 42 by

sequencing only 2–4 subjects per pedigree (Musunuru et al.

2010; Wang et al. 2010), and by combining this informa-

tion with existing linkage panel markers.

Most early successful applications of high-throughput

sequencing methods have demonstrated usefulness of high-

throughput sequencing through application to rare Men-

delian disorders. The earliest such applications focused on

a handful of mostly unrelated subjects, but were feasible

only because they combined a focus on exquisitely rare

Mendelian recessive traits with a series of ad hoc but

reasonable filters to nominate genes and variants based on

predicted function and frequency (Ng et al. 2009, 2010;

Roach et al. 2010). This strategy fails in situations that are

typical of complex traits where (1) there is genetic and

etiological heterogeneity among subjects, (2) the traits are

continuous, (3) the frequency of relevant variants may be

greater than vanishingly rare, and (4) the effects of influ-

ential variants are unlikely to be easy to predict based on

sequence information. In these situations, other analysis

approaches and/or filtering strategies are necessary. These

are found in the repertoire of existing analytical approaches

for pedigree data.

Use of linkage analysis is an effective filtering strategy.

Relative to older technologies, positional sequencing with

current technologies is much faster, provides much more

extensive data on a region, and provides a more compre-

hensive evaluation of regional variation. As a result, the

whole region implicated by a positive linkage signal is now

easily sequenced, and it is no longer necessary to accrue a

large sample just for the purpose of narrowing a region of

interest (Boehnke 1994). Linkage analysis results can

therefore be used as a filter to focus on a comprehensive

analysis of all or most variants in the region with evidence

of linkage (Smith et al. 2011). For traits with a clear mode

of inheritance, the region of interest would presumably be

that bounded by obligate recombinants. For more complex

traits, other criteria may need to be determined. This pre-

sumably would include greater weight given to variants in

regions with the strongest evidence of linkage than in more

peripheral regions, although functional annotation or other

biologically based information could also be used, in

principle, to prioritize variants. With significant evidence

of linkage, it is also only necessary to sequence a small

number of carefully chosen subjects per pedigree, prefer-

ably with information from the linkage analysis results

guiding the choice of subjects (Marchani and Wijsman

2011). This strategy has proven to be efficient for identi-

fying causal mutations for a rapidly increasing number of

Mendelian genetic diseases and traits, including some that

are found in relatively large pedigrees (Southgate et al.

2011; Weedon et al. 2011), and some of which represent

exceedingly rare diseases in large pedigrees (Raskind et al.

2009, 2011). Also, by focusing analysis on a limited

number of variants defined by a particular region, this

strategy does not require the use of imperfect functional

prediction tools that may miss key variants (Erlich et al.

2011), and allows interrogation of all or most variants in a

region.

The same general strategy of sequencing small numbers

of individuals in key pedigrees also yields genes that affect

complex traits. Several studies have reported gene identi-

fication in the context of Mendelian traits that represent

very high levels of genetic heterogeneity. Each study

focused on regions with significant linkage evidence in

single large pedigrees, including ataxia (Wang et al. 2010),

familial dilated cardiomyopathy (Norton et al. 2011), and

thoracic aortic aneurism (Regalado et al. 2011). Some of

the earliest successful studies of more complex, multilocus

traits also started with one or two large pedigrees, with

subsequent focus on genes in region(s) with significant

evidence of linkage in those pedigrees. These studies

include: (1) a variant in affecting plasma adiponectin levels
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identified as a candidate in a region with linkage evidence

(Bowden et al. 2010), (2) two studies that also used

quantitative trait linkage analysis and followed this with a

comprehensive measured genotype approach of all variants

in the region identified from sequencing (Musunuru et al.

2010; Rosenthal et al. 2011), and (3) one study with a focus

on a candidate gene, but with comprehensive sequencing

and a measured genotype approach to evaluate all variants

in the gene (Calafell et al. 2010). In these latter studies, the

measured genotype approach (Almasy and Blangero 2004)

was feasible because of the restricted region of interest: in

this context, it is computationally feasible to every variant

in a region for its ability to explain the segregating vari-

ance. Also, it is important to note that none of these studies

required sequencing of large number of subjects.

The measured genotype approach is particularly useful

for evaluating effects of variants in large pedigrees, and

essentially combines information from both association

and linkage. The approach efficiently extracts information

about sequence-based variants through two outcomes.

First, there is an inherent increase in information obtained

by having multiple genotyped copies of a single rare var-

iant in a pedigree. This occurs naturally when a risk variant

drives a linkage signal because of co-segregation with the

trait. Second, by combining sequence data with existing

marker data in large pedigrees, it is possible to impute

variants into other individuals who have phenotype, but at

most partial genotype data, further increasing the infor-

mation available for evaluating the effects of variants. Such

imputation can be carried out jointly with the linkage

analysis (Heath 1997; Rosenthal et al. 2011; Wijsman et al.

2010), but this can be computationally intensive. Alterna-

tively, it is possible to use the existing data on the pedigree

to impute variants with a genotype calling algorithm,

similar to approaches used for genotype imputation in

unrelated subjects (Li et al. 2009). In the context of pedi-

grees, the shared inheritance of chromosomal segments

within a pedigree provides the correlation needed for

imputation. Methods that provide imputed genotypes in

pedigrees already exist for pedigrees that are small enough

for exact computation (Burdick et al. 2006). Similar

methods that accommodate much larger pedigrees are also

now becoming available (Cheung et al. 2010). These

methods sample inheritance vectors (IVs) within pedigrees

(Thompson 2011) obtained from analysis with a framework

panel of markers. The IVs are obtained with either exact

computation or Markov chain Monte Carlo (MCMC) by,

e.g., gl_auto in MORGAN. Deterministic (Wijsman 1987)

followed by probabilistic inference then allows computa-

tionally rapid imputation of the dense sequence-based

variants in the remaining subjects, with a pre-defined, and

tunable, error rate. Although it would be inappropriate to

use them for linkage analysis, the imputed genotypes may

be used for, e.g., a computationally rapid analysis

approach, such as a variance components analysis (Almasy

and Blangero 2004) to determine which variant(s) explain

the segregating variance, followed by targeted genotyping

of key variants in more subjects.

Conclusions

We have argued here that large pedigrees should be one of

the designs for which high-throughput sequence data should

be generated, particularly when rare variants are suspected to

play a role in disease risk. Large pedigrees are uniquely

suited for the study of rare variants, and can provide statis-

tically significant evidence of both co-segregation with the

disease or trait and of existence of genotype–phenotype

association. Also, a small amount of sequencing added to an

otherwise well-characterized large pedigree can yield con-

siderable information even on subjects with no sequence

data, thus making this approach highly cost effective.

Although the goal here was not to provide a comprehensive

evaluation of existing software, appropriate computational

tools and statistical methods already exist for analysis of

large pedigrees, so there is no major practical barrier to data

analysis. In the search for the genetic basis of complex traits,

it is important to use the best available tools, and not to

eschew well-established designs and analysis methods for

lack of novelty. This will enable the information in the

sequence data to be efficiently obtained and used by drawing

upon existing methods with well-understood properties. As a

result, the quality of the resulting scientific inference

obtained from the use of novel genotyping technologies will

be maximized.
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Moebus S, Jöckel KH, Klopp N, Wichmann HE, Carrasquillo

MM, Pankratz VS, Younkin SG, Jones L, Holmans PA,

O’Donovan MC, Owen MJ, Williams J (2012) The role of

variation at AbPP, PSEN1, PSEN2, and MAPT in late onset

Alzheimer’s disease. J Alzheimers Dis 28:377–387

Gorlov IP, Gorlova OY, Frazier ML, Spitz MR, Amos CI (2011)

Evolutionary evidence of the effect of rare variants on disease

etiology. Clin Genet 79:199–206

Haldane JBS, Smith CAB (1947) A new estimate of the linkage

between the genes for colour-blindness and haemophilia in man.

Ann Eugen 14:10–31

Heath SC (1997) Markov Chain Monte Carlo segregation and linkage

analysis for oligogenic models. Am J Hum Genet 61:748–760

Hedin CR, Stagg AJ, Whelan K, Lindsay JO (2012) Family studies in

Crohn’s disease: new horizons in understanding disease patho-

genesis, risk and prevention. Gut 61:311–318

Hershberger RE, Morales A, Siegfried JD (2010) Clinical and genetic

issues in dilated cardiomyopathy: a review for genetics profes-

sionals. Genet Med 12:655–667

Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP,

Collins FS, Manolio TA (2009) Potential etiologic and func-

tional implications of genome-wide association loci for human

diseases and traits. Proc Nat Acad Sci USA 106:9362–9367

Hokanson JE, Brunzell JD, Jarvik GP, Wijsman EM, Austin MA

(1999) Linkage of low-density lipoprotein size to the lipoprotein
lipase gene in heterozygous lipoprotein lipase deficiency. Am J

Hum Genet 64:608–618

Huntington’s Disease Collaborative Research Group (1993) A novel

gene containing a trinucleotide repeat that is expanded and

unstable on Huntington’s disease chromosomes. Cell 72:971–983

Ionita-Laza I, Ottman R (2011) Study designs for identification of rare

disease variants in complex diseases: the utility of family-based

designs. Genetics 189:1061–U500

Jaquish CE (2007) The Framingham Heart Study, on its way to

becoming the gold standard for cardiovascular genetic epidemi-

ology? BMC Med Genet 8:63

Jarvik GP, Brunzell JD, Austin MA, Krauss RM, Motulsky AG,

Wijsman EM (1994) Genetic predictors of FCHL in four large

pedigrees: influence of ApoB level major locus predicted

genotype and LDL subclass phenotype. Arterioscler Thromb

Vasc Biol 14:1687–1694

Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C,

Henning AK, SanGiovanni JP, Mane SM, Mayne ST, Bracken

MB, Ferris FL, Ott J, Barnstable C, Hoh J (2005) Complement

factor H polymorphism in age-related macular degeneration.

Science 308:385–389

Koepke H, Thompson EA (2010) Efficient testing operations on

dynamic graph structures using strong hash functions. Depart-

ment of Statistics, technical reports. University of Washington,

Seattle

Lee ET, Welty TK, Fabsitz R, Cowan LD, Le NA, Oopik AJ,

Cucchiara AJ, Savage PJ, Howard BV (1990) The Strong Heart-

Study—a study of cardiovascular-disease in American–Indi-

ans—design and methods. Am J Epidemiol 132:1141–1155

Leibon G, Rockmore DN, Pollak MR (2008) A SNP streak model for

the identification of genetic regions identical-by-descent. Stat

Appl Genet Mol Biol 7:16

Hum Genet (2012) 131:1555–1563 1561

123



Leigh SEA, Foster AH, Whittall RA, Hubbart CS, Humphries SE

(2008) Update and analysis of the University College London

low density lipoprotein receptor familial hypercholesterolemia

database. Ann Hum Genet 72:485–498

Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J,

Pettingell WH, Yu CE, Jondro PD, Schmidt SD, Wang K,

Crowley AC, Fu YH, Guenette SY, Galas D, Nemens E,

Wijsman EM, Bird TD, Schellenberg GD, Tanzi RE (1995)

Candidate gene for the chromosome 1 familial Alzheimer’s

disease locus. Science 269:973–977

Li Y, Willer C, Sanna S, Abecasis G (2009) Genotype imputation.

Annu Rev Genomics Hum Genet 10:387–406

Manolio TA, Brooks LD, Collins FS (2008) A HapMap harvest of

insights into the genetics of common disease. J Clin Invest

118:1590–1605

Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter

DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho

JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN,

Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG,

Eichler EE, Gibson G, Haines JL, Mackay TFC, McCarroll SA,

Visscher PM (2009) Finding the missing heritability of complex

diseases. Nature 461:747–753

Marchani EE, Wijsman EM (2011) Estimation and visualization of

identity-by-descent within pedigrees simplifies interpretation of

complex trait analysis. Hum Hered 72:289–297

Markus B, Birk OS, Geiger D (2011) Integration of SNP genotyping

confidence scores in IBD inference. Bioinformatics 27:2880–2887

Matise TC, Chen F, Chen WW, De la Vega FM, Hansen M, He CS,

Hyland FCL,Kennedy GC,Kong XY, Murray SS, Ziegle JS, Stewart

WCL, Buyske S (2007) A second-generation combined linkage-

physical map of the human genome. Genome Res 17:1783–1786

McClellan J, King MC (2010) Genetic heterogeneity in human

disease. Cell 141:210–217

Miki Y, Swensen J, Shattuckeidens D, Futreal PA, Harshman K,

Tavtigian S, Liu QY, Cochran C, Bennett LM, Ding W, Bell R,

Rosenthal J, Hussey C, Tran T, McClure M, Frye C, Hattier T,

Phelps R, Haugenstrano A, Katcher H, Yakumo K, Gholami Z,

Shaffer D, Stone S, Bayer S, Wray C, Bogden R, Dayananth P,

Ward J, Tonin P, Narod S, Bristow PK, Norris FH, Helvering L,

Morrison P, Rosteck P, Lai M, Barrett JC, Lewis C, Neuhausen

S, Cannonalbright L, Goldgar D, Wiseman R, Kamb A, Skolnick

MH (1994) A strong candidate for the breast and ovarian-cancer

susceptibility gene BRCA1. Science 266:66–71

Morris JC (2011) Dominantly Inherited Alzheimer Network (DIAN):

registry characteristics and biomarker findings. Neurology

76:A416–A416

Morton NE (1955) Sequential tests for the detection of linkage. Am J

Hum Genet 7:277–318

Mukhopadhyay N, Buxbaum SG, Weeks DE (2004) Comparative

study of multipoint methods for genotype error detection. Hum

Hered 58:175–189

Musunuru K, Pirruccello JP, Do R, Peloso GM, Guiducci C, Sougnez

C, Garimella KV, Fisher S, Abreu J, Barry AJ, Fennell T, Banks

E, Ambrogio L, Cibulskis K, Kernytsky A, Gonzalez E, Rudzicz

N, Engert JC, DePristo MA, Daly MJ, Cohen JC, Hobbs HH,

Altshuler D, Schonfeld G, Gabriel SB, Yue P, Kathiresan S

(2010) Exome sequencing, ANGPTL3 mutations, and familial

combined hypolipidemia. N Engl J Med 363:2220–2227

Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C,

Shaffer T, Wong M, Bhattacharjee A, Eichler EE, Bamshad M,

Nickerson DA, Shendure J (2009) Targeted capture and massively

parallel sequencing of 12 human exomes. Nature 461:272–U153

Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, Dent KM,

Huff CD, Shannon PT, Jabs EW, Nickerson DA, Shendure J,

Bamshad MJ (2010) Exome sequencing identifies the cause of a

mendelian disorder. Nat Genet 42:30–U41

Norton N, Li DX, Rieder MJ, Siegfried JD, Rampersaud E, Zuchner

S, Mangos S, Gonzalez-Quintana J, Wang LB, McGee S, Reiser

J, Martin E, Nickerson DA, Hershberger RE (2011) Genome-

wide studies of copy number variation and exome sequencing

identify rare variants in BAG3 as a cause of dilated cardiomy-

opathy. Am J Hum Genet 88:273–282

Ott J (1974) Estimation of the recombination fraction in human

pedigrees: efficient computation of the likelihood for human

linkage studies. Am J Hum Genet 26:588–597

Ott J (1992) Strategies for characterizing highly polymorphic markers

in human gene mapping. Am J Hum Genet 51:283–290

Pajukanta P, Allayee H, Krass KL, Kuraishy A, Soro A, Lilja HE,

Mar R, Taskinen MR, Nuotio I, Laakso M, Rotter JI, de Bruin

TWA, Cantor RM, Lusis AJ, Peltonen L (2003) Combined

analysis of genome scans of Dutch and Finnish families reveals a

susceptibility locus for high-density lipoprotein cholesterol on

chromosome 16q. Am J Hum Genet 72:903–917

Penrose LS (1935) The detection of autosomal linkage in data which

consist of pairs of brothers and sisters of unspecified parentage.

Ann Eugen 6:133–138

Raskind WH, Matsushita M, Peter B, Biberston J, Wolff J, Lipe H,

Burbank R, Bird TD (2009) Familial dyskinesia and facial

myokymia (FDFM): follow-up of a large family and linkage to

chromosome 3p21–3q21. Am J Med Genet Part B Neuropsychiat

Genet 150B:570–574

Raskind WH, Chen YZ, Matsushita MM, Robertson PD, Rieder M,

Girirajan S, Lipe H, Eichler EE, Nickerson DA, Bird TD (2011)

Linkage and single exome analyses identify ADCY5 as the gene

for familial dyskinesia with facial myokymia. Int Congr Hum

Genet, Montreal

Regalado ES, Guo DC, Villamizar C, Avidan N, Gilchrist D,

McGillivray B, Clarke L, Bernier F, Santos-Cortez RL, Leal SM,

Bertoli-Avella AM, Shendure J, Rieder MJ, Nickerson DA,

Milewicz DM (2011) Exome sequencing identifies SMAD3

mutations as a cause of familial thoracic aortic aneurysm and

dissection with intracranial and other arterial aneurysms. Circ

Res 109:680–U220

Riordan JR, Rommens JM, Kerem B-S, Alon N, Rozmahel R,

Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou J-L, Drumm

ML, Iannuzzi MC, Collins FS, Tsui L-C (1989) Identification of

the cystic fibrosis gene: cloning and characterization of com-

plementary DNA. Science 245:1066–1073

Risch N (2000) Searching for genetic determinants in the new

millennium. Nature 405:847–856

Roach JC, Glusman G, Smit AFA, Huff CD, Hubley R, Shannon PT,

Rowen L, Pant KP, Goodman N, Bamshad M, Shendure J,

Drmanac R, Jorde LB, Hood L, Galas DJ (2010) Analysis of

genetic inheritance in a family Quartet by whole-genome

sequencing. Science 328:636–639

Roeder K, Bacanu SA, Wasserman L, Devlin B (2006) Using linkage

genome scans to improve power of association in genome scans.

Am J Hum Genet 78:243–252

Rosenthal EA, Ronald J, Rothstein J, Rajagopalan R, Ranchalis J,

Wolfbauer G, Albers JJ, Brunzell JD, Motulsky AG, Rieder MJ,

Nickerson DA, Wijsman EM, Jarvik GP (2011) Linkage and

association of phospholipid transfer protein activity to LASS4.

J Lipid Res 52:1837–1846

Sanna S, Li BS, Mulas A, Sidore C, Kang HM, Jackson AU, Piras MG,

Usala G, Maninchedda G, Sassu A, Serra F, Palmas MA, Wood

WH, Njolstad I, Laakso M, Hveem K, Tuomilehto J, Lakka TA,

Rauramaa R, Boehnke M, Cucca F, Uda M, Schlessinger D,

Nagaraja R, Abecasis GR (2011) Fine mapping of five loci

associated with low-density lipoprotein cholesterol detects vari-

ants that double the explained heritability. Plos Genet 7:e1002198

Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda

M, Chi H, Lin C, Li G, Holman K, Tsuda T, Mar L, Foncin JF,

1562 Hum Genet (2012) 131:1555–1563

123



Bruni AC, Montesi MP, Sorbi S, Rainero I, Pinessi L, Nee L,

Chumakov I, Pollen D, Brookes A, Sanseau P, Polinsky RJ,

Wasco W, Dasilva HAR, Haines JL, Pericak-Vance MA, Tanzi

RE, Roses AD, Fraser PE, Rommens JM, St George-Hyslop PH

(1995) Cloning of a gene bearing missense mutations in early-

onset familial Alzheimer’s disease. Nature 375:754–760

Sieh W, Yu C-E, Bird TD, Schellenberg GD, Wijsman EM (2007)

Accounting for linkage disequilibrium among markers in linkage

analysis: impact of haplotype frequency estimation and molec-

ular haplotypes for a gene in a candidate region for Alzheimer’s

disease. Hum Hered 63:26–34

Sillanpaa MJ, Auranen K (2004) Replication in genetic studies of

complex traits. Ann Hum Genet 68:646–657

Simpson CL, Justice CM, Krishnan M, Wojciechowski R, Sung H,

Cai J, Green T, Lewis D, Behneman D, Wilson AF, Bailey-

Wilson JE (2011) Old lessons learned anew: family-based

methods for detecting genes responsible for quantitative and

qualitative traits in the Genetic Analysis Workshop 17 mini-

exome sequence data. BMC Proc 5:S83

Smith KR, Bromhead CJ, Hildebrand MS, Shearer AE, Lockhart PJ,

Najmabadi H, Leventer RJ, McGillivray G, Amor DJ, Smith RJ,

Bahlo M (2011) Reducing the exome search space for Mendelian

diseases using genetic linkage analysis of exome genotypes.

Genome Biol 12:R85

Sobel E, Lange K (1993) Metropolis sampling in pedigree analysis.

Stat Methods Med Res 2:263–282

Sobel E, Lange K (1996) Descent graphs in pedigree analysis:

applications to haplotyping, location scores, and marker-sharing

statistics. Am J Hum Genet 58:1323–1337

Sobel E, Sengul H, Weeks DE (2001) Multipoint estimation of

identity-by-descent probabilities at arbitrary positions among

marker loci on general pedigrees. Hum Hered 52:121–131

Southgate L, Machado RD, Snape KM, Primeau M, Dafou D, Ruddy

DM, Branney PA, Fisher M, Lee GJ, Simpson MA, He Y,

Bradshaw TY, Blaumeiser B, Winship WS, Reardon W, Maher

ER, FitzPatrick DR, Wuyts W, Zenker M, Lamarche-Vane N,

Trembath RC (2011) Gain-of-function mutations of ARH-

GAP31, a Cdc42/Rac1 GTPase regulator, cause syndromic cutis

aplasia and limb anomalies. Am J Hum Genet 88:574–585

Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G,

Jackson AU, Allen HL, Lindgren CM, Luan J, Magi R, Randall JC,

Vedantam S, Winkler TW, Qi L, Workalemahu T, Heid IM,

Steinthorsdottir V, Stringham HM, Weedon MN, Wheeler E,

Wood AR, Ferreira T, Weyant RJ, Segre AV, Estrada K, Liang

LM, Nemesh J, Park JH, Gustafsson S, Kilpelanen TO, Yang JA,

Bouatia-Naji N, Esko T, Feitosa MF, Kutalik Z, Mangino M,

Raychaudhuri S, Scherag A, Smith AV, Welch R, Zhao JH, Aben

KK, Absher DM, Amin N, Dixon AL, Fisher E, Glazer NL,

Goddard ME, Heard-Costa NL, Hoesel V, Hottenga JJ, Johansson

A, Johnson T, Ketkar S, Lamina C, Li SX, Moffatt MF, Myers RH,

Narisu N, Perry JRB, Peters MJ, Preuss M, Ripatti S, Rivadeneira

F, Sandholt C, Scott LJ, Timpson NJ, Tyrer JP, van Wingerden S,

Watanabe RM, White CC, Wiklund F, Barlassina C, Chasman DI,

Cooper MN, Jansson JO, Lawrence RW, Pellikka N, Prokopenko

I, Shi JX, Thiering E, Alavere H, Alibrandi MTS, Almgren P,

Arnold AM, Aspelund T, Atwood LD, Balkau B, Balmforth AJ,

Bennett AJ, Ben-Shlomo Y, Bergman RN, Bergmann S, Bieber-

mann H, Blakemore AIF, Boes T, Bonnycastle LL, Bornstein SR,

Brown MJ, Buchanan TA et al (2010) Association analyses of

249,796 individuals reveal 18 new loci associated with body mass

index. Nat Genet 42:937–U53

Sturtevant AH (1913) The linear arrangement of six sex-linked factors

in Drosophila as shown by their mode of association. J Exp Zool

14:43–59

Thoday JM (1961) Location of polygenes. Nature 191:368–370

Thomas A (2007) Towards linkage analysis with markers in linkage

disequilibrium by graphical modelling. Hum Hered 64:16–26

Thomas A, Gutin A, Abkevich V, Bansal A (2000) Multilocus linkage

analysis by blocked Gibbs sampling. Stat Comput 10:259–269

Thomas A, Camp NJ, Farnham JM, Allen-Brady K, Cannon-Albright

LA (2008) Shared genomic segment analysis. Mapping disease

predisposition genes in extended pedigrees using SNP genotype

assays. Ann Hum Genet 72:279–287

Thompson EA (1994) Monte Carlo likelihood in the genetic mapping

of complex traits. Philos Trans R Soc B 344:345–351

Thompson EA (2005) MCMC in the analysis of genetic data on

pedigrees. In: Kendall WS, Wang JS, Liang F (eds) Markov

chain Monte Carlo: innovations and applications. World Scien-

tific Publishing Company, Singapore

Thompson EA (2011) The structure of genetic linkage data: from

LIPED to 1M SNPs. Hum Hered 71:86–96

Tong LP, Thompson E (2008) Multilocus lod scores in large

pedigrees: combination of exact and approximate calculations.

Hum Hered 65:142–153

Varilo T, Peltonen L (2004) Isolates and their potential use in

complex gene mapping efforts—commentary. Curr Opin Genet

Dev 14:316–323

Wang JL, Yang X, Xia K, Hu ZM, Weng L, Jin X, Jiang H, Zhang P,

Shen L, Guo JF, Li N, Li YR, Lei LF, Zhou J, Du J, Zhou YF,

Pan Q, Wang J, Wang J, Li RQ, Tang BS (2010) TGM6

identified as a novel causative gene of spinocerebellar ataxias

using exome sequencing. Brain 133:3510–3518

Weedon MN, Hastings R, Caswell R, Xie WJ, Paszkiewicz K,

Antoniadi T, Williams M, King C, Greenhalgh L, Newbury-

Ecob R, Ellard S (2011) Exome sequencing identifies a

DYNC1H1 mutation in a large pedigree with dominant axonal

Charcot-Marie-Tooth disease. Am J Hum Genet 89:308–312

Wijsman EM (1987) A deductive method of haplotype analysis in

pedigrees. Am J Hum Genet 41:356–373

Wijsman EM, Amos CI (1997) Genetic analysis of simulated

oligogenic traits in nuclear and extended pedigrees: summary

of GAW10 contributions. Genet Epidemiol 14:719–735

Wijsman EM, Rothstein JH, Thompson EA (2006) Multipoint linkage

analysis with many multiallelic or dense diallelic markers:

MCMC provides practical approaches for genome scans on

general pedigrees. Am J Hum Genet 79:846–858

Wijsman EM, Sung YJ, Buil A (2007) Summary of GAW15: group 9

linkage analysis of the CEPH expression data. Genet Epidemiol

31:S75–S85

Wijsman EM, Rothstein JH, Igo RP, Brunzell JD, Motulsky AG,

Jarvik GP (2010) Linkage and association analyses identify a

candidate region for apoB level on chromosome 4q32.3 in FCHL

families. Hum Genet 127:705–719

Wilcox MA, Pugh EW, Zhang H, Zhong X, Levinson DF, Kennedy

GC, Wijsman EM (2005) Comparison of single-nucleotide

polymorphisms and microsatellite markers for linkage analysis

in the COGA and simulated data sets for Genetic Analysis

Workshop 14: presentation groups 1, 2, and 3. Genet Epidemiol

29(Suppl 1):S7–S28

Wilson AF, Ziegler A (2011) Lessons learned from Genetic Analysis

Workshop 17: transitioning from genome-wide association

studies to whole-genome statistical genetic analysis. Genet

Epidemiol 35:S107–S114

Wright AF, Carothers AD, Pirastu M (1999) Population choice in

mapping genes for complex diseases. Nat Genet 23:397–404

Yazbek SN, Buchner DA, Geisinger JM, Burrage LC, Spiezio SH,

Zentner GE, Hsieh CW, Scacheri PC, Croniger CM, Nadeau JH

(2011) Deep congenic analysis identifies many strong, context-

dependent QTLs, one of which, Slc35b4, regulates obesity and

glucose homeostasis. Genome Res 21:1065–1073

Hum Genet (2012) 131:1555–1563 1563

123


	The role of large pedigrees in an era of high-throughput sequencing
	Abstract
	Background
	Advantages of family-based designs
	Harnessing segregation information
	Complexities handled

	Challenges
	Computation
	Information
	Conclusions
	Acknowledgments
	References


