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Abstract Aortic aneurysm and/or dissection (AAD) is a
life-threatening condition, and several syndromes are
known to be related to AAD. In this study, two new tech-
nologies, resequencing array technology (ResAT) and next-
generation sequencing (NGS), were used to analyze eight
genes associated with syndromic AAD in 70 patients with
non-syndromic AAD. Eighteen sequence variants were
detected using both ResAT and NGS. In addition one of
these sequence variants was detected by ResAT only and
two additional variants by NGS only. Three of the 18 vari-
ants are likely to be pathogenic (in 4.3% of AAD patients
and in 8.6% of a subset of patients with thoracic AAD),
highlighting the importance of genetic analysis in non-syn-
dromic AAD. ResAT and NGS similarly detected most, but
not all, of the variants. Resequencing array technology was
a rapid and efficient method for detecting most nucleotide
substitutions, but was unable to detect short insertions/
deletions, and it is impractical to update custom arrays
frequently. Next-generation sequencing was able to detect
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almost all types of mutation, but requires improved infor-
matics methods.

Introduction

Aortic aneurysm and/or dissection (AAD) is a life-threaten-
ing condition. As significant symptoms do not usually appear
before the rupture of the AAD, which can be lethal, it is often
difficult to prevent death from AAD. Timely cardiovascular
surgery may prevent AAD rupture and save the patient’s life.
Approximately 20% of patients with thoracic aortic disease
have a family history of the disease, which is typically
inherited in an autosomal dominant manner with decreased
penetrance and variable expressivity (Wang etal. 2010).
Therefore, if a causative mutation is detected in a patient, it is
worth checking for the mutation in their asymptomatic
family members to prevent future aortic events by medical
and/or surgical intervention. Several genes are known to be
associated with syndromes presenting with hereditary AAD
and vascular disruption: FBNI (Dietz et al. 1991; Lee et al.
1991a), TGFBR2 (Mizuguchi et al. 2004), TGFBRI (Loeys
etal. 2005), MYHI1 (Zhu et al. 2006), ACTA2 (Guo et al.
2007), COL3A1 (Superti-Furga et al. 1988), PLODI (Hautala
etal. 1993), and SLC2A10 (Coucke et al. 2006) (Table 1).
Most AAD patients who have been surgically treated are not
affected by these syndromes. However, the contribution of
these genes to non-syndromic AAD has not been thoroughly
investigated. A comprehensive study of these genes by con-
ventional Sanger sequencing is a huge and expensive under-
taking. Even high-resolution melting methods and denaturing
high performance liquid chromatography require the amplifi-
cation of at least 210 exons from these eight genes (Table 1).
Therefore, it has been unrealistic for most laboratories to ana-
lyze these genes in multiple samples.
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Table 1 Overview of genes associated with AAD analyzed in this study

Gene GenBank accession no. Disorder Type Exon (CDE) OREF (bp) Amplicon
FBN1 NM_000138 MEFS, SGS, TAAD AD 66 (65) 8,616 39
TGFBR2 NM_001024847 MEFS2, LDS, SGS, TAAD AD 8 (8) 1,779

TGFBRI NM_004612 MEFS2, LDS, SGS, TAAD AD 909 1,512

COL3A1 NM_000090 EDS type IV AD 51(51) 4,401 16
PLODI NM_000302 EDS type VI AR 19 (19) 2,184 13
MYHI1 NM_001040113 TAAD AD 43 (41) 5,838 30
SLC2A10 NM_030777 ATS AR 5(5) 1,626 5
ACTA2 NM_001613 TAAD AD 9(8) 1,134 6

CDE coding exon, ORF open reading frame, MFS Marfan syndrome, MFS2 Marfan syndrome type 11, LDS Loeys—Dietz syndrome, SGS Shprint-
zen—Goldberg syndrome, TAAD thoracic aortic aneurysm and dissection, EDS Ehlers—Danlos syndrome, A7S arterial tortuosity syndrome, AD

autosomal dominant, AR autosomal recessive

Resequencing array technology (ResAT) enables the
investigation of multiple genes on one chip. This technol-
ogy has been used for multiple-gene analysis in childhood
hearing loss (Kothiyal et al. 2010), breast-ovarian cancer
syndrome (Schroeder et al. 2010), dilated cardiomyopathy
(Zimmerman et al. 2010), X-linked intellectual disability
(Jensen et al. 2011), familial hypercholesterolemia (Chiou
etal. 2011), and hypertrophic cardiomyopathy (Fokstuen
et al. 2011). Different research groups have shown ResAT
to be a highly efficient, relatively accurate, cost-effective,
and rapid method. However, several drawbacks have been
pointed out, including its insensitivity in detecting nucleo-
tide insertions/deletions (indels) and nucleotide changes in
GC-rich regions and repeat sequences.

Next-generation sequencing (NGS) is now regarded as
the most powerful technology for detecting mutations (Ng
et al. 2010; Tsurusaki et al. 2011). This platform is advan-
tageous in finding almost all types of mutations including
small indel mutations. The high throughput and multiplex-
ing of NGS allows multiple genes to be sequenced in many
samples in a single run (Farias-Hesson et al. 2010; Gabriel
et al. 2009).

In this study, we analyzed the eight AAD-associated
genes (FBNI, TGFBR2, TGFBRI, COL3Al, PLODI,
MYHI1, SLC2A10, and ACTA2) in 70 patients with non-
syndromic AAD by two methods: ResAT (all eight genes
on one chip) and multiplex NGS. We describe here a com-
parison of the results.

Materials and methods
Patients

Seventy Japanese patients, who had surgery for AAD, were
recruited from Yokohama City University Hospital and
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Table 2 Clinical information of AAD patients

Clinical data Number of patients (%)

Thoracic AAD?* 35 (50.0)
Abdominal AAD? 30 (42.9)
Thoracic and abdominal AAD?* 5(7.1)
Age (years) (mean = SD) 67.3 +10.2
(range 39-83)
Age (years) (median) 68.5
<50 years old 4.(5.7)
50-54 years old 5(7.1)
55-59 years old 8(11.4)
>60 years old 53 (75.7)
Male 53 (75.7)
Female 17 (24.3)
Diabetes 9(12.9)
Hyperlipidemia 32 (45.7)
Hypertension 54 (77.1)
Current smoker 15 (21.4)
Past smoker 30 (42.9)
Never smoked 23 (32.9)

# Including current and past operations

Yokohama City University Medical Center. The patients’
clinical information is summarized in Table 2. Thoracic
AAD involves the aorta above the diaphragm and abdomi-
nal AAD is located along the portion of the aorta passing
through the abdomen. None of the patients in this study had
any clinical test results supporting a diagnosis of syndromic
AAD. Experimental protocols were approved by the Insti-
tutional Review Board of Yokohama City University
School of Medicine. Informed consent for genetic analysis
was obtained from the patients. DNA was extracted from
peripheral blood leukocytes using a QuickGene-610L kit
(Fujifilm, Tokyo, Japan).
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Array design

Eight genes (FBNI, TGFBR2, TGFBR1, COL3Al, PLODI,
MYHII, SLC2A10 and ACTA2) (Table 1) associated with
AAD were selected for one custom chip (Affymetrix, Santa
Clara, CA). All coding exons as well as 29 bp of sequence
from each intron (21 bp on the 5'-side and 8 bp on the
3’-side of each exon) were analyzed. Repetitive sequences
and intragenic low complexity regions larger than 25 bp
were excluded from the chip. A total of 33,116 bp from the
eight genes could be sequenced using this chip.

PCR amplification, purification, hybridization, scanning,
and data analysis

The targeted regions were amplified as 124 fragments by
PCR (ranging from 965 to 2,999 bp) using Blend Taq Plus
(TOYOBO, Osaka, Japan) or KOD FX (TOYOBO) and
genomic DNA as a template in a 20 pL volume. The PCR
conditions were: denaturing at 94°C, 35 cycles of 94°C for
30's, 62°C for 30 s, and 72°C for 3 min, and a final extension
at 72°C for 7 min. The DNA concentration of the amplicons
was determined using a Quant-iT PicoGreen dsDNA Assay
Kit (Invitrogen, Carlsbad, CA, USA) with a Spectra Fluor
F129003 (Tecan, Minnedorf, Switzerland). The PCR ampli-
cons were pooled in equimolar quantities (110 fmol). The
mixed samples were purified and the volume was reduced
using a Microcon YM-100 filter (Millipore, Brussels, Bel-
gium). Fragmentation of the products, labeling with biotin,
hybridization, washing, and scanning procedures were car-
ried out based on the CustomSeq resequencing array protocol
version 2.1 (Affymetrix). An FS450 fluidics station (Affyme-
trix) was used for washing and staining and a GCS3000 7G
scanner (Affymetrix) was used for scanning. To test the
efficiency of mutation detection, PCR products containing 20
known heterozygous mutations (Table 3) from three genes
(FBN1, TGFBR2, and TGFBRI), as well as another 104 PCR
products amplified from normal control DNA, covering all
the other exons, were analyzed using the chip. Affymetrix
GCOS and GSEQ software were used to process the raw data
and analyze the nucleotide sequences, respectively. The
default settings of GSEQ were adopted.

Multiplex next-generation sequencing

The PCR amplicons from one patient were mixed and pro-
cessed using a multiplexing sequencing primers and PhiX
control kit (Illumina, San Diego, CA, USA) according to
the manufacturer’s instructions but with minor changes. In
brief, amplicons were fragmented with Covaris S1 (Cov-
aris, Woburn, MA, USA), and purified using Agencourt
AMPure (Beckman Coulter, Brea, CA, USA) instead of gel
extraction. DNA quality was checked with an Agilent 2100

Table 3 Known mutations used as positive controls for testing ResAT

Nucleotide substitution Small deletion or insertion

Gene Mutation Gene Mutation

FBN1 c.400T > G
c.772C>T
c.1011C> A
c.1285C>T
c.2413T>C
c.2942G >C
c.4099T > C
c.4495A >T
c.5539T > C
c.5788G +5G > A
€.6236C > G
c.6773G > A
c.1142G>C
c.1411G> A
c.1624C>T
c.1135A>G

FBNI ¢.937delT
c.1876delG
¢.4283-4284insG

¢.7039-7040delAT

TGFBR2

TGFBRI

All mutations are previously reported (Sakai et al. 2006; Togashi et al.
2007)

bioanalyzer (Agilent Technologies, Santa Clara, CA, USA)
and a bar code DNA tag (Illumina) was ligated on. The bar
code DNA tags contain unique 6 bp sequences and allow
the processing of up to 96 DNA fragments in a single run
using an Illumina GAIlx (Illumina). Twelve processed
DNA fragments, each with a different tag, were mixed and
analyzed with single 76 bp reads in one lane of the flow
cell. Six lanes were necessary for the analysis of 70 sam-
ples. Image analysis and base calling were performed by
sequence control software real-time analysis (Illumina) and
offline Basecaller software v1.8.0 (Illumina). The reads
were aligned to the human reference genome sequence
(UCSC hgl9, GRCh37) using the ELAND v2 algorithm in
CASAVA software v1.7.0 (Illumina).

Mapping strategy and variant annotation

An average of 2.4 million reads (ranging from 1.7 to 4.0
million reads) for each sample passed quality control (Path
Filter) and were mapped to the human reference genome
using mapping and assembly with qualities (MAQ) (Li
et al. 2008), NextGENe software v2.00 (SoftGenetics, State
College, PA, USA), and Burrows-Wheeler Aligner (BWA)/
sequence alignment/map tools (SAMtools) (Li and Durbin
2010; Li etal. 2009). Single nucleotide polymorphisms
(SNPs) and indels were extracted from the alignment data
using an original script created by BITS, Tokyo, Japan
along with information on the registered SNPs (dbSNP131).
A consensus quality score of 40 or more was used for the
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SNP analysis in MAQ. SNPs in MAQ-passed reads were
annotated using the SeattleSeq website (http://gvs.gs.
washington.edu/SeattleSeqAnnotation/). A minimum base
quality of 13, a minimum root mean square mapping qual-
ity for SNPs of 10, and a minimum read depth of 2 were
used in BWA/SAMtools (Li and Durbin 2010; Li et al.
2009). NextGENe (SoftGenetics) was also used to analyze
the reads, employing default settings apart from using the
no-condensation mode. For base substitutions, we focused
on variants detected in common by both MAQ and Next-
GENe. Small indel variants were classified as positive if
found by both BWA and NextGENe.

Validation of novel variants

Novel variants (not in dbSNP131, the 1,000 genomes dataset
or our in-house database) identified by ResAT and NGS were
validated by Sanger sequencing. Surplus PCR products were
treated with ExoSAP IT (GE Healthcare, Piscataway, NJ)
and sequenced using a standard protocol using BigDye ter-
minators (Applied Biosystems, Foster City, CA, USA) on an
ABI PRISM 3100 genetic analyzer (Applied Biosystems).
Furthermore, novel variants were screened in 94 Japanese
controls by high-resolution melt curve analysis (LightCycler
480; Roche Diagnostics, Basel, Switzerland) and subsequent
Sanger sequencing. Novel variants were evaluated using
web-based programs including PolyPhen (http://genetics.
bwh.harvard.edu/pph/), PolyPhen2 (http://genetics.bwh.
harvard.edu/pph2/), Mutation Taster (http://www.mutationt
aster.org/), and ESEfinder (http://rulai.cshl.edu/cgi-bin/tools/
ESE3/esefinder.cgi?process=home).

Results
Array performance

Across all 70 samples, the mean nucleotide call rate was
95.7% (range 87.3-97.6%) using the default settings of GSEQ.
We observed an improvement of the call rate as the number of
samples increased. For example, the call rate by GCOS for the
first two samples was 90.1 and 90.6% and was 93.3 and 93.9%
when 10 samples were analyzed, and was 94.9 and 95.5%
when 33 samples were analyzed. However, between 34 and 70
samples, the call rate did not greatly improve (only by 1%).
We had constant difficulty in reading approximately 4% of the
sequences per array (i.e., no sequence called), mostly in
regions of high GC and CC content.

Detection of known mutations by ResAT

To validate the quality of mutation detection in our rese-
quencing array, we analyzed amplicons containing 16
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known nucleotide substitutions, three small deletions
(1-2 bp), and one 1 bp insertion, plus all the other normal
exons (Sakai etal. 2006; Togashi et al. 2007) (Table 3).
Fourteen out of 16 nucleotide substitutions were detected
(87.5%) by GSEQ in the automated mode. Two mutations
(c.772C>T in FBNI and ¢.1142G > C in TGFBR2) were
not detected. The former was insensitive, and the latter was
indicated as a no-call. Visual inspection in the manual
mode enabled easy detection of the TGFBR2 mutation. The
mutation detection rate was 93.8% (15/16) using both the
automated and manual modes. None of the small indels
were detected by our array in either the automated or man-
ual modes.

Variant detection by ResAT

We detected 70 nucleotide substitutions in the automated
mode in the 70 patients analyzed (0-3 variants per sample).
Fifty-one variants were already registered in dbSNP131
and/or in our in-house database (Supplementary table). The
remaining 19 novel variants were validated by Sanger
sequencing (Table 4). One variant (c.976-16C >T in
PLODI) was homozygous and the others were heterozy-
gous. No indel mutations were detected.

Variant detection by NGS

The target regions were completely covered by NGS reads
(100%). The average read depth (coverage of sequence
reads) was approximately 600 for each gene (Table 5). The
NextGENe software detected a mean of 876 variants in the
70 patients with mutation scores of 10 or more (ranging
from 581 to 1209 with SD =131). MAQ and SeattelSeq
detected a mean of 271 variants (ranging from 111 to 384
with SD =52). Semi-automatic exclusion of variants that
were out of the target regions (22 bp or more away from the
5’-end of exons and 9 bp or more away from the 3’-end of
exons) or were known variants in dbSNP131 was per-
formed using Excel 2008 for Mac (Microsoft, Redmond,
WA, USA), narrowing the data down to 0-6 variants per
sample. Twenty novel variants were detected by both MAQ
and NextGENe, which were further validated by Sanger
sequencing. No indel mutations were detected by MAQ,
NextGENe, or BWA/SAMtools.

Comparison of ResAT and NGS variants

Eighteen novel variants were detected by ResAT and NGS.
One was detected by ResAT only and two by NGS only.
The two variants undetected by ResAT were c.1388G > A
(p-Arg463Gln) in PLODI and c.136A > C (p.Ser46Arg) in
TGFBR2. The former was indicated as a no-call, but was
detected later in the manual mode. The latter was within a
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Table S Gene-based read depth in NGS

Gene Mean depth®
FBN1 655
TGFBR2 613
TGFBRI 568
COL3A1 596
PLODI 607
MYHII 643
SLC2A10 571
ACTA2 543

4 Based on NextGENe calculation

repetitive sequence. One variant (c.1815+5G>A in
COL3AI) was undetected by NGS due to our set criteria
(the variant was detected by MAQ, but not by NextGENe
or BWA/SAMtools).

Pathological significance of the variants

We realized that none of the known pathogenic mutations
were identified. The pathological impact of the variants was
considered if none of the healthy controls showed the same
change, if the variants altered evolutionarily conserved
amino acids in functional repeats/domains, or if they were
predicted to cause abnormal splicing resulting in protein
truncation or degradation. Moreover, homozygous and
compound heterozygous changes that were found in
PLODI and SLC2A10 may confer autosomal recessive
effects. At least three heterozygous variants were consid-
ered as putative pathogenic gene alterations (Table 6):

I. c.1815+5G>A in COL3AI (patient 29). A similar
mutation, c.1815 +5G > T, associated with the skip-
ping of exon 25, was reported in a patient with Ehlers—
Danlos syndrome type IV (EDS 1V) (Lee et al. 1991Db).
ESEfinder suggested that the binding position of the
splice donor matrix was changed similarly by c.1815 +
5G> A and c.1815+5G >T. Thus, C.1815+5G > A
is highly likely to be pathogenic.

2. ¢.4963C > T (p.Argl655Cys) in MYHI1 (patient 16). In
addition to this mutation, the patient had two novel

Table 6 Pathogenic variants found in the patients

heterozygous variants: ¢.4625G > A (p.Arg1542GlIn) in
MYHI1I and c.1220T > G (p.Leud407Arg) in SLC2AI10.
Mutations in SLC2A10 cause autosomal recessive arte-
rial tortuosity syndrome (MIM #208050) (Coucke et al.
2006), although it is unknown whether the heterozygous
variant we identified would be related to this, assuming a
second-hit model of recessive disease. Both p.Arg
1542GIn and p.Argl655Cys in MYHI1I were similarly
predicted to be pathogenic by three programs (PolyPhen,
PolyPhen2, and Mutation Taster). These residues are
located in the coiled-coil region, and both are evolution-
arily conserved amino acids (Fig. 1). Paircoil2 (http://
groups.csail.mit.edu/cb/paircoil2/) was used to predict
the effect of variants on the parallel coiled coil fold using
pairwise residue probabilities (McDonnell et al. 2006).
Paircoil2 indicated that p.Argl655Cys altered the
p score from 0.00096 (wild type) to 0.00579 (mutation),
while p.Argl1542GIn did not alter the p score, 0.00016
(mutation) and 0.00018 (wild type) (Fig.1). Thus,
p-Argl655Cys was more likely than p.Arg1542Gln to be
pathogenic.

3. ¢.482T > C (p.Vall61Ala) in ACTA2 (patient 27). The
patient was found retrospectively to suffer from famil-
ial thoracic AAD. The patient has an affected brother,
but his DNA was unavailable. Valine at amino acid
161 is evolutionarily conserved and located within the
actin domain. However, as we could not analyze the
DNA of the affected brother, it may be more appropri-
ate to call this variant ‘of unknown significance’.

Discussion

Exon-by-exon Sanger sequencing is the gold standard for
genetic analysis, but multiple-gene analysis in many patients
is a huge task in terms of time and cost. In this study, we
applied two emerging technologies providing rapid and
efficient analysis of eight genes in 70 AAD patients. We also
compared the results of the two technologies.

The overall mean call rate of our custom array by GSEQ
software was 95.7%, which is comparable with previous

Patient ID Sex Mutation Clinical diagnosis Age® Age® Family history
Patient 16 M MYHI11 c.4963C > T p.Arpl1655Cys Thoracic and abdominal AAD 80 80 None

Patient 27 F ACTA2 c482T > C p.Vall61Ala Thoracic AAD 57 46 Affected brother
Patient 29 F COL3AIc.1815+5G>A Thoracic AAD 80 67 None

M male, F female
% At blood collection
b At the first surgery
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Fig.1 Double mutations in MYHII. a Schematic representation of
the MYH11 protein. Three functional domains are indicated: the myo-
sin N-terminal SH3-like domain, the myosin motor domain for type II
myosin, and the myosin tail. Both the mutations are located in the
myosin tail. b, ¢ Paircoil2 analysis showing a significantly decreased
probability of coiled-coil formation for p.Argl1655Cys relative to the
wild-type sequence, but no change for p.Arg1542GIn

studies (Bruce et al. 2010; Chiou et al. 2011; Jensen et al.
2011; Schroeder et al. 2010). The call rates became higher
as the number of patients increased. Approximately 33
samples were necessary to attain the maximum call-rate in
GSEQ. A similar observation was described previously
(Fokstuen etal. 2011). No-call regions are one of the

problems of ResAT. Other groups have previously sug-
gested that most of the no-call regions are GC- and CC-rich
(Bruce et al. 2010; Chiou et al. 2011; Fokstuen et al. 2011).
In our custom array, approximately 4% of the target
sequences were difficult to obtain (no-calls) in most of the
samples.

The mean detection rate of known variants using our cus-
tom array and GSEQ with the default settings (automated
analysis) was 87.5%. This rate increased to 93.8% after man-
ual inspection. For our ResAT data, the detection rate of
nucleotide substitutions in the automated mode was higher,
and that in the manual mode was slightly lower, compared
with detection rates in previous studies (82.1 vs. 81%,
respectively, in automated mode, and 97.4 vs. 100%, respec-
tively, in manual mode) (Bruce etal. 2010; Chiou et al.
2011). Our ResAT analysis was unable to detect any small
indel mutations; this is similar to other studies (Hartmann
et al. 2009; Kothiyal et al. 2010). In the human gene muta-
tion database (HGMD; http://www.hgmd.cf.ac.uk/ac/index.
php), insertions/deletions account for a substantial proportion
of the total registered mutations in our genes of interest:
FBNI 23.6%, TGFBR2 6.4%, TGFBRI 10%, COL3AI
12.8%, PLOD1 46.2%, MYH11 20%, SLC2A10 21.1%, and
ACTA 20%. Thus, the incapability of ResAT to detect indel
mutations is one of its most significant drawbacks.

Our NGS analysis missed one of 21 variants (c.1815 +
5G>A in COL3AI). Our protocol focused on variants
identified by two different informatics methods, to increase
the true-positive rate. For example, MAQ (single-end
reads) can detect nucleotide substitutions well, but is not
good at detecting small indels (Li etal. 2008). BWA is
more sensitive at detecting small indels because it can align
gapped sequence (Krawitz et al. 2010). NextGENe is based
on the Burrows-Wheeler transform algorithm, which is
good at detecting small indels. NGS needs more efficient
informatics methods to extract all the nucleotide changes
correctly with lower error rates.

In this study, concomitant variants in two genes were
detected in four patients (Table 4): c.4625G > A and
c4963C >T in MYHII, and c.1220T > G in SLC2A10
(patient 16); c.136A > C in TGFBR2 and c.130-18T > C in
ACTA2 (patient 24); ¢.84T > C in COL3AI and ¢.692C >T
in TGFBR2 (patient 28); c.119C>T in COL3AIl and
¢.330C > T in SLC2AI0 (patient 89) (Table 4). It may be
quite difficult to detect variants in two or more genes by
conventional methods. ResAT and NGS permitted us to
find multiple variants in multiple genes easily and rapidly.
Double or triple mutations in unusual clinical cases will
also be found using such technologies.

Three different putative pathological mutations in a het-
erozygous state in three of 70 patients were found in this
study (4.3%). Interestingly, all the three patients suffered
from thoracic AAD. Considering only those patients with
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thoracic AAD (n = 35), the rate increased to 8.6%. Thus,
non-syndromic AAD (especially thoracic AAD) can be
explained to some extent by aberrations of genes related to
Mendelian disorders, although our sample size was small.
Interestingly, among these three patients, only patient 29
showed hyperlipidemia and the other two (patients 16 and
27) did not, which supports the genetic origin of thoracic
AAD.

In this study, we compared ResAT and NGS. Consider-
ing the drawbacks of ResAT, including its inability to
detect small indels and its no-call regions, we believe that
NGS is the better technology for comprehensive analysis of
multiple genes, especially with improved informatics meth-
ods, as it can detect all types of mutations with no bias.
Another advantage of NGS is its flexibility. Resequencing
array technology requires a custom-made sequencing array.
It is not easy or practical to update arrays frequently. How-
ever, NGS is currently quite expensive for most laborato-
ries. Next-generation sequencing combined with the pooled
genomic DNA method with indexing may improve its cost-
effectiveness (Calvo et al. 2010; Druley et al. 2009).

In conclusion, we found that 4.3% of non-syndromic
AAD patients (8.5% of thoracic AAD patients) have abnor-
malities in genes that cause Mendelian disorders. ResAT
and NGS enabled multiple genes to be analyzed efficiently.
In addition to the 70 AAD patients, a patient with familial
Marfan syndrome and a patient with Loeys—Dietz syn-
drome were initially included before their diagnosis was
known. We detected ¢.6793T > G (p.Cys2265Gly) in FBNI
in the Marfan syndrome patient [by ResAT (NGS was not
done)] and ¢.797A > G (p.Asp266Gly) in TGFBRI in the
Loeys—Dietz patient (by ResAT and NGS). We excluded
these two patients from this study because they are syn-
dromic AAD patients, but the efficient detection of their
mutations highlights the validity of our approach. Finally,
high throughput technologies have the potential to routinely
identify novel variants of known or unknown significance
in clinical settings. Therefore, more sophisticated methods
to evaluate gene variants as well as databases containing
normal (rare) variants are needed.
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