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Abstract Next-generation sequencing (NGS) will likely

facilitate a better understanding of the causes and conse-

quences of human genetic variability. In this context, the

validity of NGS-inferred single-nucleotide variants (SNVs)

is of paramount importance. We therefore developed a sta-

tistical framework to assess the fidelity of three common

NGS platforms. Using aligned DNA sequence data from two

completely sequenced HapMap samples as included in the

1000 Genomes Project, we unraveled remarkably different

error profiles for the three platforms. Compared to confirmed

HapMap variants, newly identified SNVs included a sub-

stantial proportion of false positives (3–17%). Consensus

calling by more than one platform yielded significantly

lower error rates (1–4%). This implies that the use of mul-

tiple NGS platforms may be more cost-efficient than relying

upon a single technology alone, particularly in physically

localized sequencing experiments that rely upon small error

rates. Our study thus highlights that different NGS platforms

suit different practical applications differently well, and that

NGS-based studies require stringent data quality control for

their results to be valid.

Introduction

Next-generation sequencing (NGS) may soon become a

standard tool in biological and medical research and,

before long, may even enter into clinical practice. More-

over, despite the current availability and wide-spread use of

various NGS platforms, high-throughput DNA sequencing

technologies are expected to develop further still in the

future (Metzker 2009, 2010). In human genetics research,

NGS appears to be particularly important for the identifi-

cation of rare variants of moderate to strong phenotypic

effect. In fact, low-frequency single-nucleotide variants

(SNVs) are presumed to explain many of the hitherto

unaccounted statistical associations with common diseases

unraveled by genome-wide association studies (GWAS),

which focused upon common single-nucleotide polymor-

phisms (SNPs) and consequently left many researchers

with a lot of ‘‘missing heritability’’ for their disorder of

interest (Maher 2008; Manolio et al. 2009). It may even be

surmised that most of the causal SNVs potentially identi-

fiable by NGS may not have been amenable to GWAS in

the first place. Other possible applications of NGS include

the characterization of somatic genomes (particularly in

cancer genetics), phylogenetic inference, transcriptome
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analysis, the study of epigenetic phenomena and, eventu-

ally, therapeutic decision-making. For all these purposes,

the validity of an identified SNV is of paramount impor-

tance. Using publicly available data from the 1000 Gen-

omes Project, we therefore set out to assess the error

profiles associated with the detection of putative SNVs in

humans, using one of three common NGS platforms.

Results

We analyzed the DNA sequence data publicly available at

the 1000 Genomes Project web site (http://www.

1000genomes.org/) for two HapMap samples of different

continental origin: NA12878 (CEPH; Utah resident with

ancestry from north-western Europe) and NA19240 (Yoruba

in Ibadan, Nigeria). These samples are the offspring mem-

bers of two trios that have been sequenced with three dif-

ferent technologies, namely SOLiDTM by Applied

Biosystems (Foster City, CA, USA) (Valouev et al. 2008),

454 FLXTM by Roche Diagnostics (Branford, CT, USA)

(Margulies et al. 2005), and GA IIxTM by Illumina (San

Diego, CA, USA) (Bentley et al. 2008). Notably, sequencing

in the Trio subproject of the 1000 Genomes Project was

carried out at greater depth than in the Low-Coverage and

Exon subprojects. We inferred SNVs separately from each

technology-specific set of aligned sequence reads, using

standard base-calling algorithms as implemented in the

SAMtools (Li et al. 2009; see ‘‘Materials and methods’’ for

details). Note that the individual read lengths differed

between data sets produced not only by different technolo-

gies but also by the same technology but at different

developmental stages (Durbin et al. 2010).

Since SNV inference is based upon the relative propor-

tion of the four different base calls at a given site, we scru-

tinized the per-site distribution of these calls for the NGS

platforms under study. In so doing, we distinguished

between NGS-inferred SNVs that had been reported at least

once before in the HapMap phase II ? III data (Frazer et al.

2007; International HapMap Consortium 2003, 2005), and

which could therefore be deemed ‘known’, and the

remaining SNVs that were consequently deemed ‘putative’.

Since HapMap SNVs are far better validated than SNVs

reported in dbSNP (http://www.ncbi.nlm.nih.gov/projects/

SNP/), we deliberately refrained from involving dbSNP as a

means of confirming SNVs. For *95% of known SNVs, the

heterozygous genotype of NA12878 and/or NA19240 in

HapMap matched the NGS-inferred heterozygous genotype,

irrespective of the technology used. This subset of SNVs

will henceforth be referred to as ‘confirmed’. HapMap

genotype data were missing for another 2% of known SNVs,

and the remaining 3% of sites inferred as heterozygous by

NGS were logged as homozygous in HapMap.

For all three platforms, only a minority of NGS-inferred

SNVs had been reported in HapMap at least once before

(Table 1). This excess of putative over known NGS-

inferred SNVs was much larger when platforms were

considered separately, compared to the near parity between

putative and known noted for SNVs that were identified on

all three platforms (‘consensus’ SNVs). The proportion of

consensus SNVs among putative SNVs varied between 23

and 64% (Table 1), depending upon NGS platform and

sample.

Both the number of reads per SNV (‘read coverage’) and

the SNV-specific quality score provided by SAMtools are

often used as quality measures of NGS-derived SNVs. In

our study, the read coverage was found to differ substan-

tially between the three technologies (Fig. 1). SNVs iden-

tified with 454 FLXTM were covered by the smallest

number of reads, followed by SOLiDTM and then GA IIxTM

(Table 2). Correspondingly, most 454 FLXTM-inferred

SNVs (93–100%) were covered by a maximum of 20 reads,

whereas most GA IIxTM-inferred SNVs (94–97%) were

covered by at least 20 reads.

The SNV-specific quality score was also characterized

by technology differences, but less so than the read

coverage (Fig. 2). Mean scores were again lowest with

454 FLXTM, followed by SOLiDTM and then GA IIxTM

(Table 2). All three technologies yielded higher quality

scores with consensus SNVs, except for sample NA19240

Table 1 NGS-inferred SNVs on chromosomes 1–22 of two HapMap samples (1000 Genomes Project Pilot 2 data)

NA12878 NA19240

Known (Confirmed) SNVs Putative SNVs Known (Confirmed) SNVs Putative SNVs

454 FLXTM 760,693 (724,548) 1,330,000 336,432 (319,106) 659,605

GA IIxTM 821,017 (786,131) 1,126,727 892,372 (851,842) 1,816,994

SOLiDTM 686,686 (651,873) 1,219,584 812,710 (777,840) 1,544,714

Consensus 609,429 (587,348) 631,533 300,237 (288,818) 420,570

consensus SNVs that were concordantly inferred by all three NGS platforms, known SNVs NGS-inferred SNVs that had been reported in HapMap

at least once before, confirmed SNVs known SNVs with a matching genotype logged in HapMap for the respective individual, putative SNVs
SNVs that had not been reported in HapMap before
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on 454 FLXTM. Note that all quality score distributions

are left-censored due to filtering of the sequence data

prior to base calling (see ‘‘Materials and methods’’ for

details).

Next, we compared the base-call distributions of puta-

tive and confirmed NGS-inferred SNVs, following the idea

that any discrepancy between the two signifies the error

profile associated with NGS-based SNV identification. To
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Fig. 1 Read coverage of NGS-inferred SNVs on chromosomes 1–22

of two HapMap samples (1000 Genomes Project Pilot 2 data).

Histograms are confined to read coverage values between 0 and 100.

454 FLX 454 FLXTM by Roche Diagnostics, GA IIx GA IIxTM by

Illumina, SOLiD SOLiDTM by Applied Biosystems, consensus only
SNVs that were concordantly inferred by all three platforms

Table 2 Read coverage and quality scores of NGS-inferred SNVs on chromosomes 1–22 (1000 Genomes Project Pilot 2 data)

NA12878 NA19240

All SNVs Consensus only All SNVs Consensus only

RC

454 FLXTM 13.7 ± 7.1 13.5 ± 4.4 7.6 ± 5.1 6.9 ± 2.3

GA IIxTM 33.8 ± 10.1 34.5 ± 8.7 35.8 ± 11.2 36.2 ± 10.9

SOLiDTM 19.0 ± 9.9 18.9 ± 8.2 25.4 ± 11.1 26.9 ± 9.7

QS

454 FLXTM 83.9 ± 40.2 90.6 ± 37.2 49.8 ± 24.4 48.9 ± 20.9

GA IIxTM 126.7 ± 50.9 135.7 ± 46.9 129.1 ± 47.3 141.2 ± 42.3

SOLiDTM 78.5 ± 45.0 89.0 ± 43.4 103.9 ± 51.8 112.0 ± 50.7

See Table 1 for further details

RC read coverage (mean ± SD), QS quality score (mean ± SD)
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this end, we summarized the individual base-call distribu-

tion of each SNV by the Shannon entropy H of the former.

Since H = 1.0 corresponds to an equal number of calls of

two different bases, this particular H value reflects the ideal

result for a heterozygote. In contrast, H [ 1.0 indicates

calling of a third or fourth base, whereas H \ 1.0 implies

predominant calling of one base only.

The statistical distribution of base-call entropy

H revealed clearly distinct error profiles for the three NGS

technologies studied (Fig. 3). Thus, calling in excess of two

bases was more evident for GA IIxTM (mean H 1.042–1.076)

than for 454 FLXTM (mean H 0.959–0.966) and SOLiDTM

(mean H 0.928–0.965). Moreover, with all three technolo-

gies, the base-call entropy distribution of putative SNVs was

significantly more dispersed around the mean than that of

confirmed SNVs (Table 3), particularly when SNVs had

been inferred by a single technology alone. The only

exception was provided by the consensus SNVs of NA12878

that were identified with SOLiDTM. Upon closer inspection,

the increased dispersion of H for putative SNVs was found to

be due mainly to a larger than expected proportion of

H values falling below the first, rather than above the third

quartile of H for confirmed SNVs (Table 4). Notably, this

downward shift of the distribution of H was significantly less

pronounced when only consensus SNVs were considered.

Taken together, our results indicate that putative SNVs,

particularly when inferred on a single NGS platform alone,

are likely to comprise a substantial proportion of false pos-

itives, i.e. of erroneous heterozygous calls of homozygous

genotypes.

Since consistency with HapMap may be regarded as a

gold standard for SNV authenticity, any shift of the dis-

tribution of H for putative as compared to confirmed SNVs,

particularly with H \ 1.0, may serve as an approximation

of the false-positive rate among putative SNVs. More

specifically, if putative SNVs are assumed to comprise a

proportion a of false positives, then the observed density

function fputative of H among putative SNVs is a weighted

sum of the (unobserved) densities for homozygous and

heterozygous genotypes, i.e.
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Fig. 2 Quality scores of NGS-inferred SNVs on chromosomes 1–22

of two HapMap samples (1000 Genomes Project Pilot 2 data).

Histograms are confined to values between 20 and 220. 454 FLX 454

FLXTM by Roche Diagnostics, GA IIx GA IIxTM by Illumina, SOLiD
SOLiDTM by Applied Biosystems, consensus only SNVs that were

concordantly inferred by all three platforms
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fputative ¼ ð1� aÞfhet þ afhom: ð1Þ

Density fhom is unknown and even though, in principle, it

would be possible to estimate fhom from calling truly

homozygous sites, such a reference entropy distribution is

currently not available. Note that the usual objective of

sequencing experiments is the detection of new variants,

which implies that putatively homozygous sites are rarely

investigated any further. In contrast, fhet can be equated to

the observed distribution of H among the confirmed SNVs

analyzed here. Then a conservative estimate of a is given

by

â ¼ minfa : fputativeðxÞ� ð1� aÞfhetðxÞ; 8x 2 ½0; 1�g:
ð2Þ

The range of x is restricted to the interval [0,1] in Eq. 2,

rather than [0,2], because entropy values larger than unity

should reflect sources of error other than the miscalling of

homozygous as heterozygous genotypes. Moreover, this

restriction renders the estimate of a even more conserva-

tive. It should also be noted that the false-positive rate of

approximately 3% as observed among known SNVs (see

above) is likely to represent a lower limit for a among

putative SNVs. This is because the prior probability of

homozygosity is much lower for known SNVs than for

sites not previously reported to be polymorphic in Hap-

Map, so that the same should apply to the posterior prob-

abilities as long as the conditional error probabilities of

NGS are the same for both types of loci.

For all combinations of NGS platform and individual

studied, estimates of the false-positive rate a were found to

be reduced by up to 90% when only consensus SNVs were

considered (Table 5). With the exception of 454 FLXTM in

the NA19240 sample, estimates of a ranged from 2.9 to

17.1% for all SNVs, compared to 0.7–4.0% for consensus

SNVs only. Estimates of a were also found to be largely
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Fig. 3 Base-call entropy of NGS-inferred SNVs on chromosomes

1–22 of two HapMap samples (1000 Genomes Project Pilot 2 data).

Entropy was calculated for the base calls derived from the platform

specified in the left-most column. 454 FLX 454 FLXTM by Roche

Diagnostics, GA IIx GA IIxTM by Illumina, SOLiD SOLiDTM by

Applied Biosystems, consensus only SNVs that were concordantly

inferred by all three platforms. Gray (black) bars confirmed (putative)

SNVs, i.e. SNVs that had been reported with a matching genotype

(not reported at all) in HapMap
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concordant between the European (NA12878) and the

African sample (NA19240).

In search for systematic errors that might explain the

false-positive rate of NGS-based SNV detection as inferred

in our study, we first compared the read coverage and

quality score distributions of confirmed and putative SNVs.

None of these parameters differed significantly between the

two types of SNVs (Table 6). Since it may also be that

Table 5 Estimated proportion, a, of false SNV detections, in percentages (chromosomes 1–22; 1000 Genomes Project Pilot 2 data)

NA12878 NA19240

All SNVs Consensus only P value All SNVs Consensus only P value

454 FLXTM 6.3 (6.1–6.5) 0.7 (0.5–3.6) \10-4 2.9 (2.7–3.2) 2.6 (1.2–4.7) 0.08

GA IIxTM 8.4 (8.0–8.7) 3.5 (3.1–3.9) \10-4 11.1 (10.9–11.3) 3.9 (3.5–4.3) \10-4

SOLiDTM 17.1 (16.9–17.4) 0.8 (0.1–2.6) \10-4 7.3 (6.8–7.8) 4.0 (3.1–4.8) \10-4

95% confidence intervals are given in parentheses. P value for a two-sided permutation test comparing the estimate obtained from all SNVs with

that from consensus SNVs only. See Table 1 for further details

Table 3 Location and dispersion of the base-call entropy for NGS-inferred SNVs (chromosomes 1–22, 1000 Genomes Project Pilot 2 data)

NA12878 NA19240

All SNVs Consensus only All SNVs Consensus only

con put P value con put P value con put P value con put P value

454 FLXTM

Mean 0.959 0.961 \10-16 0.959 0.959 2.0 9 10-4 0.966 0.965 5.6 9 10-12 0.966 0.966 1.2 9 10-6

SD 0.070 0.092 \10-16 0.069 0.073 6.2 9 10-6 0.062 0.075 \10-16 0.061 0.063 2.5 9 10-4

GA IIxTM

Mean 1.075 1.067 \10-16 1.076 1.074 \10-16 1.044 1.042 \10-16 1.042 1.043 9.0 9 10-5

SD 0.128 0.143 \10-16 0.127 0.133 \10-16 0.108 0.123 \10-16 0.105 0.110 \10-16

SOLiDTM

Mean 0.965 0.936 \10-16 0.965 0.964 \10-16 0.929 0.928 \10-16 0.93 0.928 7.6 9 10-11

SD 0.123 0.148 \10-16 0.123 0.124 0.6 0.085 0.095 \10-16 0.085 0.090 \10-16

P value from a two-sided Mann–Whitney U (Siegel–Tukey) test comparing the mean (SD) between confirmed (con) and putative (put) SNVs.

See Table 1 for further details

Mean mean base-call entropy H of NGS-inferred SNVs, SD standard deviation of H

Table 4 Proportion of putative SNVs with a base-call entropy outside the inter-quartile range of confirmed SNVs (chromosomes 1–22, 1000

Genomes Project Pilot 2 data)

NA12878 NA19240

All SNVs Consensus only P value All SNVs Consensus only P value

454 FLXTM

\1st qrt. 0.279 0.255 \10-16 0.245 0.228 \10-16

[3rd qrt. 0.242 0.248 \10-16 0.281 0.285 9.6 9 10-7

GA IIxTM

\1st qrt. 0.311 0.272 \10-16 0.302 0.263 \10-16

[3rd qrt. 0.260 0.262 1.2 9 10-3 0.255 0.256 0.38

SOLiDTM

\1st qrt. 0.360 0.255 \10-16 0.270 0.261 \10-16

[3rd qrt. 0.226 0.255 \10-16 0.250 0.248 6.2 9 10-3

P value from a v2 test with one degree of freedom comparing the proportion of all SNVs with that of consensus SNVs only. See Table 1 of the

main text for further details

\1st qrt. ([3rd qrt.) proportion of putative SNVs with a base-call entropy H below the first (above the third) quartile of confirmed SNVs
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HapMap variants are easier to sequence than non-HapMap

variants, we next scrutinized the flanking sequence

(±18 bp) of all SNVs studied. Neither GC content, dis-

persion index nor the proportion of repeat-masked nucle-

otides were found to differ significantly between confirmed

and putative SNVs (Table 7). Therefore, any concerns

about systematic sequence differences between HapMap

and non-HapMap variants appear to be unwarranted.

Filtering by minimal read coverage or minimal quality

score is often used as a means to counteract false-positive

SNV detection. To assess the effect of such filtering on a,

we repeated our analyses with a minimal coverage of 10

and 20 reads and a minimal quality score of 50 (Durbin

et al. 2010). We did not consider higher coverage thresh-

olds because only very few SNVs showed 30-fold of higher

coverage with 454 FLXTM. Setting the minimal quality

score required to 50 substantially decreased the number of

SNVs detected by a single platform, and the false-positive

rate a either decreased or remained at low levels. Still,

consensus calling generally led to smaller a values. Setting

the minimum coverage required to 10 or 20 reads yielded

less clear results. Although consensus SNVs were again

associated with generally smaller error rates than SNVs

inferred by a single platform (Supplementary Table 7), the

actually observed values of a were found to increase

compared to no filtering. Note, however, that the number of

SNVs included in the analysis decreased drastically upon

filtering by read coverage, in particular for 454 FLXTM,

and that the base-call entropy distributions became

increasingly rugged (Supplementary Figures 4–6), thereby

rendering estimation of a less reliable.

In view of the general trend towards a smaller false-

positive rate for consensus SNVs, we also assessed error

profiles for SNVs detected by pairs of technology plat-

forms. Such pair-wise consensus also reduced the false-

positive rate (Table 8) but usually to a smaller extent than

all three technologies combined.

Using the same approach as described above, we also

analyzed a more recent release of the 1000 Genomes

Project data (July 2010). The total numbers of inferred

SNVs (Supplementary Table 1) were similar to the Pilot 2

data. The only exception was noted for sample NA12878

on the SOLiDTM platform, where the new data exhibited a

massive reduction in SNV number and a remarkably dif-

ferent distribution of both read coverage and quality score

(Supplementary Figures 1, 2). Moreover, the base-call

entropy was found to follow a more rugged and irregular

distribution compared to the Pilot 2 data, in particular for

sample NA19240 on both SOLiDTM and 454 FLXTM

(Supplementary Figure 3). This notwithstanding, we still

observed a statistically significant trend towards a more

dispersed and downward shifted distribution of H among

putative SNVs than confirmed SNVs, particularly when theT
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former were inferred by a single technology alone (Sup-

plementary Tables 2, 3). This trend was also attenuated

when only consensus SNVs were considered. Estimates of

a were of the same magnitude as with the Pilot 2 data and

were also found to be reduced when the analysis was

confined to consensus SNVs (Supplementary Table 4).

Differences in read coverage, quality score or flanking

sequence characteristics were not sufficient to explain the

excess of false-positives among putative SNVs (Supple-

mentary Tables 5, 6). Filtering for minimal coverage failed

to consistently reduce a, whereas a minimal quality score

of 50 and consensus calling on all three platforms lowered

the false-positive rate (Supplementary Table 8; Supple-

mentary Figures 7–9). Thus, an analysis of the July 2010

release led to the same qualitative conclusions as that of the

Pilot 2 data.

A variety of SNV calling algorithms have been sug-

gested for practical use, and it might be argued that the

results of our study are simply artifacts due to the specific

choice of algorithm, i.e. SAMtools. To address this con-

cern, we repeated our analyses using an alternative calling

software, namely the Genome Analysis Tool Kit (McK-

enna et al. 2010). This algorithm has been used to generate

the Low-Coverage SNP Call Set of the 1000 Genomes

Project (Durbin et al. 2010). In general, GATK identified

fewer SNVs (Supplementary Table 10) than SAMtools.

The read coverage distribution was similar, but the quality

score was always C50 (Supplementary Figures 10, 11),

apparently because this is a requirement made by GATK.

Of the SNVs present in HapMap, virtually all ([99.9%)

had a GATK-derived genotype that was concordant with

that listed in HapMap. The base-call entropy had a rugged

Table 7 Flanking sequence (±18 bp) characteristics for NGS-inferred SNVs (chromosomes 1–22, 1000 Genomes Project Pilot 2 data)

NA12878 NA19240

All SNVs All SNVs

con put P value con put P value

GC

454 FLXTM 0.40 ± 0.11 0.41 ± 0.15 1.0 0.40 ± 0.11 0.41 ± 0.13 1.0

GA IIxTM 0.40 ± 0.11 0.41 ± 0.14 0.8 0.40 ± 0.11 0.42 ± 0.14 0.7

SOLiDTM 0.41 ± 0.11 0.43 ± 0.13 0.7 0.40 ± 0.11 0.42 ± 0.13 0.7

Consensus 0.41 ± 0.10 0.42 ± 0.13 0.7 0.40 ± 0.10 0.41 ± 0.12 1.0

DI

454 FLXTM 0.94 ± 0.05 0.91 ± 0.09 0.6 0.94 ± 0.04 0.93 ± 0.07 0.9

GA IIxTM 0.94 ± 0.05 0.92 ± 0.09 0.7 0.94 ± 0.05 0.92 ± 0.08 0.9

SOLiDTM 0.94 ± 0.05 0.93 ± 0.08 0.9 0.94 ± 0.05 0.92 ± 0.08 0.9

Consensus 0.94 ± 0.04 0.93 ± 0.06 0.8 0.94 ± 0.04 0.93 ± 0.05 0.8

RM

454 FLXTM 0.35 ± 0.46 0.63 ± 0.46 0.5 0.34 ± 0.46 0.54 ± 0.48 0.7

GA IIxTM 0.35 ± 0.46 0.56 ± 0.48 0.7 0.34 ± 0.46 0.57 ± 0.48 0.5

SOLiDTM 0.35 ± 0.46 0.60 ± 0.48 0.5 0.356 ± 0.46 0.58 ± 0.48 0.5

Consensus 0.34 ± 0.46 0.53 ± 0.48 0.7 0.34 ± 0.46 0.48 ± 0.48 0.8

P value from a two-sided Mann–Whitney U test comparing the mean between confirmed (con) and putative (put) SNVs. See Table 1 for further

details

GC GC content, DI dispersion index, RM proportion of repeat-masked flanking sequence (mean ± SD)

Table 8 Estimated proportion, a, of false SNV detections (in percentages; chromosomes 1–22, 1000 Genomes Project Pilot 2 data)

NA12878 NA19240

454 FLXTM GA IIxTM SOLiDTM 454 FLXTM GA IIxTM SOLiDTM

454 FLXTM 6.3 1.4 1.3 2.9 2.2 0.9

GA IIxTM 4.6 8.4 4.4 5.9 11.1 6.3

SOLiDTM 1.2 0.7 17.1 5.0 4.8 7.3

Estimates are given for consensus calls between the platforms corresponding to each row and column; initial calls were made on the platform

given in the left column. See Table 1 for further details
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distribution (Supplementary Figure 12) in some cases, e.g.

NA19240 on 454 FLXTM, that would be hard to explain by

the sequencing technology alone. Strikingly, the base-call

entropy distribution of NA19240 on SOLiDTM did not even

peak at unity. The rugged distribution sometimes led to

extreme a values for SNVs identified with a single tech-

nology, particularly for 454 FLXTM. However, the false-

positive rate decreased again when all three platforms

(Supplementary Table 11) or pairs of platforms (Supple-

mentary Table 12) were used for consensus calling. Our

findings therefore seem to be mostly independent of the

algorithm used for SNV calling.

Discussion

Due to its complexity and infrastructural requirements,

next-generation sequencing (NGS) is a challenging tech-

nology. Many scientists may therefore choose to have their

DNA sequence data generated by a service institution,

instead of performing the necessary NGS experiments

themselves. Furthermore, more and more reference data

sets for use in scientific studies are likely to become

available in the near future through endeavors such as the

1000 Genomes Project. In both instances, researchers

would be put into the position of ‘end users’ with no direct

control over the data generation process, including the

choice of quality control measures. Estimates of the error

rates associated with NGS-inferred SNVs will therefore be

of paramount importance to this group of researchers if

they wish to assess the validity of such variants.

In terms of data quality, the key question in NGS-based

studies is whether a newly discovered SNV is indeed

genuine or represents a false-positive result instead. This is

true not only for the search for private or low-frequency

meiotic mutations at disease gene loci but also for the quest

for somatic variants in cancer genomes (Beroukhim et al.

2010; Bignell et al. 2010; Dalgliesh et al. 2010; Lee et al.

2010) and for therapeutic decision-making. Furthermore,

some applications such as the assessment of allelic

imbalance (Yan et al. 2002) or methylation status require

the quantification of allelic ratios and are therefore criti-

cally dependent upon the accuracy of the inferred base-call

proportions.

In the absence of any sequencing errors, allelic imbal-

ance or somatic mutations, the proportion of calls of either

allele at a heterozygous site would follow a binomial dis-

tribution with 50% success probability, corresponding to a

distribution of the base-call entropy H that peaks at

H = 1.0 and decreases monotonously on both sides of this

peak. Deviations from such a pattern could indicate prob-

lems with sample quality, sequencing chemistry (Metzker

2010) or with the subsequent bioinformatics analysis. With

some practical applications, for example, in the analysis of

tumor samples (Beerenwinkel et al. 2007; Shah et al.

2009), they could also reflect genetic heterogeneity of the

used cell types, but this was clearly not an issue with

the 1000 Genomes Project data. In any case, in order for

the common SNV detection approaches to be sufficiently

sensitive, they have to be tolerant against erroneous base

calls, as is evident from the common occurrence of base-

call entropies both larger and smaller than unity in the

present study, even for SNVs that had been confirmed by

HapMap data. However, since putative and HapMap-

inferred SNVs did neither differ with respect to neither

read coverage, quality score nor flanking sequence, meth-

odological problems should affect the two types of SNV

equally. Any discrepancy between the two distributions of

H must then point towards the presence of false positives

among the newly detected SNVs. The entropy-based

approach presented above makes use of this fact and pro-

vides a framework for quantifying, at least approximately,

the proportion of false-positive SNV detections in NGS-

based experiments.

Our analysis highlights that the three NGS platforms

under study differ substantially in terms of their error

profiles. The consistently lower number of SNVs detected

simultaneously by all three platforms, compared to those

detected by a single platform alone, may also reflect dif-

ferent bias of the technologies towards particular base calls.

However, in view of the above, it appears more likely that a

substantial proportion of the technology-specific ‘variants’

actually represented homozygous genotypes erroneously

inferred to be heterozygous. The 454 FLXTM platform

consistently showed the smallest false-positive rate despite

its comparatively low read coverage. This result is likely

due to the longer read lengths of this technology because

long reads are subject to a lower misalignment probability

than short reads. The GAx IITM platform in turn yielded the

highest false-positive rate in most instances. While

increasing the read length may improve the accuracy of

GAx IITM (and SOLiDTM) in the future, the problem of a

frequently calling more than two alleles on the GAx IITM

platform may persist. In any case, we prefer not to spec-

ulate any further about the biochemical or computational

reasons for the discrepant error profiles observed for the

three platforms.

Since we were not ourselves involved in the generation

of the 1000 Genomes Project data, we are unaware of the

reasons for the striking difference between the two data

releases in terms of read coverage, quality score and

entropy distribution. It appears to us, however, that there

has been no agreement over the filtering and quality control

criteria applied within the 1000 Genomes Project, with

each data set being generated in a different way. While this

is not surprising given the exploratory nature of the project

Hum Genet (2011) 130:505–516 513

123



so far, these inconsistencies need to be eliminated because

they render any judgement of SNV quality difficult for the

‘end-user’.

An immediate consequence of the technology-specific

error profiles revealed by the 1000 Genomes Project data is

that any study that combines DNA sequences from dif-

ferent platforms runs a risk of becoming confounded by

their different error signatures. In phylogenetic analyses,

for example, proximity in the derived phylogenetic tree

would then be less indicative of evolutionary relatedness

than of shared sequencing technology. One way to reduce

the false-positive rate in SNV detection would be to

sequence a sample with at least two different NGS tech-

nologies, depending upon the required error level, and to

consider only those SNVs that are detected by a certain

number of platforms. It must be remembered that consen-

sus calling would, of course, increase the false-negative

error rate so that the stringency of the consensus needs to

be balanced against the power required in a given study. In

any case, although costly, such in-depth vetting of potential

mutations might be more effective in the long run than the

use of a single technology, bearing in mind the resources

required for functional follow-up studies.

The NGS technologies are still evolving, and the range

of possible applications is constantly expanding. Our

analysis has shown that, depending on the envisaged

application, the choice of a particular NGS platform should

not be based upon coverage and cost alone, but should take

the technology-specific error signature into account as well.

For instance, exploratory SNV discovery projects may be

less dependent upon a high base-calling fidelity than NGS

applications, such as SNP-based assessment of allelic

imbalance or methylation status, that require precise esti-

mates of allelic proportions. In the latter case, biased allelic

ratios or erroneous calling of additional alleles may have a

profound impact upon the scientific outcome. In conclu-

sion, we hope that our study serves to stimulate the defi-

nition and establishment of quality control criteria for NGS

data, thereby enabling full use of the benefits of NGS for a

better understanding of human genome variability.

Materials and methods

Sequence data

We used the aligned Pilot 2 DNA sequence reads of

samples NA12878 (CEPH; Utah residents with ancestry

from northern and western Europe) and NA19240 (Yoruba

in Ibadan, Nigeria) that were publicly available at the 1000

Genomes Project web site (http://www.1000genomes.org/).

Both individuals represent the offspring members of two of

the Trio subproject families that have been sequenced with

three different technologies, namely 454 FLXTM by Roche

Diagnostics (Branford, CT, USA) (Margulies et al. 2005),

GA IIxTM by Illumina (San Diego, CA, USA) (Bentley

et al. 2008) and SOLiDTM by Applied Biosystems (Foster

City, Ca, USA) (Valouev et al. 2008). For each combina-

tion of individual, autosome and sequencing technology, a

BAM file with alignment information was downloaded

from the 1000 Genomes Project web site (ftp://ftp.

1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/data/NA12878/

alignment/; ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_

data/data/NA19240/alignment/) in early May 2010. We

also analyzed a more recent data release from July 2010,

for both samples (genome alignment dates: 20100311 and

20100125, respectively). The relevant files were down-

loaded from the 1000 Genomes Project web site (ftp://ftp.

1000genomes.ebi.ac.uk/vol1/ftp/data/NA12878/alignment/;

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/NA19240/

alignment/) on 30 June 2010. Sequence reads had been

aligned against a reference genome by the project group

themselves (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_

data/technical/reference/human_b36_female.fa.gz; ftp://ftp.

1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/human_

g1k_v37.fasta for the July 2010 data).

Identification of heterozygous sites

Heterozygous sites were identified in the DNA sequence

data using SAMtools (Li et al. 2009), following standard

procedures (http://sourceforge.net/apps/mediawiki/samtools/

index.php?title=SAM_protocol). The following default

options and filters were applied: a maximum read depth

(-D flag) of 100 to exclude variants with excessively high

read depth, and a quality score threshold of 20 for nucle-

otide substitutions. InDels were not considered in the

analysis. To assess the effect of more rigorous filtering, we

also considered a quality score threshold of 50. Moreover,

we also employed an alternative SNV calling algorithm

with the July 2010 data release, namely the Genome

Analysis Tool Kit (McKenna et al. 2010) to address pos-

sible concerns about the software specificity of our results.

Calling was done with GATK routines ‘UnifiedGenotyper’,

using default parameter values and ‘VariantFiltration’. The

later routine was carried out with the same parameters as

used by the 1000 Genomes Project (–clusterWindow-

Size 10; –filterExpression ‘‘DP [ 360 || (MQ0 [= 4 &&

((MQ0 / (1.0 * DP)) [ 0.1)) || SB [ -0.10 || AB [ 0.75’’).

HapMap confirmation of NGS-inferred SNVs

The SNVs inferred from the 1000 Genomes Project data

were distinguished according to whether they had been

reported in HapMap at least once before (Frazer et al.

2007; International HapMap Consortium 2003, 2005). To
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this end, we scrutinized the HapMap phase II ? III (release

27) SNP genotype data, NCBI build 36 (ftp://ftp.

hapmap.org/hapmap/genotypes/2009-02_phaseII?III; files

genotypes_chr*_*_r27_nr.b36_fwd.txt.gz), from which we

extracted the genotypes of individuals NA12878 and

NA19240. An SNV was then defined as reported in Hap-

Map (‘known’ SNV) if it was logged for NA12878,

NA19240 or any other individual in HapMap. Otherwise,

the SNV was deemed ‘putative’. Known SNVs for which

the NGS-inferred genotype of the respective individual

matched the genotype in HapMap (termed ‘confirmed’

SNVs) were used as a ‘gold standard’ in subsequent

analyses.

Characterization of the base-call distribution

Since SNVs are inferred from NGS data on the basis of the

proportion at which the four different bases are called at a

given site, we characterized the site-specific distribution of

these base-calls for each NGS technology by means of its

Shannon entropy (Shannon 1948), defined as

H ¼ �
X

pi log2 pið Þ

where pi denotes the relative proportion at which the ith

base is called. With only four possible calls, H can assume

values in the interval [0,2]. Under the assumption of no

errors, the base-calls at a heterozygous site would follow a

binomial distribution with 50% success probability. An

equal number of calls of both alleles leads to H = 1.0,

whereas unequal numbers yield H \ 1.0. If calls of three or

four different bases occur, H can exceed 1.0.

Statistical analysis

The R software v. 2.11.1 (R Development Core Team

2010) was used for statistical analysis and to create graphs.

Histograms of the base-call entropy were generated with 40

equally sized bins covering the interval [0,2]. Estimation of

the proportion a of false-positive SNV identifications was

based upon only those bins in the interval [0,1] that con-

tained at least 200 observations for both confirmed and

putative SNVs. Confidence intervals for a were calculated

from 1000 non-parametric bootstrap samples.

Differences between proportions were tested for statis-

tical significance by a v2 test with one degree of freedom.

Means were compared using a two-sided Mann–Whitney

U test, whereas differences between standard deviations

were tested for statistical significance by a two-sided Sie-

gel–Tukey test. We used the chisq.test and wilcox.test

functions in R for these analyses. The Siegel–Tukey test

was implemented in R using an in-house script. Differences

between a values were tested for statistical significance

using a permutation test with 104 replications, using an in-

house script. All scripts are available from the authors upon

request.
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