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Abstract Imputation of missing data and the use of

haplotype-based association tests can improve the power

of genome-wide association studies (GWAS). In this

article, I review methods for haplotype inference and

missing data imputation, and discuss their application to

GWAS. I discuss common features of the best algorithms

for haplotype phase inference and missing data imputa-

tion in large-scale data sets, as well as some important

differences between classes of methods, and highlight the

methods that provide the highest accuracy and fastest

computational performance.

Introduction

Genome-wide association studies (GWAS) scan the entire

genome for variants that are associated with a trait or

disease of interest. These studies are proving to be suc-

cessful in finding susceptibility loci underlying complex

diseases (Altshuler and Daly 2007; Lango and Weedon

2008).

To find disease-associated variants using a case–control

genome-wide association design, at least several thousand

cases and several thousand controls are typically needed

for adequate power (Altshuler and Daly 2007; Wang et al.

2005), while several hundred thousand or more SNPs are

needed to cover the human genome adequately (Balding

2006). Thus, GWAS are considerably larger in scale than

candidate gene association studies. Consequently, GWAS

demand new methods of analysis that are computationally

efficient and that make good use of the available data.

One way to improve the power of GWAS is to infer

haplotype phase and use a haplotype-based method for

association testing, in addition to applying single-marker

association testing methods (Browning and Browning

2007a). A haplotype is a sequence of alleles that are on

the same physical chromosome (i.e. that are inherited

from the same parent). Since the observed genotypes are

unordered pairs of alleles, haplotype phase must be

inferred. Statistical methods estimate haplotype phase

using linkage disequilibrium (LD), which is correlation

between neighboring variants. Due to LD, haplotypes can

be correlated with other variants within a region. Thus,

testing haplotypes can enable one to detect associations

with ungenotyped variants.

Another way to improve the power of GWAS is to use

missing data imputation to infer genotypes for known, but

ungenotyped, variants. These variants can then be tested

for association with the trait (e.g. Scott et al. 2007; The

Wellcome Trust Case Control Consortium 2007). At

present the imputed variants are usually SNPs genotyped in

the HapMap project (The International HapMap Consor-

tium 2007). A third approach to improving power is to

combine results across multiple studies, imputing geno-

types when SNPs have been genotyped in some, but not all

studies (e.g. Lettre et al. 2008; Zeggini et al. 2008).

I begin this review with an overview of the use of

haplotype phase inference and missing data imputation in

GWAS. This overview includes a discussion of the use of

the HapMap for genotype imputation; a discussion of the

applications of haplotype phase inference and of missing

data imputation in GWAS; and a discussion of the relative

merits of haplotype-based association testing versus single-

marker association testing of imputed markers. I then give
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attention to the statistical methodology underlying the

major GWAS-applicable methods for haplotype phase

inference and missing data imputation. This includes a

brief introduction to hidden Markov models and the

expectation-maximization (EM) algorithm, a discussion of

metrics for assessing the quality of results from haplotype

inference and imputation methods, and a brief description

of the models and statistical methodology underlying the

major methods. I summarize results from published com-

parisons of methods, and discuss the relative merits of the

methods.

The HapMap and imputation

A reference panel consists of a number of individuals

genotyped at all markers of interest. The reference geno-

types or haplotypes can be used to model patterns of

variation, thus aiding the imputation of missing data (par-

ticularly missing genotypes, but also haplotype phase) in

the remaining individuals.

The HapMap data are very well suited for this purpose.

Phase II of the HapMap project (The International HapMap

Consortium 2007) includes over 3.1 million single nucle-

otide polymorphisms (SNPs) genotyped on four panels of

individuals. These panels are: 30 trios (two parents with

one child) of individuals with northern and western Euro-

pean ancestry from the USA (the CEU panel), 30 trios of

Yoruban individuals from Ibadan, Nigeria, 45 unrelated

individuals from Tokyo, Japan and 45 unrelated Han Chi-

nese individuals from Beijing.

One limitation of the HapMap (and of other resources,

such as data from previous GWAS studies) is that it only

covers a limited number of ethnicities. To date, most

GWAS have used samples from populations with mostly

northern and western European ancestry, so that the Hap-

Map CEU panel is a close match. When a reference panel

from one ethnicity is used to impute variation in a sample

taking from another ethnicity the quality of imputation will

be reduced somewhat, although using a pooled reference

panel using all available ethnicities can give acceptable

results (Chambers et al. 2008). In a balanced study design,

in which missing data patterns in cases and controls are

roughly the same, and in which cases and controls are drawn

from a single population, a mismatch between ethnicities in

the reference panel and the genotyped sample is not likely

to result increased rates of false positive results. However,

in an unbalanced situation one might expect an increase in

false positive results in a similar manner to that seen in the

presence of population stratification (Campbell et al. 2005).

A second limitation of HapMap Phase II data is that the

sample size within each ethnicity is quite low. A collection

of 30 trios will provide 120 haplotypes. Thus, ability to

estimate the haplotypic background of low frequency

alleles (particularly those with population frequency\2%)

is extremely limited.

Applications of haplotype phase inference to GWAS

In the context of GWAS, the main application of haplotype

phase inference is to enable the use of haplotype-based

association methods. To reduce the computational burden

for GWAS data, one can base the analysis on a single best

estimate of haplotype phase for each individual (Browning

and Browning 2007a; Scheet et al. 2007). It is also possible

to obtain posterior probabilities of multiple possible hap-

lotype configurations, and to sum over these in the

downstream analysis. Haplotypic association analysis of

GWAS have been successful in finding associated loci that

are not genome-wide significant using single-marker tests

(Browning and Browning 2008; Raelson et al. 2007).

An additional application of haplotype phase inference

is to phase the reference panel. A number of imputation

methods require the reference data to consist of phased

haplotypes, although some will accept unphased genotypes.

Reference panels comprised of trios (or other closely

related individuals) have an advantage over unrelated

panels of similar size in that haplotype phase can be

inferred much more accurately in trios by using the rules of

Mendelian inheritance at each genetic marker as well as the

linkage disequilibrium correlation across markers (Mar-

chini et al. 2006).

Applications of imputation to GWAS

Missing data imputation has several applications in the

GWAS context. First, one can use imputation to fill in the

small proportion of genotypes that fail to pass quality

control. Second, one can impute genotypes at markers that

have not been typed in the study, by using a reference

panel. Third, one can use imputation to combine results

from two or more studies that have been genotyped on

differing sets of markers, again with the help of a reference

panel. A fourth application, which is not considered in

detail here, occurs in family-based GWAS, when a family

member is not available for genotyping (Dudbridge 2008).

The first three applications of imputation will be consid-

ered in more detail in the following sections. Table 1

shows an example of each type of data.

Imputing missing genotypes

Table 1a shows an example of missing genotypes. Stan-

dard quality control procedures, applied before analysis,
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remove any individual or marker that has a high proportion

of missing data. Thus, each individual and each marker will

have a low proportion of missing data. No reference panel

is needed to impute the missing genotypes, as the almost

complete data from other individuals and the high marker

density usually provide sufficient information to impute

with high accuracy. Greater than 98% accuracy of imputed

genotypes can be achieved in studies with 3,000? indi-

viduals genotyped at the density of the Affymetrix 500K

array (Browning and Browning 2007b).

Early developers of methods for haplotype phase infer-

ence recognized the potential application to filling in

missing genotypes (Hawley and Kidd 1995). Thus, this

application is not new. However, in the GWAS context it

has increasing importance, for two reasons. First, the

markers in a GWAS are sufficiently dense and the samples

sizes are sufficiently large to allow accurate imputation of

missing data. Second, due to the high marker density,

multilocus association methods can be quite powerful, and

multilocus methods typically require complete genotype

data (and often haplotype phase as well). When applying a

multilocus association method to multiple markers it is

very inefficient to discard an individual just because that

individual is missing a genotype at one of the markers. A

high proportion of individuals will have data missing at one

or more of the markers, so discarding these individuals will

reduce the sample size substantially. Thus, imputation of

missing genotype data is important for maintaining power

of association studies for single marker methods, and even

more so for many multilocus methods.

Imputing genotypes at ungenotyped markers

using a reference panel

Table 1b shows an example of markers that are not geno-

typed in the sample but that are genotyped in a reference

panel (SNPs 2 and 5). The reference panel is essential if the

genotypes at the ungenotyped markers are to be inferred in

the sample. Note that the samples may have some missing

genotypes at genotyped markers, and there may be some

missing genotypes in the reference panel.

This type of imputation is closely related to the concept

of tagging. In tagging, one chooses a subset of SNPs (the

‘‘tag’’ SNPs) from a larger set, such that every SNP in the

Table 1 Examples of three

types of data for imputation

Missing data is denoted –

Individual SNP 1 SNP 2 SNP 3 SNP 4 SNP 5 SNP 6

a Missing genotypes

Sample 1 AC TT AA CC AT GG

Sample 2 CC – GG GG AA GG
..
. ..

. ..
. ..

. ..
. ..

. ..
.

Sample N AA TC AG – AA TT

b Ungenotyped markers and a reference panel

Sample 1 AC – AA CC – TG

Sample 2 CC – GG GG – –
..
. ..

. ..
. ..

. ..
. ..

. ..
.

Sample N AA – AG CC – TG

Reference 1 AC TT AG CC AT GG

Reference 2 CC CC GG – TT TG
..
. ..

. ..
. ..

. ..
. ..

. ..
.

Reference M AA TC AG CG AA TT

c Two studies genotyped on different platforms and a reference panel

Study 1 Sample 1 AC – AA CC – TG

Study 1 Sample 2 CC – GG GG – –
..
. ..

. ..
. ..

. ..
. ..

. ..
.

Study 1 Sample N1 AA – AG CC – TG

Study 2 Sample 1 – TC – GG TT –

Study 2 Sample 2 – TT – GG AT –
..
. ..

. ..
. ..

. ..
. ..

. ..
.

Study 2 Sample N2 – CC – CG AA –

Reference 1 AC TT AG CC AT GG

Reference 2 CC CC GG – TT TG
..
. ..

. ..
. ..

. ..
. ..

. ..
.

Reference M AA TC AG CG AA TT

Hum Genet (2008) 124:439–450 441

123



larger set is highly correlated with one or more tag SNPs

(Carlson et al. 2004; Johnson et al. 2001), or with a hap-

lotype of tag SNPs (Pe’er et al. 2006). Thus testing tag

SNPs for association with a trait should be almost as

powerful as testing the larger set of SNPs. When the tag-

ging concept was in early development, it was realised that

tag SNPs could also be used to impute the variants that the

tag SNPs were tagging, for the purposes of ‘‘finer map-

ping’’ (Chapman et al. 2003). This idea was extended for

application to GWAS by several authors (Marchini et al.

2007; Nicolae 2006; Servin and Stephens 2007). Prior to

the development of the HapMap resource, one needed to

conduct a pilot study of all known polymorphism in a

region, from which one chose tag SNPs. The tag SNPs

could then be used as proxies for other known polymor-

phisms. One can now use HapMap data to select tag SNPs

instead of conducting a pilot study, and once genotyping

has been performed on one’s own sample, one can combine

the sample data with HapMap data and impute the

remainder of the HapMap SNPs for the sample (The

International HapMap Consortium 2007). As well as

gaining statistical power by using imputation, one can

reduce the cost of GWAS by using smaller (less expensive)

arrays, such as the Illumina 300K rather than Illumina

550K array. However, a slightly larger sample size is

needed to achieve comparable power when using a smaller

array, as imputation is typically less accurate than geno-

typing (Anderson et al. 2008). In addition to imputation of

HapMap SNPs, other types of variation may be imputed,

such as the classical HLA alleles (Leslie et al. 2008;

Listgarten et al. 2008).

The strategy of imputing HapMap SNPs has been

adopted in several GWAS (e.g. Chambers et al. 2008; Scott

et al. 2007; The Wellcome Trust Case Control Consortium

2007; Willer et al. 2008; Zeggini et al. 2008). This strategy

has been successful in finding associations that would not

have been found using only the original genotypes. For

example, Zeggini et al. imputed 2.20 million HapMap

SNPs in three collections of type 2 diabetes cases and

controls (Zeggini et al. 2008). Two of the collections had

been genotyped on the Affymetrix 500K GeneChip, while

the third had been genotyped on the Illumina 317K chip.

This imputation resulted in two significant results that

would not have been found using only the original geno-

types. One of these was a known association with PPARG,

while the second was a novel association with CDC123-

CAMK1D, which has been confirmed through genotyping

in replication samples.

Combining studies from different genotyping platforms

It has become apparent that even large GWAS with several

thousand cases and controls are underpowered to find

disease susceptibility variants for many common diseases.

Increased success can come from combining data across

multiple studies to increase sample sizes and thus increase

power. A significant challenge in combining results from

such studies lies in combining results across studies that

have genotyped different marker sets. One approach, used

by a group of type 2 diabetes studies (Diabetes Genetics

Initiative 2007; Scott et al. 2007; Zeggini et al. 2007), is to

simply investigate the top results from each individual

study, performing additional genotyping in the samples

from the other studies to attempt to replicate these results.

A more powerful approach is to combine the data from all

studies. This allows detection of associations that are not

among the top hits in any one study, but that show a trend

in each component study. In order to do so, the problem of

assessing markers genotyped in some component studies

but not in others must be addressed, which can be achieved

through imputation (Pe’er et al. 2006). Several groups have

recently taken this approach, combining data from studies

that used different genotyping platforms by using HapMap-

based imputation, and have found novel associations

(Barrett et al. 2008; Lettre et al. 2008; Willer et al. 2008;

Zeggini et al. 2008).

In general, accurate cross-platform imputation requires

the use of a reference panel of individuals who have been

genotyped on the majority of markers from both platforms.

Table 1c shows two samples genotyped on different

genotyping platforms, along with a reference panel. Some

markers (such as SNP 4) may be genotyped on both plat-

forms. The reference panel is essential unless the degree of

overlap between the two genotyping platforms is very high.

The HapMap data can serve as the reference panel, or one

can make use of panels of control individuals who have

been genotyped on several different marker sets, such as

the 1958 British Birth Cohort (http://www.b58cgene.

sgul.ac.uk), which has been genotyped on the Affymetrix

500K and Illumina 550K platforms.

Haplotypic tests versus testing imputed markers

Multilocus association tests, including haplotype-based

association tests, seek to detect association between disease

status and variants that have not been directly genotyped.

While imputation seeks to test association between known,

but ungenotyped, variants and disease status, haplotypic

tests seek to test association between observed haplotypic

backgrounds and disease status. Every genetic variant

originally occurs on a particular haplotypic background,

which is modified over time through recombination and

mutation. Thus, the observed current haplotypic back-

grounds can serve as proxies for such known or unknown

genetic variation, particularly for low frequency (i.e.
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recent) variants. Haplotypic tests may be able to detect

association with variants that are not included in any

suitable reference panel, which increases their relative

usefulness. Also, haplotypic tests may be able to find sets

of cis interacting variants on the same haplotype back-

ground within a gene which will not be found using single

marker tests of genotyped or imputed variants (Schaid

2004).

On the other hand, multilocus tests need to be applied

very carefully. If haplotypes are tested indiscriminately,

there will be a large increase in the amount of variation that

is tested, with the need for correspondingly large multiple-

testing correction, which reduces power. Sliding window

approaches that test every haplotype of a fixed number of

markers are particularly poor in this respect. If the window

size is too high, too many tests will be applied and any

association will be split over multiple haplotypes and will

be undetectable. If the window size is too small, informa-

tion is lost, reducing power. The optimal window size

varies from one region to another, and even with optimal

window size, it may be possible to cluster the haplotypes

further to improve power.

The localized haplotype clustering testing method

(Browning and Browning 2007a; Browning 2006) is quite

parsimonious in selecting clusters of haplotypes to test for

association, avoiding the problems inherent in sliding

window approaches. The method was able to identify four

novel associations in the Wellcome Trust data set, three of

which have strong support from independent studies

(Browning and Browning 2008; Zeggini et al. 2008). In

contrast, imputation of HapMap SNPs did not result in

novel findings in these data. It is worth noting that appli-

cation of Beagle involved approximately 1.5 million

haplotypic tests per disease, which is fewer than the

number of tests applied when imputing HapMap variation.

Thus, this result suggests that at present haplotypic analysis

can have an edge over analysis of imputed markers.

With the development of reference panels that cover a

greater proportion of actual variation, the balance is likely

to shift towards imputation. The 1000 Genomes Project

(http://www.1000genomes.org/) will sequence the genomes

of at least 1,000 individuals from around the world, pro-

viding a publicly available reference panel that catalogs

almost all SNPs and structural variants that have frequen-

cies of 1% and higher.

Overview of methods for imputation and haplotype

phase inference

Most methods for haplotype phase inference can also be

used to perform imputation. In addition, there are imputa-

tion methods that are independent of haplotype phase

inference. Although there are a very large number of

methods for haplotype phase inference and/or missing data

imputation, most of these are too computationally intensive

for application to GWAS data. The focus here is on those

methods that are most applicable to GWAS analysis.

Before describing the methods themselves, some back-

ground information on Hidden Markov Models and the EM

algorithm, which are used by most of the methods, are

presented and metrics for assessing accuracy of haplotype

phase inference and imputation are discussed.

Hidden Markov models and the EM algorithm

Hidden Markov models (HMMs) are a natural choice of

approach for inference of haplotype phase and missing

genotypes. In an HMM, an underlying hidden (i.e. unob-

served) state generates the observed data (see Rabiner

1989). In the context of haplotype phase and missing

genotype inference, the observed data are the observed

unphased genotypes (which may include errors and missing

data), while the hidden state represents the haplotype phase

and the true genotypes.

A Markov model is applied to the hidden states along

the chromosome. Markov models have a very simple

probabilistic structure that results in a relatively parsimo-

nious model and facilitates computation. The observed data

at a marker depend only on the hidden state at that marker

(the hidden state is said to ‘‘emit’’ the observed data).

Computation on HMMs is achieved using numerical

tricks that exploit the conditional independence structure of

the model, and computation times generally increase line-

arly with the number of markers, and quadratically (or less)

with the number of states at each marker. The specialized

algorithms that are used are the Viterbi algorithm to find

the most likely hidden state paths (i.e. phased haplotypes),

the Baum forward–backward algorithm to compute pos-

terior probabilities of hidden states (i.e. probabilities of

haplotypes given the genotype data), and the Baum–Welch

algorithm to fit model parameters by maximizing the

likelihood. Details of these algorithms are given in a

tutorial by Rabiner (1989).

The Baum–Welch algorithm is an EM algorithm

(Rabiner 1989). EM algorithms iteratively update model

parameters to maximize the model likelihood. In the con-

text of haplotype phase and missing data imputation, the

iteration usually proceeds as follows. First, one takes an

estimate of haplotype phase and missing data values, which

can be an arbitrary guess at the first iteration. Using the

estimated full data (with haplotype phase and all geno-

types), one estimates the other parameters of the model,

such as recombination fractions. Then, using the fitted

model and original observed genotype data, one re-esti-

mates the haplotype phase and missing data values. These
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new estimates of haplotype phase and missing data values

become the estimates used to initiate the next iteration of

the algorithm. Typically, convergence (of measures of

accuracy such as switch error or imputation error rates,

described below) is achieved in 10–100 iterations of the

algorithm (e.g. Browning and Browning 2007b; Hawley

and Kidd 1995; Scheet and Stephens 2006). An EM algo-

rithm can get caught in a local maximum of the likelihood

surface. A workaround to the problem of local maxima is

to run the algorithm multiple times and use the solution

with the highest final likelihood value; however, this does

increase computation time.

EM algorithms are used in a frequentist framework,

while Bayesian models are typically fit using Markov chain

Monte Carlo (MCMC) algorithms. MCMC algorithms

attempt to explore the entire model space, rather than

simply find a maximum, and generally require tens of

thousands of iterations. Thus, they are very computation-

ally intensive, and are not suitable for routine analysis of

large genome-wide data sets.

Metrics for assessing results

Two primary metrics are used for assessing accuracy of

haplotype phase inference and imputation for large-scale

data sets. The switch error rate (Lin et al. 2002; Stephens

and Donnelly 2003) is the proportion of successive pairs of

heterozygote markers in an individual that are phased

incorrectly with respect to each other. This error rate can

only be assessed when the true haplotypes are known, for

example in simulated data, or when nuclear family data are

available. The imputation error rate is the proportion of

missing data genotypes that are correctly imputed. This

error rate can be assessed in real data by masking (setting

to missing) a small proportion of the genotypes, and

attempting to impute them. Methods for haplotype phasing

that achieve low switch error rates also tend to achieve low

imputation error rates, because low switch error rates

indicate accurate haplotype phasing, which in turn leads to

high-quality imputation.

It is possible to tune the output from haplotype phasing

and imputation methods to attempt to minimize these two

measures of accuracy. While it is natural to use the ‘‘best’’

haplotypes as output—that is, the haplotypes with the

highest likelihood values, which are the output of the

Viterbi algorithm (see section on ‘‘HMMs’’)—these are not

necessarily the haplotypes that will minimize switch and

imputation error. For example, fastPHASE (Scheet and

Stephens 2006) attempts to minimize switch error by

moving through the heterozygous sites in an individual’s

genotypes, phasing each heterozygous site relative to the

previous one according to the most frequent phasing seen

in the sampled haplotype pairs. Imputation error can be

minimized by setting the imputed genotype to be the one

that maximizes the genotype posterior probability (this is

not necessarily the same as maximizing the posterior

probability for the entire haplotype pair).

In real data, for which the correct phase and missing

genotype values are unknown, one can assess the imputa-

tion or phase accuracy by using the variability of the

sampled haplotypes or genotypes. These samples can be

obtained either from multiple iterations of a single long EM

run (Li et al. 2007) or from the final iterations of multiple

EM runs (Scheet and Stephens 2006). If the imputed

genotypes or phases of successive heterozygote genotypes

are almost identical over multiple samples, one can have

high confidence in the quality of the imputation or phasing,

whereas if the variability is high, the accuracy is likely to

be low.

Methods for haplotype phase inference

In this section, I describe the methods for haplotype phase

inference that are applicable to GWAS, and the statistical

models on which many such methods are based.

Methods based on the Li and Stephens framework

A number of methods suitable for haplotype phase infer-

ence on large-scale data sets are based on variants of the

‘‘product of approximate conditionals’’ (PAC) models

described in Li and Stephens (2003). I will refer to this

family of models as the Li and Stephens framework. In

these models, a subset of haplotypes is selected as a ref-

erence set, and each reference haplotype represents a

(hidden) state of the HMM at each marker. The true hap-

lotypes underlying the observed genotype data are assumed

to be imperfect mosaics of the reference haplotypes. Points

of change from one reference haplotype to another allow

for historical recombination. The observed alleles may

differ from the alleles on the underlying true haplotypes to

allow for historical mutation and genotype error. As part of

the model fitting process, parameters such as historical

recombination rates between adjacent markers, and muta-

tion rates may be estimated.

FastPHASE (Scheet and Stephens 2006) uses the Li and

Stephens framework, with a fixed number of haplotype

clusters in place of reference haplotypes. I will refer to this

model as the Scheet and Stephens model. The model

parameters, including definitions of the haplotype clusters

and recombination and mutation rates are fit using an EM

algorithm. By default, fastPHASE v1.2 chooses the optimal

number of clusters from the range 5, 10 and 15 using cross-

validation. For data sets with large numbers of individuals,

the use of a larger number of haplotype clusters (e.g. 20 or
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30 clusters rather than the default 5–15) improves impu-

tation and phasing accuracy (Eronen et al. 2006). However,

computation time increases quadratically with the number

of haplotype clusters used.

Mach (Li et al. 2006, 2007) is also based on the Li and

Stephens framework. During each EM iteration of the

model fitting, the current estimates of haplotype phase are

used as the reference haplotypes. One at a time, an indi-

vidual is removed from the set of reference haplotypes and

is updated. The updated pair of haplotypes for the indi-

vidual is sampled from the posterior probability

distribution which is based on the current reference hap-

lotypes. The recombination and mutation rates are

estimated at the end of each iteration. In order to reduce the

computational burden, one can restrict the number of

states. In this case, a random subset of estimated haplo-

types is used as the reference pool for each update of an

individual. As the computational burden increases qua-

dratically with the number of reference haplotypes, the

ability to limit the number of states in this way is essential

for data sets with large numbers of individuals. Impute

(Marchini et al. 2007) is also based on the Li and Stephens

framework, however Impute does not infer haplotype

phase, so it is considered later, under methods for missing

data imputation.

PHASE (Stephens and Scheet 2005; Stephens et al.

2001) has been considered a gold-standard in the field of

haplotype phase inference, as it has achieved excellent

results on small data sets (Marchini et al. 2006). PHASE

version 2 (Stephens and Scheet 2005) takes a Bayesian

approach and uses MCMC to fit parameters of a model

based on the Li and Stephen framework. Because it uses

MCMC, it involves long computation times. In addition,

the current implementation of PHASE (v 2.1) cannot

handle more than approximately 100 markers at once, so it

must be applied to sliding windows of markers for larger

data sets.

Beagle

Beagle (Browning and Browning 2007b) is based on a

model that locally clusters haplotypes (Browning 2006). I

will refer to this model as the Browning model in this

review. In the Browning model, the observed haplotypes

are grouped into clusters at each marker position, based on

similarity of the haplotypes at markers in the local vicinity.

As one moves along the model from one marker to the

next, cluster membership tends to stay stable, with some

changes due to historical recombination or mutation events.

The Browning model is an HMM, and EM-style

updating is used to fit the model in Beagle. There are no

explicit parameters such as recombination fractions in the

Browning model. Instead, the model is represented by the

clusters and by the possible transitions between them,

along with the observed frequencies of those transitions.

Important differences between the Browning model and the

Li and Stephens framework (as implemented in Mach and

Impute) are highlighted in Fig. 1. First, the number of

states at each marker can vary. This allows Beagle to

model differing levels of complexity at differing locations,

while minimizing the computational burden. Second, in the

Browning model a hidden state (the localized haplotype

cluster) only emits a single type of allele (i.e. haplotypes

with different observed alleles at a position cannot be in the

same localized haplotype cluster). Thus, mutation is not

explicitly modeled, although the states of the model will

include any observed mutations. In addition, each state at

one marker can transition to at most k states at the next

marker, where k is the number of observed alleles for the

Li and Stephens framework Browning model 

1 0 1 00 1 0
Reference
Haplotype 1 

1 00 1 0 1 0 1 1
Reference
Haplotype 2 

1 0 1 00 1 1 10Reference
Haplotype 3 

1 00 1 0 1
Reference SNP i-1 SNP i SNP i+1
Haplotype 4 

SNP i-1 SNP i SNP i+1

Fig. 1 Illustration highlighting major differences between models

based on the Li and Stephens (2003) framework and the Browning

model (Browning 2006). Excerpts of the models covering three

markers (SNPs i - 1, i and i ? 1) are shown. Ovals are hidden states

of the models. For the Li and Stephens framework, these states are

defined by the reference haplotypes, while for the Browning model

the states are localized clusters of haplotypes. Note that the graphical

representation of the Browning model is that given in Browning

(2008), while earlier representations had states as edges rather than as

nodes of the graph. The Browning model will tend to have fewer

states at any given marker than will unconstrained models based on

the Li and Stephens framework, and the number of states can vary

from marker to marker for the Browning model but is fixed in the Li

and Stephens framework. Arrows between states from one SNP to the

next are transitions of the HMM. For the Li and Stephens framework,

transitions with highest prior probability (those seen in the reference

haplotypes) are shown with bold arrows, while thin arrows allow for

historical recombination. For the Browning model, there are at most k
transitions coming out of a state, where k is the number of alleles at

the next marker (i.e. 2 for SNPs), which helps to keep the model

parsimonious. Arrows coming out of the top of the states are possible

emissions of the HMM, which are the observed alleles. For the Li and

Stephens framework, emissions with highest prior probability (the

alleles on the reference haplotypes) are shown with bold arrows,

while thin arrows represent mutations to other alleles. The reference

haplotypes here are 011, 010, 101 and 001. For the Browning model,

there is only one possible emission from each state, which helps to

keep the model parsimonious. The models shown are illustrative only.

The actual form of the Browning model will vary depending on the

alleles of the reference haplotypes outside this window of markers
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marker (e.g. k = 2 for SNPs). These differences reduce the

number of possible paths through the model for a given

multilocus genotype, thus reducing the computational

burden for each iteration of the EM algorithm. With the

Browning model, there is no need to estimate parameters

such as mutation rates and recombination rates explicitly,

which appears to have the effect of reducing the number of

iterations required (relative to Mach and fastPHASE which

do estimate such parameters). A final difference is that

many haplotype configurations are assigned a probability

of zero by the Browning model. For example, the haplo-

type 111 has probability zero in Fig. 1. This difference is

necessary to allow the model to be so parsimonious, but

means that the haplotype model must be constructed from

all sampled individuals, rather than from a subset acting as

a reference panel. If an individual’s genotypes are not used

in the model-building process, it is possible to encounter

the situation in which there is no haplotype configuration in

the model that is consistent with the individual’s genotype.

In summary, the Browning model is a much more parsi-

monious model than the Li and Stephens framework. Thus,

there are many fewer parameters to estimate in the

Browning model, which results in much faster computation

times.

The localized haplotype clustering in the Browning

model used by Beagle is conceptually similar to the clus-

ters of the Scheet and Stephens model. One major

difference between the clusters in the Browning model and

the clusters in the Scheet and Stephens model is that the

latter uses a fixed number of clusters, while the former

allows the number of clusters to vary from one position to

another. Another important difference is that clusters in

Beagle are based on the current estimates of the haplotypes

rather than on underlying ancestral haplotypes. For exam-

ple, two haplotypes with different alleles at the current

marker position will not be in the same cluster at this

position with Beagle, whereas they might be in the same

cluster with fastPHASE, if the haplotypes are otherwise

very similar at nearby markers.

Other methods for haplotype phase inference

The EM algorithm can also be used directly for haplotype

phase and missing data estimation (Excoffier and Slatkin

1995; Hawley and Kidd 1995; Long et al. 1995). In this

case, there is no mediating model, but the frequencies of

the haplotypes are estimated directly. The methods can

only be applied to small numbers of markers at once,

because the haplotype frequencies become too low to be

estimated with any accuracy when more than a handful of

markers are considered. For large-scale data sets, then,

haplotype phasing involves sliding a window along the

chromosome, estimating haplotype phases within each

window and piecing the fragments together over the whole

chromosome. Due to the limitation on the number of

markers that can be considered at once, and on the lack of a

model to account for historical recombination and muta-

tion, it is unlikely that direct EM algorithms will be able to

achieve the accuracy of good model-based methods.

Another successful class of large-scale haplotype phase

inference methods is based on piecing together observed

haplotype segments, such as in HaploRec (Eronen et al.

2006). HaploRec divides reference haplotypes into frag-

ments. All fragments with observed frequency greater than

some threshold are placed in a dictionary. The probability

of a haplotype is defined to be the product of corresponding

fragment frequencies from the dictionary. As there are

multiple ways to construct a given haplotype from the

dictionary of fragments, the result is averaged over all such

‘‘segmentations’’. An EM algorithm is used to successively

refine the estimated phased haplotypes. HaploRec does not

impute missing data as part of the haplotype phasing pro-

cess, in contrast to the other methods described above. The

dictionary model of Ayers et al. (2007) is very similar;

however, Ayers et al. use MCMC to fit their model. This

enables imputation of missing data, but makes the algo-

rithm too slow for application to large data sets.

Consideration of phylogeny can be used in haplotype

reconstruction, as in HAP (Halperin and Eskin 2004). This

approach assumes no recurrent mutation, and no historical

recombination within the window of markers, when

building an ancestral tree for the haplotypes underlying the

observed genotype data. This is inherently a block-based or

window-based approach, which has some disadvantages, as

mentioned above for the direct EM approaches.

There are a great many papers describing other methods

for haplotype phase inference. Typically, these methods

show excellent accuracy on small data sets (a handful of

markers and fewer than 100 individuals) but have not been

shown to have good accuracy for large data sets, such as

those found in GWAS. In addition, most of these methods

are computationally costly, and would be extremely diffi-

cult to apply to on a genome-wide scale.

Methods for missing data imputation

Except for HaploRec, all of the above haplotype phasing

methods impute missing data as part of the process of

inferring haplotype phase. In addition, Mach and fast-

PHASE have options to only impute missing data (i.e. not

infer haplotype phase), which reduces computational time

somewhat. Mach and fastPHASE have options to specify

that the phase of some individuals is known—this is useful

when including reference data that has been accurately

phased with the use of data on related individuals, such as
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HapMap trios (The International HapMap Consortium

2005). Beagle version 3.0 also allows for use of a phase

known reference panel (B. L. Browning and S. R.

Browning, unpublished data; software available on

request).

Two imputation-specific methods that are based on the

Li and Stephens framework (Li and Stephens 2003) are

Impute (Marchini et al. 2007) and Bim–Bam (Servin and

Stephens 2007). Impute uses a panel of phased reference

haplotypes to build a model, and requires user-specification

of recombination rates and mutation rates. Thus, it avoids

the need for an iterative model-building approach, but it

may be sensitive to misspecification of model parameters,

and does not utilize information contained in the other

individuals on whom imputation will be performed. Bim–

Bam uses fastPHASE to perform the imputation, but adds

new methodology for using the imputed values in associ-

ation testing. Missing data are imputed multiple times, with

the imputed values being used in a Bayesian regression

approach to test for association. It is beyond the scope of

this review to discuss specific statistical techniques for

using imputed genotypes in association testing, so we do

not consider Bim–Bam in further detail here.

Rather than using all markers (on a chromosome, or

within a large window) as potential predictors of genotype

via phased haplotypes, several approaches use small sets of

genotyped markers (usually tag SNPs). The predictors of

genotype can be regression equations based on tag SNPs

(Chapman et al. 2003), specific two or three marker hap-

lotypes (Pe’er et al. 2006), or weighted averages of

haplotype indicators (Lin et al. 2008; Nicolae 2006; Zaitlen

et al. 2007).

In addition to specialized genetics-based approaches,

one can use standard statistical techniques for imputing

missing data, such as linear regression with variable

selection, regression trees, or k-nearest neighbor methods.

Yu and Schaid (2007) reviewed a number of these meth-

ods, and compared them to fastPHASE on masked

HapMap data. They found that fastPHASE provided better

results (gave lower imputation error rates) than any of the

non-genetic methods.

Accounting for uncertainty in imputation

The degree of accuracy that can be achieved when esti-

mating ungenotyped markers varies greatly depending on

the extent of LD between the ungenotyped marker and

nearby genotyped markers. Ungenotyped markers that are

in low LD with nearby markers, or, equivalently, for which

the estimated accuracy is low, are usually discarded rather

than being carried forward into association analysis. For

example, the study of Scott et al. (2007) imputed genotypes

in 2,335 individuals for 2.15 million HapMap SNPs with

minor allele frequency [1% in Caucasians that were not

included on the Illumina 300K panel. In this study, 0.06

million imputed SNPs (3%) failed to have sufficiently high

estimated accuracy, and were removed from the analysis.

Nonetheless, there will be some uncertainty around the

remaining estimated (imputed) missing genotypes that

should not be ignored.

Lin et al. (2008) recommend using likelihood-based

methods to integrate over uncertain haplotype phase and

missing data values when imputing and testing ungeno-

typed variants. This avoids the potential loss of power

inherent in the two-stage approach of imputing variants

then using the imputed values (without accounting for

uncertainty in these values) in the association tests. Most

imputation methods provide posterior probabilities for

imputed genotypes, which allows for accounting of

uncertainty without taking the full likelihood approach. It

is beyond the scope of this review to discuss the best ways

to use imputed values in association tests, however various

approaches have been described (Lin et al. 2008; Marchini

et al. 2007; Nicolae 2006; Servin and Stephens 2007).

Whichever approach is used, tests based on ungenotyped

variants are subject to the same problems as those on actual

genotypes, such as effects of population stratification, and

differential rates of missing data and genotyping error in

cases and controls. Genotyping problems at a single marker

can adversely affect imputation at multiple nearby impu-

tation positions. Thus, replication of imputation-based

results should always include actual genotyping of the

implicated markers on a separate set of cases and controls.

Comparisons of methods

Both error rates and computing times need to be considered

when assessing the performance of competing methods.

The relative performance of the methods differs greatly as

a function of sample sizes, marker densities and computing

parameters such as the number of EM iterations. As a

general rule, for both haplotype phase inference and

missing data imputation, the larger the sample size, the

more hidden states (e.g. reference haplotypes in the Li and

Stephens framework, or haplotype clusters in the fast-

PHASE and Beagle models) are needed in the model to

achieve optimal performance. This is not surprising, as a

larger sample size means a greater number of observed

haplotypes, which can be better captured by greater model

complexity.

Eronen et al. (2006) found that EM methods based on

direct estimation of haplotype frequencies, such as PL-EM

(Qin et al. 2002) are less accurate than model-based

methods such as HaploRec, fastPHASE and PHASE on
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large data sets. Browning and Browning (2007b) showed

that Beagle is faster and more accurate than HaploRec and

fastPHASE on very large data sets (thousands of individ-

uals and a density of at least 1 SNP per 3 kb). See

Browning and Browning (2007b) and Eronen et al. (2006)

for comparisons of other methods on large sample sizes.

Also see Marchini et al. (2006) for results on smaller

sample sizes.

Although simulation results in Lin et al. (2008) suggest

that the tag-based maximum likelihood approach is more

powerful than a haplotype-based imputation approach

using fastPHASE, the simulations included only five SNPs.

With more markers, fastPHASE could obtain improved

estimates of haplotype phase, and thus increase the accu-

racy of the imputation. Thus, these simulations are too

limited to allow valid comparison of the relative perfor-

mance of Lin et al.’s method and fastPHASE.

Conclusions

This paper has reviewed the best methods for haplotype

phase inference and missing data imputation, and their

application to GWAS. The best haplotyping methods in

this context differ from those suggested in an earlier

comparison (Marchini et al. 2006) with smaller sample

sizes, because of the computational demands of whole

genome data, and because methods that provide most

accurate inference on data sets with small numbers of

individuals do not necessarily provide the most accurate

inference on larger data sets.

Missing data imputation is a new and exciting way to

improve the power of GWAS. By means of a reference

panel, one can impute ungenotyped SNPs and/or combine

studies genotyped on different platforms. The development

of larger reference panels, such as the 1000 Genomes

Project, with more individuals and more variants, will

make this approach increasingly useful. However, haplo-

type-based multilocus analysis (Browning and Browning

2007a) should not be neglected as a complement to single

marker analysis.

For large sample sizes ([1,000), Beagle has an advan-

tage over other haplotype-phasing programs, in that its

parsimonious modeling scales well to such large data sets

while other methods have to be scaled back for computa-

tional reasons. For smaller sample sizes (100 individuals),

for which computing times are not as significant, I have

found that Mach provides excellent results, providing

better accuracy than other methods such as fastPHASE and

Beagle (S. R. Browning, unpublished results).

I have not directly compared the imputation-only

methods with imputation using the haplotype-phasing

methods. Some of the imputation methods do not actually

output imputed genotypes, but only output the final results

of testing for association (for example, Lin et al. 2008).

These methods need to be compared in terms of power to

detect association rather than accuracy of imputation. Of

the available imputation methods, Impute and Mach have

both been used for imputation in GWAS, and have yielded

similar results (Barrett et al. 2008).

What makes for a good method for haplotype phasing

and missing data inference for GWAS? Since the data sets

are so large, they contain a lot of information. A careful

balance must be maintained in the level of modeling that is

applied. With low levels of modeling, such as in the direct

EM methods, only a small number of markers can be

considered simultaneously. This reduces the amount of

information that can be extracted from the data. Careful

selection of the markers that are used to provide informa-

tion (as in Lin et al. 2008) helps, but may still be sub-

optimal. Overly stringent modeling can also be disadvan-

tageous with large data sets, as the data contain a lot of

information that can be partially lost if an inadequate

model is strongly imposed. Thus with large data sets, the

data should be allowed to speak for themselves to quite an

extent. Several of the more successful methods are very

empirical. Mach and Impute use estimated or observed

haplotypes directly as reference haplotypes, with other

haplotypes being imperfect mosaics of these haplotypes.

Beagle constructs a parsimonious model based on the

estimated haplotypes, and allows only for certain mosaics

of these haplotypes. To achieve the balance of over-mod-

eling versus under-modeling, an extremely useful approach

is to recognize that haplotypes will tend to be locally

similar to one another, with patterns of changes following

those expected from the biological processes of recombi-

nation and mutation (Li and Stephens 2003). This principle

underlies the models that are used by the most successful

haplotype phasing algorithms, such as models based on the

Li and Stephens framework, HaploRec’s segmentation

model and the Browning model.

Beyond modeling, the implementation of the method

must be computationally efficient, and the method must

have good convergence properties if it is iterative (as

most of the methods are). HMMs facilitate efficient

sampling of new haplotype estimates given the current

model, and are thus extremely useful. The models based

on the Li and Stephens framework and the Browing

model are examples of HMMs. EM-style iterative meth-

ods, such as those used by Mach, fastPHASE, HaploRec

and Beagle require much less computation than methods

based on MCMC (such as PHASE). It is my opinion that

MCMC is too slow for GWAS data sets, and that MCMC

will not be able to provide useful solutions to the problem

of haplotype phase estimation for large-scale data. Cur-

rently, EM algorithms are widely used, whereas other
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types of iterative maximization, such as variants of

Newton’s method (for example, Dudbridge 2008), are

rare, however this may indicate fashion rather than

inherent advantages of the EM approach.
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