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Abstract Africa is the ultimate source of modern humans
and as such harbors more genetic variation than any other
continent. For this reason, studies of the patterns of genetic
variation in African populations are crucial to understand-
ing how genes aVect phenotypic variation, including dis-
ease predisposition. In addition, the patterns of extant
genetic variation in Africa are important for understanding
how genetic variation aVects infectious diseases that are a
major problem in Africa, such as malaria, tuberculosis,

schistosomiasis, and HIV/AIDS. Therefore, elucidating the
role that genetic susceptibility to infectious diseases plays
is critical to improving the health of people in Africa. It is
also of note that recent and ongoing social and cultural
changes in sub-Saharan Africa have increased the preva-
lence of non-communicable diseases that will also require
genetic analyses to improve disease prevention and treat-
ment. In this review we give special attention to many of
the past and ongoing studies, emphasizing those in Sub-
Saharan Africans that address the role of genetic variation
in human disease.
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Introduction

African population history

Africa is a region of considerable genetic, linguistic, and
cultural diversity. There are over 2,000 distinct ethno-lin-
guistic groups in Africa, speaking languages that constitute
nearly a third of the world’s languages (http://www.ethno-
logue.com/). These languages have been classiWed into
four major language families: Niger-Kordofanian (spoken
predominantly by agriculturalist populations across a
broad geographic distribution in Africa), Afro-Asiatic
(spoken predominantly by northern and eastern Africa pas-
toralists and agro-pastoralists), Nilo-Saharan (spoken pre-
dominantly by eastern and central African pastoralists),
and Khoisan (a language containing click-consonants, spo-
ken by southern and eastern African hunter–gatherer popu-
lations) (Fig. 1). These populations live in a diverse set of
environments and climates, including tropical forests,
savannah, desert, and coastal regions and have diverse sub-
sistence patterns and exposure to infectious disease. These
populations also have high levels of genetic and pheno-
typic diversity (e.g. high HLA diversity, Supplemental
Table).

The pattern of genetic variation in modern African popu-
lations is inXuenced by their demographic history, which
aVects all regions of the genome, as well as by natural
selection, which aVects speciWc loci that play a role in adap-
tation. African populations have a complex demographic
history, consisting of ancient and recent population expan-
sion and contraction events, short and long range migra-
tions (e.g. the migration of agricultural Bantu-speakers
from West Africa throughout sub-Saharan Africa within the
past »4,000 year and the migration of Khoisan-speakers
from eastern to southern Africa within the past »20,000–
40,000 year), and population admixture (Lahr and Foley
1998; Reed and TishkoV 2006; TishkoV et al. 2007a). To
date the earliest claimed fossil evidence for anatomically
modern humans has been identiWed in Ethiopia (Omo 1)
and dated to about 195,000 years ago (McDougall et al.
2005); however, the “modern” characteristics of this speci-
men have been debated (as it displays important diVerences
in the brow and chin regions) and other records indicate a
slightly more recent age of 190,000 years or less (White
et al. 2003; Haile-Selassie et al. 2004). Following a period
of population diVerentiation in Africa, one (or more)
populations migrated out of East Africa, probably towards
Western India, within the past 50,000–100,000 years,

Fig. 1 A map of selected migrations and language family distributions in Africa (adapted from Reed and TishkoV 2006). More recent migrations
in historical times are represented by thin arrows and inferred prehistoric migrations are represented by medium arrows
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resulting in a world wide range expansion of modern
humans (Quintana-Murci et al. 1999, reviewed in TishkoV
and Verrelli 2003a). Because African populations are older
than non-Africans, there has been more time for genetic
diversity to accumulate. Phylogenetic analyses of mtDNA,
Y chromosome, and autosomal haplotypes indicate that the
deepest lineages are in Africa (reviewed in TishkoV and
Verrelli 2003a). Within Africa, the oldest mtDNA and Y
chromosome lineages are found amongst the click speaking
hunter–gatherers in southern Africa (i.e. the Khoisan or
!Kung San), although there is some evidence for shared
ancestry between the southern African and East African
click-speaking groups, suggesting a possible East African
origin of these populations (Chen et al. 2000; Gonder et al.
2007; Hammer et al. 2001; Passarino et al. 1998; Scozzari
et al. 1999; TishkoV et al. 2003, 2007a).

The migration of modern humans out of Africa resulted
in a population bottleneck and concomitant loss of genetic
diversity (Liu et al. 2006). Numerous studies have observed
higher levels of nucleotide and haplotype diversity in Afri-
cans compared to non-Africans, reXecting a larger eVective
population size in African populations (TishkoV et al.
2003). Non-African populations appear to have a subset of
the genetic diversity present in sub-Saharan Africa, higher
levels of linkage disequilibrium, and larger and more uni-
form haplotype blocks relative to Africans (TishkoV et al.
2003; TishkoV and Kidd 2004; TishkoV and Verrelli 2003b;
TishkoV and Williams 2002). African populations also have
a more subdivided population structure relative to non-
Africans, with high levels of genetic diversity amongst
populations (TishkoV et al. 1996, 1998; 2000). A recent
study of 800 STRPs and 400 In/Dels genotyped in over
3,000 geographically and ethnically diverse African popu-
lations indicates at least 12–14 genetically distinct ancestral
populations in Africa and high levels of population admix-
ture in many regions (Reed and TishkoV, unpublished).

Patterns of genetic diversity in humans in general and in
African populations in particular are also inXuenced by nat-
ural selection (Barreiro et al. 2008). Because of diVerences
in diet, climate, and exposure to pathogens, ethnically and
geographically distinct populations are likely to have experi-
enced distinct selection pressures, resulting in local genetic
adaptations (Sabeti et al. 2007). For example, mutations
causing G6PD enzyme deWciency that are associated with
malarial resistance have risen to high frequency in popula-
tions exposed to malarial infection, despite the negative con-
sequences associated with this deWciency (Sabeti et al.
2002b; Saunders et al. 2002; TishkoV et al. 2001; Verrelli
et al. 2002). Another example of local adaptation is the ori-
gin and rapid spread of mutations associated with lactase
persistence in East African pastoralist populations (TishkoV
et al. 2007b). Lactase persistence (LP) is a classic example
of genetic adaptation in humans. The ability to digest milk

as adults is a cis-regulated genetic trait. Although a mutation
associated with LP was previously identiWed in Europeans
(Enattah et al. 2002), the genetic basis of LP in African pop-
ulations remained unknown. A study of genotype and phe-
notype association in a sample of 43 populations from
Tanzania, Kenya, and the Sudan identiWed three novel SNPs
located »14 kbp upstream of the lactase gene (LCT; this
and all other gene names are from the HUGO Gene Nomen-
clature Committee (HGNC) database: http://www.gene-
names.org/index.html) that are signiWcantly associated with
the LP trait in African populations, and enhance transcrip-
tion from the LCT promoter in vitro (TishkoV et al. 2007b).
These SNPs are located within 100 bp of the European LP-
associated variant (C/T ¡13910). One LP-associated SNP
(G/C ¡14010) is common in Tanzanian and Kenyan pasto-
ralist populations, whereas the other two (T/G ¡13915, and
C/G ¡13907) are common in northern Sudanese and Ken-
yans. Genotyping of 123 SNPs across a 3 Mbp region in
these populations demonstrated that these African LP-asso-
ciated mutations exist on haplotype backgrounds that are
distinct from the European LP-associated mutation and from
each other. In addition, haplotype homozygosity extends
>2 Mbp on chromosomes with the LP associated C ¡14010
SNP, consistent with an ongoing selective sweep over the
past 3,000–7,000 years. These data indicate a striking exam-
ple of convergent evolution and local adaptation due to
strong selective pressure resulting from shared cultural traits
(e.g. cattle domestication and adult milk consumption) in
Europeans and Africans. This study also demonstrates the
eVect of local adaptation on patterns of genetic variation and
the importance of resequencing across geographically and
ethnically diverse African populations for studies of disease
susceptibility. Another recent study has provided evidence
that selective pressure on genes in related pathways can
occur; this would be the case of two separate gene regions,
containing the LARGE and DMD genes, both having a
demonstrated role in Lassa fever infection, that have been
subjected to positive selection in West African Yoruba
(Sabeti et al. 2007). In conclusion, the amount and patterns
of genetic diversity in Africa can make studying African
population particularly informative about how genes impact
human disease and health.

Susceptibility to infectious disease

In his paper entitled “Observations made during the epi-
demic of measles on the Faroe Islands in the year 1846” the
Danish physician P.L. Panum described an outbreak in
which the great majority of the Faroe population developed
measles (6,000 of 7,800 people) and more than 200 people
died. In this epidemic none of the individuals who had pre-
vious exposure during the epidemic of 1781 (many of
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whom were still alive in 1846) developed disease (Poland
1998). As pointed out by Poland, key questions on disease
susceptibility and immunization arise from this epidemic:
why did some people survive while others died; why was
mortality so high; and why was the protective eVect from a
past epidemic so high? These are important issues that
involve both innate susceptibility and resistance as well as
acquired immunity conferred by previous exposure. In
essence, these observations integrate clinical, epidemiolog-
ical and evolutionary approaches that allow an understand-
ing of the diverse functions of immunity genes, aVecting
survival, and therefore subjected to natural selection
(reviewed by Quintana-Murci et al. 2007). The concept of
diVerential susceptibility to infectious disease motivates
much of the genetic work in Africa as infectious disease
stills plays an important role in the health of most African
populations. In these studies diVerent approaches have been
and are being employed to assess how genetic variation
aVects infection status in sub-Saharan Africa. This research
involves multiple protocols, including twin studies, where
concordance rates are compared between monozygotic and
dizygotic twins, case–control association studies, and fam-
ily-based association and linkage studies where the co-seg-
regation of a marker with the disease phenotype is tested in
families (Hill 2006). Because the prevalence of DZ (dizy-
gous) twinning in some parts of West Africa is unusually
high, it is feasible to collect large twin cohorts to investi-
gate the eVect of host genetics on response to both infection
and vaccines (Creinin and Keith 1989). For example, a
large cohort of 267 twin pairs (where 60 twin pairs were
determined to be MZ (monozygous) by microsatellite typ-
ing), has provided unequivocal data that cell proliferation
responses to a range of malarial antigens were more highly
correlated in MZ than in DZ pairs (Jepson et al. 1997).
Another study has shown higher concordance for cellular
immune responses to mycobacterial and other antigens in
MZ compared to DZ twins, suggesting that genetic factors
are important regulators of this immune response (Newport
et al. 2004a). Of potential interest is the fact that DZ twin-
ning itself may be under genetic control and possibly under
selection (Sirugo et al., in preparation).

As with all such studies a major challenge is the precise
and consistent deWnition of the clinical phenotypes. There-
fore, over the past decade a very large eVort has been made
to ascertain samples, using carefully deWned, standardized
criteria; as a result of this eVort thousands of African sam-
ples have been archived, providing a unique resource for
studying the complex genetics of susceptibility and resis-
tance to infection. These bio-banking initiatives, collected
within appropriate ethical frameworks and supported by
dedicated databases, provide unique resources for under-
standing the genetic risk factors for infectious disease (Sga-
ier et al. 2007; Sirugo et al. 2004).

Malaria

Malaria is a serious health issue in Africa, accounting for
one in every Wve childhood deaths. In 2006 the WHO esti-
mated that almost 74% of the African population lives in
areas endemic for malaria, about 19% in epidemic-prone
and only 7% in malaria-free areas (http://www.afro.
who.int/malaria/publications/annual_reports/africa_malaria_
report_2006.pdf). Studies of large populations have begun
to elucidate the complex genetics of malaria susceptibility
and several genes have already been associated with
“malaria” susceptibility (Table 1).

As with all genetic traits there is a real need for accurate
and precise deWnition of the phenotype. “Malaria illness” is
a complex phenotype that can be clinically either uncompli-
cated or severe; the latter, in particular, aVects various
organs and tissues and takes diverse forms with variable
mortality. In addition malaria can be easily over-diagnosed
or under-diagnosed and, other than parasitemia, no single
speciWc factor exists that is predictive of the malaria etiol-
ogy of an illness. Attempts to associate speciWc acute phase
proteins with malaria have not provided conclusive evi-
dence; for example, one acute phase protein proposed as an
index of malaria endemicity, haptoglobin (ahaptoglobina-
emia), is equivocal and the eVect of haptogloblin genotypes
on severe malaria has been contradictory (reviewed by
Koram and Molyneux 2007).

Despite this complexity, certain phenomena are critical
to disease development, and genetic variants that disrupt
these processes can protect against disease. The invasion of
erythrocytes by malaria parasites is central to the disease
process, and the DuVy blood group antigen, a chemokine
receptor expressed in many cell types and encoded by the
FY gene, is important because Plasmodium vivax cannot
infect individuals who do not express the DuVy antigen,
resulting in full protection of DuVy (¡) individuals. The
lack of DuVy expression is due to a promoter SNP that
alters a binding site for the GATA-1 transcription factor
(Tournamille et al. 1995), resulting in the parasite being
unable to invade red blood cells. Over 97% of individuals
in West and Central Africa are DuVy (¡). The date of
emergence of DuVy negativity has been broadly dated,
from more than 90,000 to about 6,500 years ago, (Webb
2005). There has been considerable debate whether the
spread of DuVy (¡) (FY*0) was due to selection in
response to P.vivax or if it evolved independently and prob-
ably earlier. The latter hypothesis is consistent with a
Southeast Asian origin of P. vivax, and the independent
evolution of the DuVy null phenotype in Africa. Under this
scenario the spread of P.vivax across large areas in Africa
would have been prevented. In support of the independent
evolution hypothesis is the observation that current P. vivax
induced malaria is mild, although the historical strength of
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selection cannot be known and may have been diVerent
than indicated by the present severity of disease (Carter and
Mendis 2002; Livingstone 1984). A complicating factor is
the suggestion that P. vivax infection could be “beneWcial”
to humans by conferring some cross-immunity to the more
severe P. falciparum-related malaria (Williams et al. 1996).
In contrast, evidence of strong recent positive selection on
FY*0 is provided by the observation that this variant has a
high Fst, the highest ever detected in humans (Hamblin and
Di Rienzo 2000; Hamblin et al. 2002). However, no com-
pelling model has yet to be developed to explain how such
a high Fst could be produced under a model of such seem-
ingly mild selection.

Other notable examples of genetic protection from
malaria in sub-Saharan Africa include G6PD deWciency
(Ruwende et al. 1995), HbB sickle-cell trait or HbA/HbS
heterozygosity that is associated with a tenfold reduction in
malaria risk, HbC (beta6Glu ! Lys) (Kwiatkowski 2005;
Ntoumi et al. 2007) and alpha thalassemia (HbA gene) that
confers protection against severe malaria and malarial ane-
mia (Haldane 1949; Williams et al. 2005a; Wambua et al.
2006; Pasvol 2006). In addition, beta thalassemia, which
confers some protection against malaria, occurs only in lim-
ited parts of West Africa (Willcox et al. 1983). Sickle cell
disease is the classic example for a human balanced poly-
morphism [a concept introduced by Neel (1953)] and has
been studied extensively. In contrast to the heterozygote
advantage of HbS, HbC associates with a very strong
reduction in risk of clinical malaria of 93% in homozygotes
versus 29% in heterozygotes in a large case–control study
on more than 4,000 Mossi subjects from Burkina Faso
(Modiano et al. 2001b). The conundrum is that despite a
very modest pathological load and a very strong protective
eVect of HbC, the distribution of this allele is limited to
central West Africa, while HbS, a quasi-lethal mutation that
confers a severe clinical phenotype in homozygotes, has a
signiWcantly more cosmopolitan distribution across sub-
Saharan Africa. This distribution is quite peculiar given
that evidence demonstrates that the “harmless” C is older
than S (Modiano et al. 2008). However, while the C allele
confers mild protection in heterozygotes (a recessive selec-
tion model), the S mutation spread much faster by provid-
ing strong protection to heterozygotes (i.e. through over-
dominance or heterosis for Wtness), despite the cost of caus-
ing sickle cell anemia in homozygotes. Experimental data
suggest that both HbC and HbS might protect against
severe malaria by abnormal cell-surface display of P. falci-
parum erythrocyte membrane protein-1 (PfEMP-1), which
would reduce the eVects of parasitized erythrocyte seques-
tration in post-capillary microvessels, resulting in cerebral
malaria (Cholera et al. 2008; Fairhurst et al. 2005).

Clearly, single gene variants aVect malaria risk, but the
currently known genes do not explain all of the risk. Addi-

tionally, it has been shown that interactions among genes
can impact malaria. In an elegant study by Williams et al.
(2005b), it was shown that the combination � (+) thalasse-
mia homozygosity with HbS trait in the same Kenyan
subjects causes loss of protection from severe malaria, a
negative epistatic eVect that could explain why � (+)-thal-
assemia did not Wx anywhere in sub-Saharan Africa (Wil-
liams et al. 2005b). HLA has been suggested to have an
important role as well; a study in The Gambia has shown
that a class I antigen (HLA-Bw53) and a class II haplo-
type (DRB1*1302-DQB1*0501) independently associate
with protection from severe malaria (Hill et al. 1991). In a
subsequent study, malaria morbidity was associated with
an overall distribution of Class II haplotypes, but no sig-
nals were seen from speciWc DR-DQ alleles (Bennett
et al. 1993). In the same Gambian population, individuals
homozygous for a speciWc TNF promoter SNP (¡308)
were found to have an increased risk for cerebral malaria,
independent of their HLA alleles (McGuire et al. 1994).
In Gabonese children this TNF SNP was associated with
the rate of symptomatic P. falciparum re-infections
(Meyer et al. 2002). Other SNPs in TNF (including ¡376
and ¡238) have been associated with susceptibility to
severe malaria, severe malaria anemia and control of para-
site density (Flori et al. 2005; Kwiatkowski 2005) and
TNF variation has also been suggested to explain linkage
of malaria fever with MHC Class III (Flori et al. 2003b;
Jepson et al. 1997). A linkage study from the holoen-
demic village of Dielmo (Senegal) has provided evidence
that the “asymptomatic parasite density” trait maps to
chromosome 5q31, along with suggestive evidence for
loci at 5p15 and 13q13 for the “number of clinical malaria
attacks” phenotype. Additionally a signal for “maximum
parasite density, during asymptomatic infection”, was
detected at 12q21 in families from the mesoendemic area
of Ndiop (about 5 km SouthEast of Dielmo) (Sakuntabhai
et al. 2008). Interestingly, the four chromosomal regions
detected in this study overlap with asthma or atopy related
loci.

The Th1 pathway seems to have an eVect on protection
from severe malaria, as suggested by reported associa-
tions of IFNG and IL12B regulatory SNPs with protection
(IFNG up-regulation) and increased susceptibility (IL12B
down-regulation) (Cabantous et al. 2005; Marquet et al.
2008). However, these Wndings, from hemoglobin defects
to polymorphisms of HLA and/or SNPs in the TNF pro-
moter (the latter possibly tagging a neighboring Class III
causal gene), or IFNG and IL12B do not explain most
inter-individual variation in response to P. falciparum
infection, and the distribution of various forms and mani-
festations of malaria. The current estimate that host genet-
ics accounts for approximately 25% of the risk of
infection and contracting malaria implies that there is
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ample room for gene variant discoveries, explaining
diVerences in disease susceptibility and resistance (Mack-
innon et al. 2005).

One way to approach the issue of genetic resistance/sus-
ceptibility to malaria is to study individuals stratiWed by
previously known genes. A linkage study from Ghana,
using only families with HB and G6PD normal genotypes,
has recently identiWed a locus on chromosome 10p15 that
aVects malaria fever episodes (Timmann et al. 2007). In a
population sample from Burkina Faso, a locus controlling
the levels of parasitemia/immune responses to P. falcipa-
rum was mapped on 5q31-33 (Rihet et al. 1998), and
recent data have shown that SNPs in interferon regulatory
factor 1 (IRF1) on 5q31 associate with malaria infection
control and with severe disease in Burkinabès (Mangano
et al. 2008).

A further approach to study possible host genetic eVects
in malaria is to compare the susceptibility to the infection
and disease among sympatric populations in endemic areas
with diVerent genetic backgrounds. This approach revealed
the existence of important inter-ethnic diVerences in the
susceptibility to P. falciparum malaria between West Afri-
can ethnic groups (Modiano et al. 1996). It was clearly
shown that such diVerential resistance was not associated
with the classic malaria resistance genes (Modiano et al.
2001a), but could rather be explained by variant genes con-
trolling the immune responses to the parasite (Torcia et al.
2008).

Tuberculosis

Every year more than 8 million people develop tuberculosis
(TB) disease and 3 million patients die. The total number of
people infected with Mycobacterium tuberculosis is much
larger (approximately 2 billion), but the vast majority of
those infected never develop clinical disease. In 2005 in
Africa there were approximately 3.8 million TB cases,
more than 2.5 million of these were new cases, accounting
for 29% of the worldwide incidence, and almost 550,000
TB patients died (http://www.who.int/mediacentre/fact-
sheets/fs104/en/). The analyses of TB in Africa is compli-
cated by the parallel epidemic of HIV because co-morbidity
is common, making it necessary in studies of the genetics
of TB to consider HIV infection, especially in high HIV
prevalence areas. Twin studies in Africa, comparing MZ to
DZ twins, have provided evidence of a signiWcant role for
heritable factors in TB susceptibility (Jepson et al. 2001).
In the Wrst genome-wide linkage scan for a major infectious
disease in Africans, evidence of linkage was found on chro-
mosomes Xq27 and 15q11 (Bellamy et al. 2000). This
report also identiWed association in these regions of linkage,
supporting the conclusion that TB susceptibility loci reside
at these chromosomal locations (Bellamy et al. 2000). At

15q a promoter variant of ubiquitin-protein ligase E3A
(UBE3A) associates (although not very strongly) with sus-
ceptibility (Cervino et al. 2002), but at Xq27 no positional
candidate has yet been identiWed. Using the complementary
approach of candidate gene analysis, case–control studies
of West African samples have identiWed associations with
variants in several genes; for example SLC11A1
(NRAMP1) (Awomoyi et al. 2002; Bellamy et al. 1998c),
IL1B (Awomoyi et al. 2005), vitamin D receptor (Bornman
et al. 2004; Lombard et al. 2006; Olesen et al. 2007),
CD209 (DC-SIGN), PTX3 (Olesen et al. 2007) and P2X7
genes (Li et al. 2002), to mention a few, have all been asso-
ciated with TB. In East Africa, a combined linkage and
association study of Ugandans has shown that IL10, inter-
feron gamma receptor 1 (IFNGR1), and TNF alpha receptor
1 (TNFR1) variants are linked and associated to TB, but not
with susceptibility to latent infection (Stein et al. 2007).
Another recent analysis of aVected sibling pairs from South
Africa (of mixed ancestry) and from Malawi, along with a
case–control study in West Africans have identiWed two
putative loci for susceptibility, one at 6p21-q23 and one at
20q13.31-33. At the latter locus, variation in the melano-
cortin 3 receptor (MC3R) and cathepsin Z (CTSZ) genes
were implicated in the pathogenesis of tuberculosis (Cooke
et al. 2008).

Importantly, these studies provide additional clues to
relevant pathways involved in disease susceptibility. Studies
of HLA Class II variation detected an association with
increased susceptibility, but these Wndings await replica-
tion (Lombard et al. 2006). As with all candidate gene
studies, other reports of association have failed to replicate
the original Wndings (Table 2). In summary, candidate
gene studies have indicated the existence of susceptibility
loci in speciWc populations, but without providing evi-
dence of strong eVects in Africans. Although some evi-
dence for major TB susceptibility loci has been provided
(Baghdadi et al. 2006, Cooke et al. 2008), it is apparent
that several loci determine or modulate susceptibility to
tuberculosis (Table 2).

Malaria and tuberculosis genome wide association studies

As malaria and tuberculosis are both leading causes of mor-
bidity and mortality in Africa a considerable eVort is under-
way to understand their complex genetic etiology. Genome
wide association studies (GWAS) have been launched
recently through a consortia of investigators speciWcally
created for this purpose, including the MalariaGen initiative
(funded by the Wellcome Trust and the Gates Foundation;
http://www.malariagen.net) and the Tuberculosis Gambia–
Oxford/African Tuberculosis Genetics Groups, which are
part of the Wellcome Trust Case Control Consortium
(WTCCC; http://www.wtccc.org.uk). During 2006–2008
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the MalariaGen and WTCCC consortia have generated data
for up to 500,000 SNPs typed with the AVymetrix Gene-
Chip 500 K mapping array set in thousands of African sam-
ples ascertained for both malaria and tuberculosis. The TB
study group has been focusing on samples collected in four
African countries: The Gambia, Guinea Conakry, Guinea
Bissau, and Malawi. From just one West African country
(The Gambia) the consortium was granted access to
»1,500 cases and »2,500 controls. Analysis of the
genome-wide association data is in progress and should
lead to the identiWcation of SNPs and genes associating
with disease susceptibility, thereby providing a wealth of
information. These initiatives will also provide important
insights into the technical, analytical, methodological and
biological aspects of genome-wide association analysis,
although it should be noted that the current GWAS plat-
forms may not provide a level of coverage that is complete
enough for African samples to detect all important signals.
This is of particular interest given the diversity of patterns
of LD that probably exist across African populations and
that we do not yet fully understand.

HIV/AIDS

Although only 10% of the world’s population lives in Sub-
Saharan Africa, 68% of adults and nearly 90% of children
infected with HIV-1 live in this region. Overall 22.5 million
Africans are estimated to be infected and there are 12 mil-
lion AIDS orphans, making Africa the worst aVected region
in the AIDS pandemic. Prevalences in the adult populations
(age 15 and more) are more than 16% in South Africa, 23%
in Botswana up to a dramatic 34.5% in Swaziland (http://
www.who.int/whosis/database/core/core_select.cfm).

In the absence of antiretroviral treatment, the great
majority of subjects progress to AIDS and death, following
HIV infection. However, although the asymptomatic period
averages 10 years, and ranges from a few to 20 years, there
are rare instances of infected individuals who do not pro-
gress to AIDS at all. Also, some subjects at high risk are
apparently resistant and never become infected, e.g. the
well-described female sex worker cohort from Nairobi,
Kenya (the so called “Majengo” slum women). Some of
these women (»5% of the 3,000 sex workers in Nairobi)
are persistently sero-negative despite exposure to the virus,
although discontinuous exposure seems to lower protection
(Kimani et al. 2008). These cases indicate that genetics and
the environment interact in determining the resistant pheno-
type, and several factors, genetic and immune mediated,
have been associated with altered susceptibility to HIV
(Martin and Carrington 2005; Lama and Planelles 2007)
(Table 3). It has recently been reported that in Kenyan sex
workers interferon regulatory factor 1 (IRF1) variation and
its low gene expression are associated with some resistanceT
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to HIV-1 infection. However, the same IRF1 variation does
not seem to be linked with diVerential disease progression
(Ball et al. 2007). Given the potential role of IRF1 in sup-
porting HIV-1 transcription and amplifying replication,
these results would suggest that the key to protection from
infection lies in gene variants that do not support viral tran-
scription and replication.

Variation in human genes that modulate HIV pathogene-
sis by inXuencing post-entry steps of the viral life cycle is
likely to oVer new insights into both protection from infec-
tion and modulation of disease course. SNPs in genes
aVecting viral replication such as the cytidine deaminase
enzymes APOBEC3F, APOBEC3G, CUL5 and TRIM5 �
have been shown to confer protection in African Americans
against disease phenotypes, including infection, accelerated
CD4 loss, and faster progression to AIDS (Lama and Plan-
elles 2007). Other studies have indicated signiWcant epista-
sis between HLA-B and Killer Immunoglobulin-like
Receptors (KIRs) in eliciting protection from infection or
progression to AIDS (Jennes et al. 2006; Lopez-Vazquez
et al. 2005) (Table 4). These results await replication in
additional cohorts.

Substantially diVerent from HIV-1 and more benign
(less transmissible, slower progression to AIDS), HIV-2 is
limited to West Africa and exceeds 5% only in the adult
population of Guinea-Bissau. Even in the case of HIV-2,
some people die rapidly (within 3 years of infection), but

others seem to be able to live with it for decades without
immunological or clinical deterioration (Schim van der
LoeV 2007). Although a few small studies exist in the liter-
ature that suggest possible associations between gene vari-
ants and HIV-2 infection, e.g fucosyltransferase 2 (FUT2,
“secretor” blood group, Ali et al. 2000) or accelerated dis-
ease progression (with HLA B35, Diouf et al. 2002),
research on HIV-2 host-genetics might contribute to the
understanding of the role genes play in inXuencing HIV
post-entry restriction and disease progression.

Other infections: leishmaniasis, leprosy, schistosomiasis, 
trachoma

Several other infectious diseases are relatively common in
Africa and present serious public health issues. Among those
that have been analyzed from a genetic perspective are leish-
maniasis, schistosomiasis, leprosy, and trachoma. Although
not as much work has been done on these diseases as on
malaria, TB and HIV, recent studies have begun to shed light
on the genetic susceptibility to them in African populations.

Leishmaniasis

Visceral leishmaniasis or kala-azar is a common disease
caused by protozoa of the genus Leishmania carried by
sand Xies. It is characterized by high fever, dramatic weight

Table 4 KIR allele frequencies and disease associations (allelic frequencies from Single et al. 2007)

Populations: Biaka Pygmies in Central African Republic; Hausa in Northern Nigeria; Ibo in Nigeria; Mbuti Pygmies in Central African Republic;
Yoruba Southwest Nigeria and Benin

Allele Biaka Ethiopian Hausa Ibo Mbuti Yoruba Interaction with allele HLA

KIR2DL1 97.1 90.3 100.0 95.7 94.4 100.0 Expression of the inhibitory receptor CD158a/KIR2DL1 
with speciWcity for HLA-C is negatively associated 
with ��-T cell responsiveness to malaria parasites in 
Australia (Hansen et al. 2007)

KIR2DL2 58.0 80.6 36.7 60.9 65.7 38.4 KIR2DL2/KIR2DL3 heterozygosity in the absence 
of HLA-C1 in HIV-exposed but seronegative female 
sex workers in Côte d’Ivoire (Jennes et al. 2006)

KIR2DL3 80.3 77.4 96.7 76.1 61.8 92.0 KIR2DL3 homozygous and HLA-C1 homozygous inXuence 
resolution of HCV infection in Caucasians and African 
Americans (Khakoo et al. 2004)

KIR3DL1 100.0 96.8 100.0 100.0 97.2 98.7 KIR3DL1 homozygosity in absence of HLA-Bw4 C1 
in HIV-exposed but seronegative female sex workers 
in Côte d’Ivoire (Jennes et al. 2006)

Presence of inhibitory allele KIR3DL1 in combination 
with B*57 and B*58 alleles, protection against progression 
to AIDS in Zambia (Lopez-Vazquez et al. 2005)

KIR2DS2 56.5 77.4 32.1 58.3 65.7 34.7 KIR2DL2-KIR2DS2 associated to HSV-1 disease both in the 
presence and in the absence of HLA-C1 in 
Spanish Caucasoid (Estefania et al. 2007)

KIR3DS1 2.9 22.6 3.4 6.3 11.1 12.0 In combination with HLA-B Bw4 allele(lle80) 
is associated with delayed progression to 
AIDS (HIV-1) in European Americans (Martin et al. 2002)
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loss, swelling of the spleen and liver, and anemia. If
untreated, the disease has a fatality rate of nearly 100%
within 2 years. In Sudan an epidemic of visceral leishmani-
asis caused by Leishmania donovani occurred from 1984 to
1994. The Sudanese populations were highly susceptible,
as this was the Wrst such epidemic in the area. It was esti-
mated that the disease caused 100,000 deaths in a popula-
tion of around 300,000 in the Western Upper Nile area of
Sudan; in some villages, more than 50% of the population
succumbed to the disease (http://www.who.int/leishmania-
sis/en/). The incidence varied among game wardens, work-
ing in a reserve in eastern Sudan, who were of diVerent
ethnic backgrounds (Ibrahim et al. 1999). Another outbreak
occurred in 1996–1997 in a village at the border with Ethio-
pia, and while most villagers were infected only 30%
developed kala-azar (El-SaW et al. 2002).

Candidate gene studies of this population detected link-
age of kala-azar with polymorphisms at the SLC11A1 (for-
merly NRAMP1) locus, on 2q35 (Bucheton et al. 2003a,
2003b). A separate investigation of Sudanese multiplex
families, living in the same geographical region, conWrmed
the linkage of SLC11A1 with kala-azar, mainly detected
with a SNP in the fourth intron of the gene. However, a
mutation screening of the coding and the SLC11A1 3� UTR
regions in selected patients failed to identify any function-
ally relevant sequence change. It was therefore hypothe-
sized that the intron 4 SNP could be in disequilibrium with
causative variation in the upstream promoter region
(Mohamed et al. 2004). An investigation of the same fami-
lies showed linkage and association of kala-azar with IL4
(Mohamed et al. 2003), while genomic variation of
IFNGR1 was associated with post-kala-azar dermal leish-
manaisis (Salih et al. 2007). Remarkably, sequence varia-
tion in this gene (particularly the promoter region) has been
found to modulate susceptibility to other parasitic diseases,
including cerebral malaria (Koch et al. 2002) and schisto-
somal hepatic Wbrosis (Blanton et al. 2005).

Linkage studies have reported peaks for kala-azar on
2q22-q23 and 22q12 (Bucheton et al. 2003b; El-SaW et al.
2006) and more recently on 1p22 and 6q27 (Miller et al.
2007), although this latter study did not replicate the earlier
linkage peaks on 2q and 22q. However, inconsistency of
linkage reports can be explained in part by the fact that both
design (and power) and the ethnic groups diVered across
the two studies. To date, SLC11A1 remains the most
impressive of the susceptibility loci. This is reinforced by
the known role of SLC11A1 in mouse models infected with
L. donovani (Foote and Handman 2005).

Leprosy

In 2005 Mycobacterium leprae caused about 295,000 new
cases of leprosy worldwide (http://www.who.int/lep/situa-

tion/NCDetection2006.pdf). Of these over 40,000 were in
Africa, and more than 10,000 were in the Democratic
Republic of Congo alone. However, only »5% of people
exposed to M. leprae develop disease. Leprosy aVects the
skin, the peripheral nerves, the mucosa of the upper respira-
tory tract, the eyes, and several other organs. Clinically,
leprosy can be diVerentiated into two forms: (1) a tubercu-
loid, paucibacillary form, characterized by a low bacterial
count, strong cell-mediated immunity, and localized dis-
ease and (2) a lepromatous, multibacillary form, character-
ized by high bacterial count, poor cell-mediated immunity
and strong humoral immunity with progressive, dissemi-
nated disease. The diVerent forms of the disease do not
appear to be complicated by variation in the M. leprae
genome since it is surprisingly invariant (Monot et al.
2005). However, family studies, twin studies, and segrega-
tion analyses have provided evidence that, in addition to
environmental and exposure components, host genetics
plays an important role in the disease. Loci/genes aVecting
diVerential susceptibility can be subdivided into those inXu-
encing infection after exposure, the disease per se, and
those related to the paucibacillary or multibacillary type of
disease. The risk of developing the lepromatous, multibac-
illary form can be measured by the extent of skin reactivity
to lepromin (Mitsuda reaction; see Ranque et al. 2007 for
implicated loci). To date, several genetic studies have iden-
tiWed genes putatively important in leprosy susceptibility,
including the PARK2/ PACRG and LTA genes (6q25) in
inXuencing susceptibility to leprosy per se in Indian, Viet-
namese and Brazilian subjects, as well as a locus on 10p13
linked to the tuberculoid, paucibacillary form in population
samples from India and Vietnam (Alter et al. 2008; Ranque
et al. 2008 for a review). Few studies have been carried out
on African populations, with exceptions in Nigerians,
describing the role of HLA associations (Class II DRB1
leprogenic motifs modulating the clinical outcome of infec-
tion, Uko et al. 1999), and in Malians for non-HLA genes
(SLC11A1 3' allele associated with lepromatous type,
Meisner et al. 2001). More recently, linkage and large-scale
candidate gene studies with samples from the Karonga dis-
trict of northern Malawi have been performed (Wallace
et al. 2004; Fitness et al. 2004). These studies have found
suggestive evidence for a susceptibility locus on 21q22
inXuencing leprosy type, as well as associations with the
VDR (increased risk of leprosy per se) and with Comple-
ment Receptor 1 (CR1) (protection from disease) gene vari-
ants, that however require replication in additional African
populations.

Schistosomiasis

Schistosomiasis (bilharziosis), is a chronic disease caused
by parasites of the genus Schistosoma (trematode Xat-
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worms) and, if we exclude the broad category of soil trans-
mitted helminths, the second most frequent parasitic
disease in Africa after malaria. Larval forms of the parasites
are released by freshwater snails, the parasite’s natural res-
ervoir. As the parasite can penetrate the human skin in the
water, the main route of infection is contact with infested
water. The larvae migrate into the peripheral vasculature,
traverse the lung and settle in the portal or pelvic venous
system where they develop into adult parasites. In sub-Sah-
aran Africa S. mansoni causes intestinal schistosomiasis,
which cause hepatic granulomas and Wbrosis, portal hyper-
tension, splenomegaly, bleeding from esophageal varices,
and eventually terminal hepatic failure. Another species, S.
haematobium, causes the urinary form of the disease, asso-
ciated with progressive granulomatosis of the bladder,
resulting in obstructive uropathy (http://www.who.int/
schistosomiasis/en/). There is a signiWcant association
between the urinary infection and squamous cell carcinoma
of the bladder, and possibly of the liver infection with hepa-
tocarcinoma, an enlightening example of pathogenetic link
between infections and cancer in developing countries
(Mostafa et al. 1999). In 2000 it was estimated that approx-
imately 200 million people were aVected in the developing
world and nearly 85% (170 million) of these were in sub-
Saharan Africa (Chitsulo et al. 2000). Schistosomiasis is
therefore a very important public health problem in Africa,
causing approximately 280,000 deaths per year (150,000
from kidney failure and 130,000 from hematemesis) (van
der Werf et al. 2003). During the prepatent period of infec-
tion, the Wrst 4–5 weeks following exposure to cercariae
(the parasitic larvae), the immune response is primarily of
the Th1 type but it becomes progressively polarised
towards Th2 about 8 weeks after infection (Pearce et al.
2004); parasite egg antigens seem to inhibit IL12 produc-
tion and induce IL4 production, promoting a general ampli-
Wcation of the Th2 response.

Host genetic studies have shown that a few gene vari-
ants/loci are important in both controlling the infection and
in modulating the susceptibility to hepatic and urinary dis-
eases (reviewed in Campino et al. 2006). In 1997 a study of
the intestinal form in Senegalese, detected a locus confer-
ring susceptibility to S. mansoni at 5q31-33 (Müller-
Myhsok et al. 1997) that had been previously mapped in
Brazilian families (Marquet et al. 1996). Immune response
genes of the cytokine cluster in the 5q31 region (including
Th2 cytokines IL4, IL5, IL13) were assayed in two Dogon
population samples (Mali) from a region endemic for S.
haematobium, using family based associaton analyses. No
association was found with IL4 and IL5 SNPs, but two
IL13 5� variants, IL13-1055C and IL13-591A, were prefer-
entially transmitted to children with the highest infection
levels. In contrast, subjects with the IL13-1055T/T geno-
type appeared to be relatively protected from infection

(Kouriba et al. 2005). This “protective” genotype had pre-
viously been associated with increased expression of IL13,
as well as with elevated IgE levels. Another locus was iden-
tiWed by linkage analysis at 6q23 in Sudanese families from
an endemic, irrigated area in the Gezira region (Dessein
et al. 1999). This locus is near the gene encoding the �-
chain of the interferon gamma receptor 1 (IFNGR1) that
seems to control severe hepatic peri-portal Wbrosis in S.
mansoni infection, a condition aVecting 2–10% of subjects
infected in the Sudan. A subsequent study in North African
families from Egypt conWrmed linkage of severe hepatic
disease with IFNGR1 and possibly a region on 5q31,
encompassing IL4 and IL13, as well as the TGFB1 locus on
19q (Blanton et al. 2005). In a Sudanese population sample
two SNPs in the third intron of IFNG were found to pro-
duce opposite eVects with respect to Wbrotic phenotypes:
+2109 A/G SNP was associated with a higher risk for Wbro-
sis while +3810 G/A was associated with less severe dis-
ease (Chevillard et al. 2003). Associations of aggravation
and protection from hepatic Wbrosis have also been reported
with TNF (Henri et al. 2002).

Other reported associations include HLA Class I alleles
with hepatosplenomegaly in Egypt (Abdel-Salam et al.
1986). The urinary form of the disease (by S. haematobium)
has been associated with SNPs in the STAT6 gene (on
chromosome 12q13) in a Dogon (Mali) population sample.
The STAT6 gene is key in Th2 cell diVerentiation
(Shimoda et al. 1996), providing further evidence for an
important role of the Th2 cytokine pathway in
modulating resistance to schistosomiasis (He et al. 2008).
However, recent studies addressing the complex interaction
between the immune system and the parasite, indicate con-
trasting, age-dependent cytokine responses that would sug-
gest that simple Th1/Th2 (or pro-inXammatory/anti-
inXammatory) dichotomy is not suYcient to explain sus-
ceptibility or resistance to S. haemotobium (Mutapi et al.
2007).

Trachoma

Trachoma is caused by Chlamydia trachomatis, a bacte-
rium that infects the epithelial cells of the conjunctiva. It is
transmitted through contact with eye discharge from an
infected person or by eye-seeking Xy vectors. Repeated
infection can result in scarring, distortion and in-turning of
the eyelids, with the eyelashes rubbing on the globe (trichi-
asis), ultimately leading to corneal opacity and irreversible
blindness. It has been estimated that more than 2 million
people are blind because of trachoma in sub-Saharan Africa
(Lewallen and Courtright 2001). The blinding complica-
tions of trachoma are thought to be immuno-pathological.
Both innate and adaptive immune responses are involved,
with cell-mediated immunity playing a dual role in both the
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resolution of the infection as well as in scarring. In the early
stages of infection, pro-inXammatory cytokines (IL1, TNF)
are released by the epithelium, and these cytokines attract
an initial wave of macrophage and neutrophil inWltration to
the site of infection. These cells are soon replaced by lym-
phocytes that become organized into lymphoid follicles.
Repeated or severe inXammatory episodes along with per-
sistent formation and resolution of lymphoid follicles
results in tissue remodeling, scar formation and eventual
blindness from the mechanical abrasion of the cornea by
the eye lashes and rim of the upper eye-lid. The adaptive
cellular responses that follow the initial innate response
appear greater in individuals who rapidly resolve infection
compared to those with persistent clinical disease, implicat-
ing an innate or genetic component. Furthermore patients
with conjunctival scarring have lower peripheral blood
lymphocyte proliferation responses with respect to controls
(Burton et al. 2007). IFNG and FOXP3 (and possibly IL10)
appear to play an important role in the resolution of the
infection (Faal et al. 2006) and genetic polymorphisms in
class I HLA, IFNG, TNF, IL10 and MMP9 have been asso-
ciated with variation in scarring in Gambians (Natividad
et al. 2007, 2005, 2006, 2008).

Non-communicable diseases

Although infectious diseases are the most important public
health concern in Africa at present, the health landscape is
rapidly changing with economic development and urbani-
zation. For example, in South Africa recent studies have
suggested that more than 75% of Black Africans have at
least one major risk factor for heart disease (Tibazarwa
et al. 2008). This scenario is beginning to be the rule for
other common, complex diseases of the West, including
obesity, diabetes and hypertension that are sensitive to the
transition from rural to urban lifestyles (Abubakari et al.
2008; Cooper et al. 1997; Opie and Seedat 2005). In addi-
tion, cancers are not uncommon in sub-Saharan Africa
(Parkin et al. 2003). Many of these phenotypes have been
studied for genetic risk factors over the last few years and a
small but rapidly increasing body of literature exists.

Genetics of diabetes and obesity in Africa

Type 2 diabetes (T2D) is currently the most common meta-
bolic disorder in the world. However, there is extremely
limited quality data, using standardized criteria for most
countries in sub-saharan Africa. The available data indicate
great variation in prevalence from 0% in Togo to 4.8–8.0%
in South Africa and 10% in Northern Sudan (Motala 2002).
To date, there has been only one major systematic eVort to
study the genetics of diabetes in Africa: this is the Africa

America diabetes mellitus (AADM) study, a multi-institu-
tional, multi-country collaboration designed primarily to
map T2D susceptibility genes in the ancestral populations
of African Americans (Rotimi et al. 2001). One obvious
rationale for studying T2D in West Africa, where diabetes
is less common than in the US, is that in an environment
where caloric intake is lower, cases of T2D might carry a
proportionately greater genetic component. As described
below the AADM study has been extremely active in link-
age analyses of not only diabetes, but multiple related traits.

Genome-wide linkage analysis was performed, using a
sample of 343 aVected sibships (691 individuals). Although
multipoint non parametric linkage analysis showed sugges-
tive linkage on chromosomes 12 and 19 (Rotimi et al.
2004), the strongest evidence of linkage was observed on
chromosome 20. Putative linkage to chromosome 20 has
been reported by at least ten other studies in multiple ethnic
groups (Ghosh et al. 1999; Ji et al. 1997; Mori et al. 2002;
Zouali et al. 1997). The linkage peak at 20q in AADM was
within 1 cM of the peak reported in Caucasian families
(Klupa et al. 2000). The AADM study is noteworthy
because it was the Wrst genome scan study to search for sus-
ceptibility genes for T2D in sub-Saharan Africa. Secondly,
it showed that the same genomic regions are implicated in
T2D in both Ghana and Nigeria where environmental risk
is low.

Genome wide linkage analysis for T2D related traits

Obesity related traits

Given the central role of obesity as a risk factor for T2D,
genome wide linkage analysis was done in AADM (Chen
et al. 2005a) to identify linkage signals to three obesity-
related traits: body mass index (BMI), fat mass (FM) and
percent body fat (PBF). In West Africa, obesity is still rela-
tively uncommon, with a prevalence of approximately 5%,
reXecting the high physical activity levels and low caloric
intake. A survey in The Gambia showed signiWcant diVer-
ences between rural and urban areas, with the prevalence of
obesity (body mass index > or = 30 kg/m2) at 4.0% in the
rural areas but about 33% in urban women 35 years or older
(van der Sande et al. 2001). PBF showed the strongest evi-
dence of linkage with a signal on chromosome 2 (location
72.6 cM). Additional signals were found on chromosomes
4 and 5. FM showed suggestive evidence for linkage to
chromosome 2 within 10 cM of the signal for PBF. The
strongest evidence for linkage to BMI was observed on
chromosomes 1 and 4, although in both cases the highest
LOD score was below 2. The areas of linkage for the three
phenotypes showed signiWcant clustering as all three phe-
notypes (BMI, FM and PBF) had linkage peaks in the same
regions in 2p13, 4q23 and 5q14; however, not all of the
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peaks reached the thresholds for signiWcant or even sugges-
tive linkage. This study also provided substantial evidence
for linkage to QTLs previously reported to be linked to
serum leptin and plasma adiponectin levels on chromosome
2 (Comuzzie et al. 1997).

Serum lipids

The AADM study also conducted a genome wide linkage
analysis to Wve serum lipid fractions: total cholesterol, tri-
glycerides, HDL-cholesterol, LDL-cholesterol and VLDL-
cholesterol (Adeyemo et al. 2005). SigniWcant linkage of
HDL-C to a QTL on chromosome 7 at 7q31 was observed.
Other QTL met the criteria for suggestive linkage with
three of them (chromosome 7 for TG, chromosome 5 for
LDL-C and another locus on chromosome 7 for HDL-C)
reaching LOD scores of at least 3.0. SigniWcant or sugges-
tive linkage was found for two of the Wve traits at the same
locus for a QTL on chromosomes 5 and 7.

Several of the linkage signals for these lipid traits over-
lap linkage regions found in other studies. For example,
7q31 has also been found for lipid levels in Mexican Amer-
icans and Pima Indians (Arya et al. 2002). Thus, AADM
has found linkage signals very close to those reported for
multiple lipid phenotypes in several other major studies.
However, two of the linkage regions in AADM are novel:
5q33 for LDL-C and 7p21 for HDL-C (Adeyemo et al.
2005).

Other diabetes related phenotypes

Other linkage analyses, using AADM, have been per-
formed on phenotypes related to diabetes, including intra-
ocular pressure, renal functions and C-peptide
concentrations (Chen et al. 2007a, 2007b; Rotimi et al.
2006). For intraocular pressure in diabetics, multipoint
linkage analyses showed signiWcant linkage on 5q22 and
suggestive evidence of linkage to chromosome 14q22
(Rotimi et al. 2006). The strong signal on chromosome 5
lies in the region implicated in glaucoma susceptibility in
previous studies (Monemi et al. 2005). For renal function,
linkage to creatinine clearance was observed on chromo-
somes 7, 16, and 17. Maximum LOD scores for serum cre-
atinine were observed on chromosomes 3 and 10, and for
glomerular Wltration rate (GFR) on chromosomes 6 and 8
(Chen et al. 2007b). Several of these results are replications
of signiWcant Wndings from other genome scans. In AADM
a linkage analysis for C-peptide identiWed potentially
important QTLs on chromosomes 4, 15, and 18 (Chen et al.
2007b). Two positional candidate genes for diabetes (the
pituitary adenylate cyclase activating polypeptide
(PACAP) on 18p11 and the peroxisome proliferator-acti-
vated receptor gamma coactivator 1 (PPARGC1) on 4p15),

are located in the genomic regions showing suggestive link-
age evidence.

Candidate gene studies in the AADM study

Based on previous Wndings of association between T2D and
three calpain 10 (CAPN10) gene polymorphisms (SNP-43,
SNP-56 and SNP-63), these SNPs were investigated in the
AADM study (Chen et al. 2005b; Horikawa et al. 2000).
Calpain 10 is a nonlysosomal, neutral cysteine protease
expressed in skeletal muscle, liver and pancreatic islets
reported to be associated with T2D (Horikawa et al. 2000).
No association was found between any individual alleles or
genotypes of the three and T2D. However, in the Nigerian
ethnic groups, one haplotype was signiWcantly associated
with type 2 diabetes (OR 3.765 and 95% CI 1.577–8.989).
Also, no association was found between the CAPN10 gene
polymorphisms and several diabetic-related quantitative
traits, including glucose, insulin or other diabetes related
quantitative traits such as waist–hip ratio, body mass index
(BMI), fast insulin level, fasting C-peptide level, leptin
level, glucose level, systolic blood pressure, and diastolic
blood pressure. This preliminary observation suggests that
the three CAPN10 SNPs tested may play a limited role, if
any, in the risk of T2D in the AADM study.

The AADM study also evaluated the association
between the functional agouti-related protein (AGRP) pro-
moter SNP ¡38C/T and weight-related traits, namely BMI,
FM and fat-free mass (FFM), as well as diabetes status
(Bonilla et al. 2006). Women homozygous for the variant T
allele had signiWcantly lower BMI. Also, men with at least
one copy of the variant T allele were over two times less
likely to be diabetic than subjects without the protective
allele. These results replicate previous Wndings and impli-
cate the AGRP SNP ¡38C/T in the regulation of body
weight in West Africans.

Finally, potential association between polymorphisms of
the eNOS gene and diabetes-related phenotypes was inves-
tigated in the AADM study (Chen et al. 2007c). The inser-
tion/deletion (4a/b) and the G894T polymorphisms of the
eNOS gene were genotyped in cases and controls and the b/
b genotype was associated with a 2.4-fold increased risk of
diabetic retinopathy. In contrast, no association was
observed between the genotypes or alleles of the G894T
polymorphism and diabetic retinopathy, hypertension, or
nephropathy.

A major contribution of the AADM study to knowledge
about T2D is in the area of replication of associations found
in other populations and reWnement of such associations. A
clear instance of this was in the association between risk of
type 2 diabetes and variants in the transcription factor 7-
like 2 gene (TCF7L2) Wrst reported in populations of Euro-
pean ancestry. The AADM study sample aided in reWning
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the deWnition of the TCF7L2 type 2 diabetes risk variant,
HapB (T2D), to the ancestral T allele of a SNP, rs7903146
(Helgason et al. 2007). This study is a powerful demonstra-
tion that populations with shorter LD blocks, such as those
of West Africa, provide the means to reWne association sig-
nals detected in more recent populations (TishkoV and Wil-
liams 2002). It is noteworthy that, to date, the TCF7L2
association has provided the strongest evidence of associa-
tion of any gene with T2D risk from multiple GWAS and
replication studies in multiple population groups. The
AADM study also provided replication evidence of a
genetic variant in the TCF2 gene that confers protection
against type 2 diabetes (Gudmundsson et al. 2007).

In summary, the genetic epidemiology of T2D in Africa
is still in its infancy. There have been few genome wide
linkage studies and only a handful of association studies.
To date, there have been no GWAS conducted in an Afri-
can population, despite the great utility of using such an
approach as has been demonstrated with multiple complex
diseases over the last 2 years.

Hypertension

Over the past decade numerous studies have been under-
taken in an attempt to identify genetic risk factors for
hypertension and blood pressure regulation in Africans.
These studies are justiWed by the observation that blood
pressure regulation and the control of several plasma pro-
teins thought to aVect blood pressure, such as angiotensino-
gen (AGT) and angiotensin converting enzyme (ACE), are
highly heritable (Adeyemo et al. 2002; Cooper et al. 2000;
Rotimi et al. 1999). Of note, the heritability of ACE and
AGT was considerably higher in Nigerians (»70–80%)
than in African Americans (»20%) most likely reXecting
the diVerential role of environment in these two geographic
populations. It is also important to note that the vast major-
ity of work on the genetic basis of hypertension in sub-Sah-
aran Africa is in West Africa.

The genetic studies have included a few linkage studies
(Cooper et al. 2002) and many candidate gene studies. As
with all linkage studies of hypertension and related pheno-
types the results have been uncertain. However, a few
regions of the genome do provide evidence for linkage to
blood pressure; notably 2p, 3p, 5q, 7p, 7q and 10q provided
evidence of linkage to diastolic blood pressure, and 19p and
19q to systolic blood pressure in Nigerians (Cooper et al.
2002). Studies of candidate genes include the renin–angio-
tensinogen genes (Bouzekri et al. 2004; Fejerman et al.
2006; Nkeh et al. 2003; Robinson and Williams 2004;
Tiago et al. 2003; Williams et al. 2004, 2000), barttin
(BSND) (Sile et al. 2007), the beta subunit of the epithelial
sodium channel (Dong et al. 2001; Nkeh et al. 2003; Ray-
ner et al. 2003), alpha adducin (Barlassina et al. 2000) and

G-protein coupled receptor kinase (GRK4) (Williams et al.
2004, 2000). Although several of these studies report posi-
tive associations with either hypertension or blood pressure,
the data are still not conclusive. One approach that has tried
to address the failure to identify replicable results has been
to test multilocus genotypes that predispose to hypertension
(Williams et al. 2004, 2000). This approach has identiWed a
two locus model with ACE and GRK4 in a Ghanaian popu-
lation; however, substantial retesting will be required to
assess validity of both the results and the approach (Wil-
liams et al. 2004).

Cardiovascular disease

As with hypertension there are compelling epidemiological
data indicating an increase in prevalence of CVD in African
populations as individuals acquire CVD risk factors
(Unwin et al. 2001). Despite the prevalence of CVD risk
factors in some African populations (Alberts et al. 2005;
Steyn et al. 2005), little research has directly addressed the
role of genetic variation on the susceptibility to disease.
However, recent work has shown that in South Africa, for
example, family history confers an odds ratio »17 (Loock
et al. 2006). In addition, studies of African Americans have
shown that variation in the leukotriene A4 hydrolase gene
increases risk of myocardial infarction more than threefold
while the relative risk is only 1.16 in Europeans (Helgadot-
tir et al. 2006). Such studies reinforce the need for signiW-
cantly more research on this topic in Africa.

A recent set of studies in a Ghanaian population has
begun to assess the genetic control of CVD risk factors,
plasma levels of serpin peptidase inhibitor (plasminogen
activator inhibitor type 1, PAI1) and tissue plasminogen
activator (PLAT), that aVect the risk of thrombosis because
thrombosis is a precursor to CVD (Williams et al. 2007).
This study recruited more than 2,000 participants to assess
the role that genetic variation plays in regulating plasma
levels of these proteins. Preliminary Wndings indicate that
not only does genetic variation in the PAI1 and PLAT
genes aVect plasma levels of both proteins, but that variants
in at least one other gene, renin, does as well. Of note, the
eVects of the genetic variants diVer signiWcantly between
males and females, suggesting a complex pattern of genetic
regulation via gene–environment interaction (Schoenhard
et al., submitted).

Cancer

Cancer is not rare in Africa and based on lifestyle changes
its prevalence is expected to increase. However, due to
severe deWciencies in health care systems and disease regis-
tration, epidemiological data in sub-Saharan Africa are
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limited. Underdiagnosis and underreporting diVerentially
aVect cancer types, gender and age classes, so that it is diY-
cult to assess disease patterns. In general, however, cancer
in Africa is characterized by younger age and advanced
stage at diagnosis and correspondingly poor prognosis.
Demographic and socio-economic factors, including access
to medical care, contribute to these features, obscuring
intrinsic biological factors (Parkin et al. 2003). Overall,
there are few studies on the genetic basis of cancer in
Africa (Table 5). Below, we brieXy highlight features rele-
vant to the genetics of the most common or characteristic
cancers in African populations.

Prostate cancer

It has been well documented that men of African ancestry
have higher rates of prostate cancer incidence and mortality
compared to men of other ancestries, particularly in the
younger age groups (Brawley 1998; Bunker et al. 2002;
Delongchamps et al. 2007). This is supported by data from
sub-Saharan Africa, where prostate cancer is estimated to
be the third most common cancer of males, with rapidly
increasing incidence (Magoha 2007; Parkin et al. 2003).
Multiple candidates have been suggested, including genes
that aVect susceptibility to oxidative DNA damage, growth-
related pathways, androgen receptor signaling, chronic
inXammatory responses, and RNA processing (Rennert
et al. 2005; Shand and Gelmann 2006; Sarma et al. 2008;
Zabaleta et al., 2008). Several of these candidate genes
have been investigated for diVerential distribution of allelic
variants that may aVect risk, and cohorts from Africa and
those of African descent have the highest frequencies of the
putative risk alleles (Esteban et al. 2006; Kittles et al. 2001;
Zeigler-Johnson et al. 2002). Of interest is that one study
found an association with a CYP3A4 promoter variant in
both African Americans and European Americans, but not
in Nigerians, indicating the complexity of analyzing strati-
Wed data (Kittles et al. 2002; Hainaut and Boyle 2008; Les-
sells and Cooke 2008) (Table 5). Gene expression proWles
of tumors obtained by microarray technology from Afri-
can–American and European–American patients point to
prominent diVerences in primary prostate cancer immuno-
biology between African–American and European–Ameri-
can men (Wallace et al. 2008).

Recent genome-wide and linkage scans that have inves-
tigated associations between polymorphisms and prostate
cancer in multiple ethnic groups provide support for at least
Wve risk-associated chromosomal regions, three of which
are at 8q24 (Freedman et al. 2006; Duggan et al. 2007; Hai-
man et al. 2007; Robbins et al. 2007; Schumacher et al.
2007; Yeager et al. 2007; Zheng et al. 2008). The available
evidence compellingly indicates that the reasons for the dis-
parity in prostate cancer risk between African Americans

and other ethnic groups involve the diVerential distribution
of 8q24 markers on African chromosomes, although the
responsible genes in the chromosomal region remain to be
identiWed. These results have not yet been extended to stud-
ies of African populations.

Colorectal cancer

Preliminary data indicate that colorectal cancer exhibits a
multimodal distribution, reXecting heterogeneity, with
diVerent contributions from genetic and environmental fac-
tors. However, the eVects of urbanization seem to be
increasing the incidence of disease in previously largely
rural African populations. Evidence that heritable factors
are stronger in any one population is missing; however, it is
known that when cancer occurs at a younger age in African
populations, it is likely to be more aggressive.

Up to 20% of colorectal cancers in individuals under the
age of 50 years appear to be hereditary (a combination of
Hereditary Nonpolypotic Colorectal Cancers, i.e. HNPCC,
and Familial Adenomatous Polyposis, or FAP). A similar
proportion of HNPCC or Lynch syndrome was reported in
a small sampling of colorectal cancers in Nigeria (Adeba-
mowo et al. 2000).

A wide range of predisposing mutations has been identi-
Wed in individuals of various ethnic groups. In one study, a
single founder mutation (g.1528C > T in the hMLH1 gene)
has been shown to underlie a major burden of disease in the
Nama group of the far Northern Cape Province of South
Africa (Anderson et al. 2007). In another study null muta-
tions in GSTM1 and GSTT1 were studied in a cohort where
all subjects carried an hMLH1 mutation. It was shown that
individuals with both null mutations had a threefold
increased risk of cancer at an earlier age (Felix et al. 2006)
(Table 5). These studies indicate the potential of not only
identifying important variants, but in studying their eVects
on each other.

Breast cancer

Breast cancer (BC) is the most common cancer of women
worldwide, and is a major malignancy in African women.
The estimated age-standardized rates (ASR) for breast can-
cer incidence in sub-Saharan Africa ranges from 15 to 53
per 100,000 women (Ferlay et al. 2004). Even though diag-
nosed breast cancer is less prevalent in Africa than Europe,
due to late diagnosis and poor survival, mortality rates esti-
mated for Africa are not lower than those registered in
Europe.

Studies that compared extensive series of African–
American and European–American breast cancer patients
found associations between aggressive estrogen receptor
(ER)-negative BC and both young age at diagnosis and
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black ethnicity (Carey et al. 2006; Porter 2008). These data
raise the possibility that genetic factors could contribute to
a higher burden of aggressive ER-negative breast cancer in
indigenous African populations. However, recent data from
Sudan and Nigeria do not support this hypothesis, but sug-
gest that the diVerences between African and European
women reXect stage at diagnosis rather than intrinsic bio-
logical characteristics (Adebamowo et al. 2008; Awadelka-
rim et al. 2008).

As in industrialized countries, strong genetic factors
contribute to a subset of breast cancer cases in Africa. Pilot
studies in Nigeria, Sudan and Tunisia show that mutations in
the two major susceptibility genes, BRCA1 and BRCA2,
account for variable but signiWcant fractions of the premeno-
pausal cases (Awadelkarim et al. 2007; Fackenthal et al. 2005;
Gao et al. 2000; Troudi et al. 2007) (Table 5). From Nigeria
the data suggest that both truncating and non-truncating muta-
tions of BRCA1 or BRCA2 occur more frequently in young
women with breast cancer (Fackenthal et al. 2005; Gao et al.
2000). The observations of higher levels of genetic variation
in the BRCA genes are supported by other studies (Wagner
et al. 1999). Data from Sudan also suggest that BRCA1/2
mutations could represent an important etiological factor in
male patients and in young female patients less exposed to
pregnancy and lactation (Awadelkarim et al. 2007).

Other cancers

Hepatocellular carcinoma is the second most common can-
cer of men in sub-Saharan Africa (Parkin et al. 2003). As
with other major cancers of Africa, it is associated with
environmental factors such as early infection with hepatitis
viruses types B and C that interact with dietary exposure to
aXatoxins from Aspergillus molds and speciWc genetic vari-
ants in Africa (Kirk et al. 2000, 2005a, 2006; Montesano
et al. 1997; Hainaut and Boyle 2008; Lessells and Cooke
2008) (Table 5).

Cancer of the bladder occurs with particularly high fre-
quency in North Africa, where the main histotype is transi-
tional cell carcinoma (as in industrialized countries). With
regard to transitional cell carcinoma, studies conducted in
Tunisia and Egypt support the view that individual suscep-
tibility is modulated by genetic variation in pathways that
control metabolic detoxiWcation, redox cycling, free radical
injury, and metabolism of folate and methionine, critical for
DNA synthesis/repair and methylation (Ouerhani et al.
2007, 2006; Saad et al. 2005). In Egypt GSTT1, GSTM1
and GSTP1 genotypes all associate with bladder cancer, but
the sample sizes in this study were small (Saad et al. 2005).
Similar results were found in Tunisia for GSTM1, but not
GSTT1 (Ouerhani et al. 2006). Additional work in Tunisia
indicates that methylenetetrahydrofolate reductase and
methionine synthase genes associate with bladder cancerT
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(Ouerhani et al. 2007). Unfortunately, almost nothing is
known about the inXuence of genetic factors on bladder
cancer in sub-Saharan Africa.

Nasopharyngeal carcinoma is an undiVerentiated neo-
plasm with marked lymphocytic inWltration that arises in
the squamous epithelium overlying the nasopharyngeal
lymphoid tissue. There is evidence suggesting that certain
genotypes in HLA class I, TP53, and antigen processing
genes inXuence susceptibility in North Africa (Hadhri-
Guiga et al. 2007; Hassen et al. 2007; Li et al. 2007b).

Podoconiosis: a paradigm of genetics and environment 
interactions

Podoconiosis (non-infectious geochemical elephantiasis) is a
chronic tropical disease that phenotypically resembles Wlaria-
sis (Davey et al. 2007b). Although not widely recognised,
prevalence rates of over 5% have been reported in endemic
areas, where it is more common than HIV/AIDS or tubercu-
losis (Destas et al. 2003). Exposure to red alkalic clay soil, in
individuals who cannot aVord footwear, leads to the absorp-
tion of silicate particles. These induce an inXammatory
response in some, but not all, individuals, even though sili-
cate particles have been identiWed in inguinal lymph nodes in
unaVected individuals. Without intervention, chronic inXam-
mation leads to lymphatic obstruction and the clinical pheno-
type of progressive asymmetrical bilateral swelling of the
lower leg (Price 1990). Podoconiosis can be diVerentiated
from its phenocopy, infectious Wlariasis (caused by various
nematode species such as Wucheria bancrofti) on clinical
grounds since disease is often symmetrical and extends
above the knee in Wlariasis. Furthermore, podoconiosis
occurs in high altitude settings that preclude transmission of
Wlariasis by its mosquito vector.

Since only a proportion of exposed individuals develop
disease and the disease clusters in families, the hypothesis
that genetic factors determine whether an individual is sus-
ceptible to disease was tested in the Wolaitta region of Ethi-
opia. Multiplex family analysis estimated the heritability of
podoconiosis to be 0.62 with a single major dominant gene
as the most parsimonious model (Davey et al. 2007a).
Genetic studies towards gene identiWcation are planned,
and compared to other chronic diseases, the genetic basis of
podoconiosis appears to be relatively simple.

Genetics and disease prevention/treatment

Vaccine-induced immunity

Given the fact that infectious diseases play such an impor-
tant role in the health of African populations, it is important
to understand how genetic variation aVects the eYcacy of

vaccines. The Extended Program in Immunisation (EPI)
introduced by WHO and organizations such as the Global
Alliance for Vaccines and Immunisation (GAVI) work
towards the prevention of predominantly childhood dis-
eases through vaccination. Vaccines currently delivered on
a routine basis across the African continent are: BCG for
TB and leprosy, individual or combination vaccination
against diphtheria, tetanus and pertussis (DTP), oral polio-
myelitis (OVP), and vaccinations against measles, and yel-
low fever. Additionally, Haemophilus inXuenzae (Hib) and
hepatitis B virus infection (HBV) vaccines are recom-
mended by the WHO but do not form part of the routine
program in most countries with exceptions such as The
Gambia. More recent immunizations are pneumococcal and
meningococcal vaccines (in some instances targeted at
high-risk groups) and others are still in a more or less prom-
ising experimental phase, such as malaria and HIV vac-
cines. Many factors that are known to inXuence immune
responses to vaccines will not be discussed here including,
the vaccine, adjuvants, age, gender, UV light exposure,
smoking, infectious diseases, nutritional factors, etc.
(reviewed by van Loveren et al. 2001).

Immune responses induced by vaccination are in part
under genetic control, and the degree of heritability varies
by vaccine between 35 and 90%, as shown by family and
twin studies both within African settings (Lee et al. 2006;
Marchant et al. 2006; Newport et al. 2004b, 2005) and
across the rest of the world (Alper 1995; De et al. 2001;
Hohler et al. 2002; Konradsen et al. 1993, 1994; Kruger
et al. 2005; Lin et al. 1989; Musher et al. 2000, Musher
et al. 1997 and reviewed by Kimman et al. 2007). Addition-
ally, we know that diVerences in vaccine eYcacy exist
between diVerent ethnic groups, also indicating a putative
role for genetic factors (Kimman et al. 2007). Vaccine
eYcacy in a given population can be aVected by the fre-
quency of protective alleles, emphasizing the importance of
ethnic comparisons for a thorough understanding of the role
of genetics in determining or modulating immune
responses. However, the heterogeneity in vaccine-induced
immunity (also termed vaccinomics) is not well understood
and little data are available from genetic studies worldwide,
let alone Africa (Kimman et al. 2007; Ovsyannikova et al.
2004a; Poland et al. 2007; Poland and Jacobson 1998).
Host genetic variation may aVect multiple processes such
as antigen presentation and recognition, the magnitude or
kinetics of vaccine-induced antibody response, lymphocyte
proliferation, and long-term immune memory.

The most exhaustively studied region of the human
genome with respect to the correlation of immuno-pheno-
typic and genotypic data is the HLA region. As noted
above, HLA variation has also been studied extensively in
terms of susceptibility to the disease themselves (Tables 6,
7, Supplemental Tables). Relatively consistent Wndings
123
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have been reported for HLA associations with immunity
induced by HBV vaccination (Kimman et al. 2007; Milich
and Leroux-Roels 2003; Thursz 2001); the HLA data on

responses to other vaccinations, except measles (Ovsyan-
nikova et al. 2004c, 2006a), are sparse. However, even less
is published in relation to variation in non-HLA genes.

Table 6 HLA allele frequencies and disease associations (allelic frequencies from dbMHC, http://www.ncbi.nlm.nih.gov/gv/mhc/
main.cgi?cmd = init)

(Dogon Malians admixed from Mali; Mandinka from Senegal; Kenyans 142 Kenyans from Kenya; Kenyans Lowlander Luo from Kenya; Shona
from Harare, Zimbabwe; Zulu from Natal Province, South Africa)

Allele Dogon Mandinka Kenyans 142 Kenyans 
Lowlander

Ugandans Zambians Shona Zulu Association with infection

A*02 51 (0.185) 35 (0.188) 51 (0.178) 101 (0.191) 81 (0.248) 15 (0.174) 72 (0.160) 46 (0.119) HIV
Kenya
(MacDonald et al. 2000)

A*68 27 (0.098) 17 (0.091) 34 (0.119) 48 (0.091) 26 (0.080) 4 (0.047) 50 (0.111) 45 (0.117) HIV
Botswana
(Novitsky et al. 2001)

B*35 36 (0.130) 24 (0.128) 8 (0.028) 18 (0.034) 21 (0.066) 2 (0.023) 9 (0.020) 13 (0.032) HIV progression
Senegal
(Diouf et al. 2002)

B*39 2 (0.007) 5 (0.027) 2 (0.007) 12 (0.023) 6 (0.019) - 1 (0.002) 6 (0.015) Low viral load
Zambia
(Tang et al. 2002)

B*53 44 (0.159) 10 (0.053) 30 (0.105) - 16 (0.050) 9 (0.102) 42 (0.093) 6 (0.015) Malaria
Gambia
(Hill et al. 1991)

B*57 5 (0.018) 5 (0.027) 21 (0.073) 12 (0.023) 14 (0.044) 8 (0.091) 25 (0.055) 20 (0.050) Low viral load
Zambia
(Tang et al. 2002)
HIV
Zambia
(Lopez-Vazquez et al. 2005)
Protection on HCV 

genotype 2 infection
Ghana
(Chuang et al. 2007)

B*58 6 (0.022) 13 (0.069) 43 (0.150) 102 (0.192) 27 (0.084) 2 (0.023) 49 (0.108) 52 (0.129) HIV
Botswana
(Novitsky et al. 2001)

Cw*01 2 (0.008) - 1 (0.005) - 8 (0.025) - - -

DRB1 - - - - - - - - Leprosy
Nigeria
(Uko et al. 1999)

DRB1*01 13 (0.047) - - - - - 37 (0.081) 4 (0.023) HIV
Botswana, Kenya
(MacDonald et al. 2000; 

Ndung’u et al. 2005)
DRB1 homozygosity -high 

HIV-1 load
Zimbabwe
(Zijenah et al. 2002)

DRB1*08 86 (0.312) - - - - - 21 (0.046) 5 (0.028) Viral load (HIV-1)
Botswana
(Ndung’u et al. 2005)

DRB1*1301 4 (0.014) - - - - - 39 (0.085) 6 (0.034) Delayed transmission
of HIV

Zambia
(Ndung’u et al. 2005)

DRB1*1302 19 (0.069) - - - - - 30 (0.066) 20 (0.114) TB
Venda
(Lombard et al. 2006)
HBV
Gambia
(Thursz et al. 1995)
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Table 7 Genetic studies on vaccine-induced immunity (as direct or indirect outcome measure)

Vaccine/disease Gene (s) investigated Study site (and population) Reference

BCG DiVerence in response 
to vaccination by ethnicity

South Africa (Malawi), 
UK based Caucasians

Black et al. (2002)

HLA Caucasians, UK based Caucasians OttenhoV et al. (1986), 
van Eden et al. (1983)

HLA DRB1 The Gambia, twins Newport et al. (2004b)

IL12RB1 Tunisia, case reports Elloumi-Zghal et al. (2002)

SLC11A1 Sweden, cohort Alm et al. (2002)

Diphteria–tetanus IL4, IL4R, IL13 Western Australia, birth cohort Baynam et al. (2007)

Diphteria–
tetanus–pertussis 
(DTP)

HLA DRB1 The Gambia, twins Newport et al. (2004b)

Heamophilus inXuenzae DiVerence in response 
to vaccination by ethnicity

Alaska, Belgium, Caucasians, 
Chile, Finland, 
Native Americans

Reviewed by Heath (1998), 
Siber et al. (1990)

HLA DRB1 The Gambia, twins Newport et al. (2004b)

Ig allotypes Caucasians GranoV and Cates (1985), 
GranoV and Holmes (1992)

V� gene A2 Navajo Indians, US Nadel et al. (1998)

Hepatitis B GNB3 Germany Lindemann et al. (2002)

Haptoglobin Caucasians Louagie et al. (1993)

HLA The Gambia, twins Reviewed by Kimman et al. (2007), 
Milich and Leroux-Roels (2003), 
Newport et al. (2005)

133 Genes (mostly non-HLA) The Gambia, cohort/case-control Hennig et al. (2008)

IL1 family, TNF SleijVers et al. (2003)

IL1B Yucesoy et al. (2002)

IL2, IL4, IL6, IL10, IL12B, HLA 15 Institutions in 13 US cities Wang et al. (2004)

IL10 Germany, twins Hohler et al. (2005)

Measles CD36, SLAM Minnesota, USA Dhiman et al. (2007b)

DiVerence in response 
to vaccination by ethnicity

Innu, Inuit, 
Caucasians from Canada

Poland et al. (1999)

HLA-A*0103 Somali refugees in 
Minnesota, USA

Poland et al. (2001b)

HLA, TAP Minnesota, USA 
(predominantly Caucasian)

Dhiman et al. (2003), 
Hayney et al. (1996, 1997), 
Jacobson and Poland (2004), 
Ovsyannikova 
et al. (2004b, d, 2005a, c,
2006a, b, c, 2007a, b), 
Poland et al. (2001a), 
Poland and Jacobson, (1998), 
Sauver et al. (2002)

IFN, IFNGR, IL2, IL2RA, IL2RB, 
IL4, IL4RA, IL10, IL10RA, 
IL10RB, IL12A, IL12B, 
IL12RB1, IL12RB2

Minnesota, USA Dhiman et al. (2007a), 
Ovsyannikova et al. (2006c)

Measles–mumps–rubella 
(MMR)

DiVerence in response to 
vaccination by ethnicity

Bedouin, Jewish from Israel Rager-Zisman et al. (2004)

HLA Minnesota, USA Ovsyannikova 
et al. (2005b, 2006b, 2007b), 
Sauver et al. (2005)

Oral poliomyelitis (OVP) HLA DRB1 The Gambia, twins Newport et al. (2004b)

Pertussis TLR4 Holland Banus et al. (2007)
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Table 7 lists existing publications on both HLA and other
candidate loci, concentrating on English language reports
and vaccines administered routinely across Africa. Most of
these studies are hampered by small sample sizes, a limited
number of markers/genes screened, poor information on
covariates and environmental factors, diVerences in study
design and analysis; therefore we only have a snapshot of
what genetic factors are implicated in the control of vaccine
induced immunity. Furthermore, genetically distinct popu-
lations have been studied, making comparisons diYcult.
However, even if good data on host genetic variability as
well as comprehensive information on clinical, serological,
demographic and environmental factors were available sev-
eral issues would remain unclear. For instance, how accu-
rate is the measurement of currently used correlates of
protection, such as vaccine-induced antibody level? What
eVect does natural boosting through infection have on the
evaluation of vaccine eYcacy? How relevant is the genetic
variability of the infectious agent and will long-term vacci-
nation programs lead to the rise of vaccine-escape mutants?
Will functionally relevant variants be identiWed from fam-
ily, twin, cohort and case–control studies?

Pharmacogenetics

It has been well documented that genetic diVerences exist
among individuals that impact the eYcacy of speciWc drug
treatments. In some cases this is due to the ability to pro-
cess/metabolize drugs that can occur at ADMET genes that
determine drug Absorption and Distribution (transporters
and plasma proteins), drug Metabolism and Excretion (met-
abolising enzymes and transporters) as well as Toxicity. In
other situations, such as non-communicable diseases, the

eYcacy may be more tied to the actual etiological risk. For
example, it has been shown in Black South Africans that
AGT genotype can aVect response to ACE inhibitor therapy
for hypertension (Woodiwiss et al. 2006). Pharmacogenet-
ics aims at understanding this genetic diversity underlying
the pharmacokinetic and pharmacodynamic variability in
drug response among patients, enabling personalized treat-
ment, optimal dosing and minimal adverse eVects.

With respect to drug metabolism, the genes most inten-
sively studied so far encode drug transporters and drug meta-
bolising enzymes such as cytochrome P450s (CYPs),
glucuronyl transferases (UGTs), N-acetyl transferases
(NATs), epoxide hydrolases (EHs), glutathione S-transferases
(GSTs), Xavin monooxygenases (FMOs) and multidrug trans-
porters (MDR). These genes are highly polymorphic and their
variation results in proteins or enzymes with enhanced, nor-
mal or reduced capacity, thereby dividing populations into
groups of extensive, intermediate or poor metabolisers. Of
these the CYP genes show the highest level of variation. For
example, 70 alleles of CYP2D6 have been reported so far, yet
only a few haplotypes were found to be of functional impor-
tance (http://www.cypalleles.ki.se). Whereas most of this
diversity is caused by single nucleotide polymorphisms
(SNPs), gene copy number variation (CNV) has also been
found in CYP2D6, GSTM1 and GSTT1 (Gaedigk et al. 2007;
Ingelman-Sundberg et al. 2007; Ouahchi et al. 2006; Rotger
et al. 2007). It has been shown that in some cases the CYP
genotyping eVorts are less predictive of metabolizer status in
African Americans than European Americans (Gaedigk et al.
2005). Such Wndings are suggestive of the role that total
genetic variation may play in prediciting drug eYcacy and
underscore the need to perform analyses in a diversity of
populations.

Table 7 continued

Vaccine/disease Gene (s) investigated Study site (and population) Reference

Pneumococcal disease CD32 Wiertsema et al. (2006), 
Yee et al. (2000)

CD32, IL4, IL4RA, IL13 The Netherlands Wiertsema et al. (2006, 2007)

C1INH, IL1B, IL4, IL6, 
IL8, IL10, NOS2A, 
PARP, TLR4, TNFA

The Netherlands Emonts et al. (2007)

HLA USA Poland and Jacobson (1998)

SCD (inc SS, SC, Sß0thal,
Sßthal)

Meta-analysis (including
South Africa (Malawi))

Davies et al. (2004)

Pneumococcal-diphteria 
or pneumococcal-tetanus

DiVerence in response 
to vaccination by ethnicity

Finland, Israel, Philippines Puumalainen et al. (2003)

Pneumococcal-Hib-meningococcal 
vaccine

Ig allotypes Caucasians Ambrosino et al. (1985)

Tetanus HLA Caucasians Demotz et al. (1993)

IL1B, IL2, IL4, IL10, IL12B, TNF US Caucasians, families Li et al. (2007a)

Yellow fever IL1 family Germany, case-control Hacker et al. (2001)
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The distribution of drug response alleles shows distinct
clusters among the world populations (Aklillu et al. 2007;
Sistonen et al. 2007). In addition, there is inter-individual
variation that in some cases supersedes population diversity
(Sistonen et al. 2007). Due to limited data on African
genetics/polymorphisms, no comprehensive patterns of var-
iation are known for African populations so far. African-
speciWc SNPs have been reported for the CYP, NAT, FMO
genes (Allabi et al. 2005, 2004; Yasar et al. 2002), but their
population or inter-individual variation are not well under-
stood. In addition, phenotypic expression of polymor-
phisms may diVer in individuals of diVerent ethnicities and
environments (Aklillu et al. 2002). This suggests an urgent
need for population as well as location based genotype–
phenotype correlation studies.

The high frequency of reduced-function alleles
CYP2D6*17 and *29 in Africans predicts a considerably
higher intermediate-to-poor metabolizer status than in peo-
ple of European descent (Bertilsson et al. 2002; Mas-
imirembwa et al. 1996; Wennerholm et al. 2001). The
CYP2C19*2 allele currently accounts for most (60%) of
the poor metaboliser phenotype for substrates of the
CYP2C19 enzyme in Africans and Europeans (Bathum
et al. 1999; Masimirembwa et al. 1995). The commonly
known polymorphisms of NAT2 include alleles *5, *6, *7
and the African-speciWc *14 allele, and all aVect acetylator
status in carrier individuals (Dandara et al. 2003). They
may translate into ultra-rapid or complete absence of
metabolism of some substrates, with important implications
for dosage adjustments in patients carrying these alleles.

Since few African populations have been studied so far
and the documentation of pharmacogenetic information is
scarce, attempts to establish biobanking initiatives and
pharmacogenetic databases are underway (Matimba et al.
2008; http://www.aibst.com/biobank). Such databases
could be a very helpful tool in promoting drug discovery
and development in the public and private sectors.

The data collected for both vaccine and drug responses
might eventually lead to the implementation of screening
protocols, although this is feasible only in a few African
environments presently. Pre-prescription genotyping has
been recommended for CYP2D6 and CYP2C19 in antipsy-
chotic therapy (Kirchheiner et al. 2001; Masimirembwa
and Hasler 1997). In anticoagulant therapy, CYP2C9 and
Vitamin K epoxide reductase subunit 1 (VKORC1) geno-
typing can help to predict the starting dose of the drug war-
farin (Wadelius and Pirmohamed 2006). Host genetic
factors may also inXuence HIV treatment eYcacy and
safety; for example, the human leukocyte antigen HLA-
B*5701 allele has been associated with abacavir sensitivity
(Lucas et al. 2007), so patient screening for this allele
should minimise incidences of adverse reactions or hyper-
sensitivity. “African” polymorphisms need to be incorporated

into the development of these applications, as individuals
may be at higher risk of dose-related adverse drug reactions
or less eYcacious treatment when taking doses recom-
mended for Europeans. For example, the CYP2B6
516G > T polymorphism is highly prevalent in Africans
and results in reduced enzyme function (Klein et al. 2005).
This has implications for drug toxicity due to high plasma
concentrations (Rotger et al. 2005). A recent study showed
that individuals carrying this mutation can be treated with
reduced dosage and still achieve therapeutic outcomes
(Nyakutira et al. 2008). Pre-prescription genotyping of
patients should, therefore, result in minimal side eVects and
lower cost of treatment. Such an outcome is particularly
relevant in Africa where healthcare cost usually outstrips
aVordability by individuals or governments.

Conclusions

Nearly 2000 years ago the Roman scholar and natural phi-
losopher Pliny the Elder wrote in his Natural History: “Ex
Africa surgit semper aliquid novi” (from Africa there is
always something new); this quote beautifully applies to
genetic studies of African populations as they provide a
critical resource in the study of genetic risk factors of
human disease and to new discoveries. By doing studies
throughout Africa it will be possible to capture most of
the extant genetic risk factors in all human populations. It
may also be possible to use simple and relatively inexpen-
sive genetic tests to reduce overall healthcare costs.
Finally, as pointed out there are many diseases that are
endemic to Africa that carry signiWcant genetic risk, and
studying these could improve the health in Africa. How-
ever, despite the advantages and importance of these stud-
ies there are substantial impediments to performing
genetic research in an African setting, most notably lack
of resources and infrastructure. In recognition of these
factors it has been argued that bio-banks need to be devel-
oped to expedite research (Sgaier et al. 2007; Sirugo et al.
2004). There is an increasing awareness that it is not only
important to coordinate research eVorts, overcome “terri-
torial issues”, and share resources between research
teams, but also that there is an essential need for training
African scientists who can lead and promote genetic
research in Africa. Such eVorts are ongoing and form the
basis for many of the objectives of the African Society of
Human Genetics that was formed in 2003 (Rotimi 2004).
Many such eVorts are still in their infancy, as evidenced
by the lack of research discussed in this review for some
diseases or for vaccines and treatment, and although some
progress has been made, as stated in the African proverb
“thunder is not yet rain”, it is just the beginning and a lot
more needs to be done.
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