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Abstract For large-scale genotyping studies, it is com-

mon for most subjects to have some missing genetic

markers, even if the missing rate per marker is low. This

compromises association analyses, with varying numbers

of subjects contributing to analyses when performing sin-

gle-marker or multi-marker analyses. In this paper, we

consider eight methods to infer missing genotypes,

including two haplotype reconstruction methods (local

expectation maximization-EM, and fastPHASE), two

k-nearest neighbor methods (original k-nearest neighbor,

KNN, and a weighted k-nearest neighbor, wtKNN), three

linear regression methods (backward variable selection,

LM.back, least angle regression, LM.lars, and singular

value decomposition, LM.svd), and a regression tree,

Rtree. We evaluate the accuracy of them using single

nucleotide polymorphism (SNP) data from the HapMap

project, under a variety of conditions and parameters. We

find that fastPHASE has the lowest error rates across dif-

ferent analysis panels and marker densities. LM.lars gives

slightly less accurate estimate of missing genotypes than

fastPHASE, but has better performance than the other

methods.

Background

As most common human diseases show complicated etio-

logy of genetic effects, genome wide association studies

are becoming widely used. However, missing genetic

markers are common, causing single-maker analyses, or

multi-marker analyses, to be applied to different subsets of

subjects without missing data. Furthermore, excluding

subjects with missing genotypes can remove a large portion

of subjects and thereby decrease power. Replacing missing

genotypes with observed means or the most probable

genotypes does not use linkage disequilibrium (LD)

information from nearby markers, decreasing statistical

efficiency and possibly causing bias. It is therefore

important to develop efficient statistical methods to accu-

rately infer missing genotypes.

Estimation of missing genotypes can be a by-product of

haplotype reconstruction, with either a maximum likelihood

method implemented by the expectation maximization

(Dempster et al. 1977) algorithm (Chiano and Clayton

1998; Excoffier and Slakin 1995; Fallin and Schork 2000;

Hawley and Kidd 1995; Long et al. 1995; Qin et al. 2002;

Scheet and Stephens 2006) or Bayesian methods (Lin et al.

2004; Niu et al. 2002; Stephens and Donnelly 2003; Ste-

phens and Scheet 2005; Stephens et al. 2001). When the

number of loci under consideration is large, both approa-

ches are computationally intensive. While the maximum

likelihood can lead to computer memory limitations, the

Bayesian methods can take a longer time to converge. In

both approaches, missing genotypes and missing phase are

treated equivalently and inferred simultaneously. The

accuracy of imputation of missing genotypes using different

haplotype reconstruction methods have been compared in

several papers, such as Stephens and Scheet (2005), Scheet

and Stephens (2006), and Marchini et al. (2006).
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One could also simultaneously estimate missing

genotypes and the association parameters in a parametric

model that tests genetic association. Lake et al. (2003)

allowed for missing genotypes in a generalized linear

model for haplotype associations with a trait. Hoti and

Sillanpaa (2006) treated missing genotypes as additional

parameters in their hierarchical model and estimated all

parameters in a Bayesian framework. Souverein et al.

(2006) modeled missing genotypes as a function of other

markers and phenotypes in a polytomous logistic regres-

sion model. Although they varied the set of covariates in

the polytomous logistic regression, the optimal set of

covariates to be used in general is not clear. In contrast to

others, Dai et al. (2006) proposed a classification tree

method. For each marker with missing genotypes, they

first fit a classification tree, using both disease status and

the updated values of other SNPs. They compared it with

two EM-based methods: a conventional EM algorithm for

maximum likelihood of haplotype frequencies and a

weighted EM (WEM) that simultaneously estimates

association parameters and haplotype frequencies (Lake

et al. 2003). Results based on ten imputations showed that

both EM and WEM resulted in smaller imputation errors

than their classification tree method; however, the clas-

sification tree method was computationally faster than the

other methods.

Studies thus far compared only a few methods. In this

paper, we describe and examine the performance of eight

methods to impute missing genotypes: two haplotype

reconstruction methods, three linear regression methods,

two k-nearest neighbor methods and a regression tree

method. They were evaluated using SNP data on chromo-

some 22 from the HapMap project (The International

HapMap Consortium 2005) under the assumption that

genotypes are missing completely at random. Their com-

putational complexity was also evaluated.

Statistical methods

Haplotype reconstruction methods

For diploid organisms, haplotype phase information is

usually not directly observed but can be estimated by sta-

tistical methods. Missing genotypes and missing haplotype

phase can be treated in a similar way and be estimated

simultaneously using statistical methods. We considered

two haplotype reconstruction methods: the EM algorithm

(Chiano and Clayton 1998; Excoffier and Slakin 1995;

Fallin and Schork 2000; Hawley and Kidd 1995; Lin et al.

2004; Long et al. 1995; Qin et al. 2002; Scheet and Ste-

phens 2006) and the fastPHASE (Scheet and Stephens

2006).

The EM algorithm (Dempster et al. 1977) can handle

missing genotypes and unobserved haplotype phase by

alternating between an expectation step and a maximiza-

tion step. The expectation step computes the expected

log-likelihood using complete data, including genotypes

and haplotype phase from the prior step; the maximiza-

tion step maximizes the log-likelihood according to its

parameters, and as a by product gives posterior proba-

bilities of the complete data, conditional on the observed

data. In this paper, we used the haplo.em (Schaid et al.

2002) package, available for either R or Splus, which

provides posterior probabilities for all possible pairs of

haplotypes for each subject. Throughout this paper, we

code a genotype by the number of copies of the rare

allele, i.e., 0, 1, or 2. Therefore, we calculated an

expected score for a missing genotype of a subject by

summing the posterior probabilities of haplotypes that

contain the rare allele. When the number of loci in a

region is large, the EM algorithm can be very slow. Even

worse, it will fail if it requires more computer memory

than that available. Therefore, when imputing missing

genotypes of a SNP, we only used markers that are close

to it. Here, the number of markers on each side of the

SNP being imputed is a tuning parameter (n) and we used

values 2–5.

The haplotype reconstruction package fastPHASE

(Scheet and Stephens 2006) assumes that haplotypes in a

population cluster into groups over short chromosome

regions, and cluster memberships are allowed to change

continuously along a chromosome according to a hidden

Markov model (Rabiner 1989). The EM algorithm is used

to estimate genetic parameters and haplotype frequencies,

and unobserved haplotype phase. For each missing geno-

type, the posterior mean from fastPHASE was used to

predict it. The number of haplotype origins in local regions

(n.ho) is a tuning parameter, and according to Scheet and

Stephens (2006), n.ho = 8 seemed to perform reasonably

well across different scenarios. We used n.ho values of 3,

5, 10, and 15.

Iterative methods

We can infer missing genotypes by iteratively estimating

missing values and updating models that formulate the

relationship between a SNP and its flanking markers.

Assume a data set consists of N subjects and p SNPs. Let

Mi,j be the genotype of the ith subject at the jth SNP, which

is coded to 0, 1, or 2 according to the number of copies of

the rare allele of the SNP. Let Mj be the N · 1 vector of the

jth SNP, Mj
(t) be the corresponding updated vector at the tth

iteration, and Mj
(0) be the corresponding vector for initial

values with missing values replaced by the mean of
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observed genotypes at the jth SNP. At each iteration, we

imputed missing genotypes in all SNPs in turn:

M
ðtþ1Þ
1 �f

ðtþ1Þ
1 ðM1jMðtÞ2 ;M

ðtÞ
3 ; . . .;MðtÞp Þ

M
ðtþ1Þ
2 �f

ðtþ1Þ
2 ðM2jMðtþ1Þ

1 ;M
ðtÞ
3 ; . . .;MðtÞp Þ

� � �
Mðtþ1Þ

p �f ðtþ1Þ
p ðMpjMðtþ1Þ

1 ;M
ðtþ1Þ
2 ; . . .;M

ðtþ1Þ
p�1 Þ;

where f indicates a chosen model. Specifically, at the

(t + 1)th iteration and for the jth SNP, we first used all

subjects with the jth SNP observed to fit a model, then

updated the missing values at the jth SNP using the fitted

model. The algorithm was considered to have converged if

the maximum difference between the imputed values at a

current step and those at its previous step was less than

0.01. When f represents a linear regression model, an

estimate may be less than 0 or greater than 2. This can lead

to inaccurate estimation and occasionally, it may fail to

converge. Therefore, when an estimate was below 0 or

above 2, we forced it to be 0 or 2, respectively.

We considered six iterative methods: three linear

regression methods, two k-nearest neighbor methods, and a

regression tree method. For most of these methods, when

updating missing values of a SNP, it is not practical to use

information from all the other SNPs in a data set, because

this can dramatically increase computation time. Therefore,

we chose the number of markers on each side of a SNP, n,

being updated to be 2, 3, 5, or 10. Because the computation

of Eigen values and Eigen vectors of a matrix is relatively

fast, for linear regression with singular value decomposi-

tion (SVD), n was chosen to be 10, 20, 30, or 50.

Linear regression with backward selection

A difficulty in imputing missing values is to choose the

number of predicting SNPs. It is well known that a large

number of predictors can cause overfitting and thereby

decrease prediction accuracy. For linear regression meth-

ods, we considered three strategies: the backward stepwise

selection, the least angle regression (LARS), and the SVD.

All these methods assumed a linear relationship between

the SNP score being predicted and the scores of its flanking

markers.

One way to select predictors from flanking SNPs is to

use the backward stepwise selection. We used the ‘‘step’’

function with the ‘‘backward’’ direction in Splus, which is

based on the Akaike information criterion (Akaike 1974).

However, the backward stepwise procedure is computa-

tionally expensive. To reduce computational burden, we

fixed the predictors for each SNP after five iterations and

only reevaluated regression coefficients in later iterations.

The tuning parameter for this method is the number of

candidate markers on each side of a SNP being imputed,

chosen to be 2, 3, 5, or 10.

Linear regression with LARS

As a key step in linear regression methods is model

selection, we considered different strategies. Similar to

the least absolute shrinkage selection operator (Tibshirani

1996), LARS (Enfron et al. 2004) usually provides more

robust estimators of regression coefficients than ordinary

linear regression. Like forward stepwise regression, at

each step, LARS picks the predictor that is most corre-

lated with the current residuals. Instead of bringing the

chosen predictor completely into the model, LARS works

in a less greedy manner: it takes the largest step possible

in the least angle direction (the direction equiangular

among all current predictors) until some other predictor

is equally correlated with the current residuals. The

authors (Enfron et al. 2004) determined an approximation

to the degrees of freedom. We chose the fit that mini-

mized Mallows’ Cp (Mallows 1973). The tuning

parameter for this method is the number of candidate

markers on each side of a SNP being imputed, chosen to

be 2, 3, 5, or 10.

Linear regression with SVD

An alternative way of using SNPs as covariates is to use

their Eigen vectors, which are linear combinations of SNP

scores (Alter et al. 2000). By singular value decomposition,

the subjects · SNPs matrix M can be decomposed into a

product of three matrices:

MN�p ¼ UN�NSN�pV 0p�p;

where S is a matrix with nonnegative values on the diag-

onal and zeros off the diagonal, and U and V are

orthonormal matrices. Similar to Troyanskaya et al. (2001),

the columns of matrix U represent ‘‘EigenSNPs’’. When

imputing missing values for the ith SNP, we can use

‘‘EigenSNPs’’ as covariates in linear regressions. Eigen-

SNPs that only explain a small portion of the total variance

of the data matrix M usually represent background noise

and do not provide useful information about the underlying

data structure. We chose the smallest number of Ei-

genSNPs that explained at least a certain percentage of the

total variance of the data matrix. Therefore, a tuning

parameter is the percentage of variance explained by

selected EigenSNPs (p.var), chosen to be 50, 60, 70, or

80%. Because the computation of the singular value
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decomposition of a matrix is very fast, we chose the

number of SNPs on each side to be 10, 20, 30, or 50.

k-Nearest neighbor

In contrast to assuming linear relationship among the SNP

scores, the nearest neighbor method is a nonparametric

model. To simplify the presentation of the k-nearest

neighbor (KNN) methods, let Y be the SNP being updated

and x be its flanking markers. Let i be the index for the ith

subject. If the flanking markers of Y can predict it accu-

rately, then subjects with similar flanking marker profiles

should have similar Y values. Therefore, we can use sub-

jects with similar flanking marker profiles to predict the

missing values of a SNP. The original k-nearest neighbor fit

for Ŷ is defined as (Hastie et al. 2001)

ŶðxÞ ¼ 1

k

X

xi2NkðxÞ
Yi;

where Nk(x) represents the k nearest neighbors of x based

on Euclidean distance. A way to improve the original KNN

is to weight the contribution of Yi to Ŷ is

ŶðxÞ ¼
P

xi2NkðxÞ e
�jjxi�xjjyiP

xi2NkðxÞ e�jjxi�xjj ;

where ||xi – x|| is the Euclidean distance between points xi

and x. Notice that we use person-neighbor instead of SNP-

neighbor. In addition to the number of markers on each

side (chosen to be 2, 3, 5, or 10), the number of nearest

neighbors k is a tuning parameter. We considered k = 3, 5,

10, or 15.

Regression tree

Regression tree is another nonparametric model we

considered. Here, f indicates a partition tree that is built

by recursively applying binary splits to a data set into

subsets. An advantage of the tree model is that predictors

can be used multiple times in the recursive splitting

process, thereby allowing nonlinear effects of predictive

variables as well as complex interactions among them.

We used the RPART package in R (Atkinson and

Therneau 1997). In addition to the number of markers on

each side (n = 2, 3, 5, 10), we also varied two other

tuning parameters: the complexity parameter (cp) that

prevents splitting that does not improve model fit, and

the minimum number of observations in a node for

which to be split (minsplit). Three values for the com-

plexity parameter were evaluated (0.01, 0.05 and 0.10);

and two values for minsplit were evaluated (5 and 10%

of the sample size). Using each set of tuning parameters,

similar to Dai et al. (2006), a tree was grown to its

maximum size allowed by cp and minsplit, without

pruning. Assume the jth SNP of the ith subject was

missing, its estimate is the mean of the observed geno-

type scores of Mj that are assigned to the same tree node

based on its flanking markers.

Data

The performance of the eight methods was assessed using

SNP data on chromosome 22 from the HapMap project

(The International HapMap Consortium 2005). We used

uncorrelated subjects, i.e., 60 founders from the Centre

d’Etude du Polymorphisme Humain samples (CEU), 60

founders from the Yoruba in Ibadan, Nigeria (YRI), 45

Japanese from Tokyo, Japan, and 45 Han Chinese from

Beijing, China (J/C). For each analysis panel, all SNPs

were required to have minor allele frequencies (MAFs) no

less than 5% and P values for the Hardy–Weinberg equi-

librium (HWE) test greater than 0.01. The original data set

contains about 2–4% of missing values. To compare the

estimation accuracy of the eight methods, we generated

100 data sets. In each data set, 5% of observed genotypes

were randomly chosen and treated as missing. Each method

with a set of chosen tuning parameters was used to estimate

the missing values in each generated data set. We calcu-

lated the mean square error (MSE) to compare the

difference between the inferred and observed genotypes.

The mean of the 100 MSEs was then used to calibrate the

accuracy of the different methods with different sets of

tuning parameters.

We also evaluated the eight methods and the effect of

their tuning parameters under different LD levels: strong

LD, weak LD, and no LD. We treated the first 100 SNPs

that passed the MAF and HWE thresholds on the left-

most region on chromosome 22 as SNPs in strong LD.

To select 100 SNPs in weak or no LD, we further

required the r2 value (the square of Pearson’s correlation)

between any two adjacent SNPs to be less than 0.1 for

weak LD and less than 0.0001 for no LD. To describe

the LD structure of these data sets, we measured LD

levels using another measure: the absolute value of

Lewontin’s D0 (Lewontin 1964) for adjacent pairs of

SNPs. |D0| standardizes the deviation of an observed

haplotype frequency from its expectation under the

assumption of linkage equilibrium. It ranges from 0 to 1,

regardless of the allele frequencies of the two SNPs that

make up the haplotypes.
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Results

Strong LD

The LD strength based on r2 and |D0| are summarized in

Table 1. The entries of the SNPs in strong LD represent the

LD levels in the original data. The performance of the

different methods, including their tuning parameters that

minimized MSE is summarized in Table 2. The accuracy

of each method was evaluated based on its smallest MSE,

over all sets of parameters. Across all three analysis panels,

the fastPHASE method had smaller MSEs than the other

methods. Of the remaining methods, LM.lars gave smallest

MSEs. While neither KNN nor wtKNN outperformed most

of the other methods, the improvement by weighting is

consistent. Similar to Dai et al. (2006), we also found the

MSEs of EM were smaller than those of Rtree.

Although the optimal tuning parameters were not con-

sistent for the three analysis panels, we can see some

common optimal parameters across them. When the num-

ber of markers on each side was chosen to be five for the

EM algorithm, ten for LM.lars and ten for Rtree, their

minimum MSEs were reached. The number of haplotype

origins that minimizes the MSEs of fastPHASE was 15 for

all three analysis panels. We also found that both KNN and

wtKNN gave their best performance when five markers on

each side were used. Another trend shown in Table 2 is that

the MSEs of YRI were greater than the other two analysis

panels. This is because that the YRI data had less LD and

hence there was less information to borrow from nearby

SNPs (Fig. 1).

Weak LD

The SNPs in weak LD were restricted to SNPs with adja-

cent r2 less than 0.1. Despite this restriction, we found that

there was still substantial LD based on |D0|. The relative

accuracy of the eight methods was similar to those when

SNPs were in strong LD. For example, the advantage of

fastPHASE and LM.lars over the other methods, the benefit

of weighting when using nearest neighbor methods, and the

relatively small MSEs of EM to those of Rtree. As men-

tioned earlier, the relatively small values of |D0| in YRI may

explain why the MSEs for YRI were greater than those of

the other two analysis panels (Fig. 2; Table 3).

No LD

When SNPs were nearly in linkage equilibrium, the MSEs

were much greater than when SNPs were in strong or weak

LD. When replacing missing values with observed mean

genotype scores, it is not difficult to show that under the

assumption of HWE, the theoretical MSE of a SNP is the

variance of its genotype score, i.e., 2p(1 – p), where p is

the MAF of the SNP. Based on the allele frequencies of

SNPs in no LD, we found the theoretical MSEs of using

observed mean scores to impute missing genotypes were

0.34 for CEU, 0.32 for J/C, and 0.31 for YRI. The results in

Table 4 show that the minimum MSEs of fastPHASE,

LM.lars, and LM.back were close to those when using

observed mean scores to impute missing genotypes. This is

because when no predictor was chosen in LM.back and

LM.lars, we used the observed mean score of a SNP to

infer its missing values. In LM.svd, we evaluated its MSEs

using the smallest number of EigenSNPs that explained a

certain percentage of variance, with no further model

selection. This can cause serious overfitting when the data

contain no signal, which results in large MSEs.

Most of the optimal tuning parameters in Table 4

brought the estimate of missing values toward observed

mean scores. For example, EM, LM.back, LM.lars, and

Rtree reached their minimum MSEs when two markers on

each side were used, which was the smallest value among

the four values considered in our paper. As mentioned in

Scheet and Stephens (2006), the number of haplotype ori-

gins reflects model complexity—the larger the n.ho, the

more parameters in the model. The results in Table 4 show

that when SNPs were in no LD, the smallest value of n.ho

resulted in the smallest MSEs; therefore simpler models

were preferred over more complex models. It is also easy

to see from Scheet and Stephens (2006) that, when

n.ho = 1 is chosen (which was not considered in our

paper), posterior means estimated by fastPHASE is in fact

observed mean genotype scores. The percentage of

Table 1 Summary of SNP data

LD r2 |D0|

Mean Median Mean Median

Strong

CEU 0.32 0.09 0.80 1.00

J/C 0.29 0.09 0.80 1.00

YRI 0.20 0.05 0.80 1.00

Weak 0.1

CEU 0.05 0.03 0.74 1.00

J/C 0.04 0.03 0.76 1.00

YRI 0.03 0.02 0.69 0.79

None 0.0001

CEU \0.01 \0.01 0.02 0.01

J/C \0.01 \0.01 0.02 0.01

YRI \0.01 \0.01 0.02 0.01

The means and medians of r2 and |D0| were measured on adjacent

pairs of SNPs
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Table 2 Mean square error for SNPs in strong LD

(a) EM fastPHASE LM.back LM.lars LM.svd

Range of tuning parameter 1 n = 2–5 n.ho = 3, 5, 10, 15 n = 2, 3, 5, 10 n = 2, 3, 5, 10 n = 10, 20, 30, 50

Range of tuning parameter 2 – – – – p.var = 50–80%

Range of tuning parameter 3 – – – – –

Range of MSE (over tuning parameters)

CEU 0.087–0.105 0.049–0.082 0.069–0.109 0.058–0.108 0.090–0.159

J/C 0.065–0.116 0.044–0.074 0.062–0.116 0.057–0.116 0.080–0.105

YRI 0.149–0.187 0.092–0.123 0.129–0.166 0.107–0.165 0.158–0.243

Optimal tuning parameter

CEU n = 5 n.ho = 15 n = 10 n = 10 n = 30, p.var = 60%

J/C n = 5 n.ho = 15 n = 5 n = 10 n = 30, p.var = 70%

YRI n = 5 n.ho = 15 n = 5 n = 10 n = 20, p.var = 50%

(b) KNN wtKNN Rtree

Range of tuning parameter 1 n = 2, 3, 5, 10 n = 2, 3, 5, 10 n = 2, 3, 5, 10

Range of tuning parameter 2 k = 3, 5, 10, 15 k = 3, 5, 10, 15 cp = 1, 5, 10%

Range of tuning parameter 3 – – minsplit = 5, 10%

Range of MSE (over tuning parameters)

CEU 0.101–0.145 0.093–0.136 0.105–0.185

J/C 0.083–0.146 0.076–0.143 0.090–0.152

YRI 0.150–0.210 0.140–0.208 0.155–0.254

Optimal tuning parameter

CEU n = 5, k = 5 n = 10, k = 3 n = 10, cp = 10%, minsplit = 10%

J/C n = 5, k = 3 n = 5, k = 5 n = 10, cp = 5%, minsplit = 10%

YRI n = 5, k = 5 n = 5, k = 10 n = 10, cp = 10%, minsplit = 10%

Notation for tuning parameters: n is the number of markers on each side of a SNP being imputed; n.ho is number of haplotype origins; p.var is the

percentage of variance explained by EigenSNPs; k is the number of nearest neighbors; cp is the complexity parameter, and minsplit is the

minimum number of observations in a node to be split
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LM.back, LM.lars, and

fastPHASE for SNPs in weak

LD

Table 3 Mean square error for SNPs in weak LD

(a) EM fastPHASE LM.back LM.lars LM.svd

Tuning parameter 1 n = 2–5 n.ho = 3, 5, 10, 15 n = 2, 3, 5, 10 n = 2, 3, 5, 10 n = 10, 20, 30, 50

Tuning parameter 2 – – – – p.var = 50–80%

Tuning parameter 3 – – – – –

Range of MSE (over tuning parameters)

CEU 0.120–0.146 0.070–0.116 0.094–0.148 0.084–0.147 0.128–0.198

J/C 0.094–0.144 0.056–0.107 0.073–0.134 0.069–0.132 0.098–0.145

YRI 0.188–0.231 0.139–0.170 0.170–0.211 0.164–0.208 0.228–0.372

Optimal tuning parameter

CEU n = 5 n.ho = 10 n = 5 n = 10 n = 10, p.var = 60%

J/C n = 5 n.ho = 15 n = 10 n = 10 n = 30, p.var = 60%

YRI n = 3 n.ho = 10 n = 5 n = 5 n = 10, p.var = 50%

(b) KNN wtKNN Rtree

Tuning parameter 1 n = 2, 3, 5, 10 n = 2, 3, 5, 10 n = 2, 3, 5, 10

Tuning parameter 2 k = 3, 5, 10, 15 k = 3, 5, 10, 15 cp = 1, 5, 10%

Tuning parameter 3 – – minsplit = 5, 10%

Range of MSE (over tuning parameters)

CEU 0.131–0.184 0.120–0.183 0.129–0.216

J/C 0.111–0.173 0.103–0.172 0.102–0.166

YRI 0.190–0.257 0.182–0.257 0.197–0.280

Optimal tuning parameter

CEU n = 10, k = 5 n = 10, k = 5 n = 5, cp = 5%, minsplit = 10%

J/C n = 10, k = 5 n = 10, k = 5 n = 10, cp = 5%, minsplit = 10%

YRI n = 5, k = 10 n = 5, k = 10 n = 3, cp = 10%, minsplit = 10%

See footnotes of Table 2
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variance explained by EigenSNPs that minimized the

MSEs of LM.svd was 50%, which was also the smallest

value among all considered values. The optimal number of

nearest neighbors for KNN and wtKNN was the largest

values that had been considered. And it is also interesting

to see that weighting increased the MSEs. All these indi-

cate that when SNPs are in linkage equilibrium, learning

nothing from neighbors is preferred.

Computational complexity

We evaluated the computational complexity of each

method using the 100 SNPs in strong LD from the CEU

samples at its optimal set of tuning parameters. Each

method was tested on a Sun workstation (Sun 420r) with

four 450 MHz CPUs and 4 GB of memory. The compu-

tation time (minutes) is displayed in Table 5. The three

nonparametric methods, KNN, wtKNN, and Rtree, and the

two haplotype reconstruction methods, EM and fastPHASE

took less time than the three linear regression methods.

Among the three linear regression methods, LM.back took

longer time than the others.

Discussion

We considered eight methods to impute missing genotype

data. Our results showed that when SNPs were in LD, by

incorporating information from nearby SNPs, we can

Table 4 Mean square error for SNPs in no LD

(a) EM fastPHASE LM.back LM.lars LM.svd

Tuning parameter 1 n = 2–5 n.ho = 3, 5, 10, 15 n = 2, 3, 5, 10 n = 2, 3, 5, 10 n = 10, 20, 30, 50

Tuning parameter 2 – – – – p.var = 50–80%

Tuning parameter 3 – – – – –

Range of MSE (over tuning parameters)

CEU 0.407–0.594 0.365–0.385 0.359–0.477 0.355–0.373 0.696–0.919

J/C 0.376–0.579 0.339–0.351 0.333–0.388 0.331–0.338 0.638–0.894

YRI 0.360–0.462 0.309–0.321 0.305–0.396 0.301–0.311 0.639–0.886

Optimal tuning parameter

CEU n = 2 n.ho = 3 n = 2 n = 2 n = 10, p.var = 50%

J/C n = 2 n.ho = 3 n = 2 n = 2 n = 20, p.var = 50%

YRI n = 2 n.ho = 3 n = 2 n = 2 n = 10, p.var = 50%

(b) KNN wtKNN Rtree

Tuning parameter 1 n = 2, 3, 5, 10 n = 2, 3, 5, 10 n = 2, 3, 5, 10

Tuning parameter 2 k = 3, 5, 10, 15 k = 3, 5, 10, 15 cp = 1, 5, 10%

Tuning parameter 3 – – minsplit = 5, 10%

Range of MSE (over tuning parameters)

CEU 0.371–0.477 0.373–0.484 0.360–0.662

J/C 0.349–0.441 0.350–0.446 0.336–0.601

YRI 0.312–0.412 0.312–0.418 0.303–0.513

Optimal tuning parameter

CEU n = 5, k = 15 n = 5, k = 15 n = 2, cp = 10%, minsplit = 10%

J/C n = 5, k = 15 n = 5, k = 15 n = 2, cp = 10%, minsplit = 10%

YRI n = 5, k = 15 n = 5, k = 15 n = 2, cp = 10%, minsplit = 5%

See footnotes of Table 2

Table 5 Computation time based on 100 SNPs in strong LD from the CEU samples

Methods EM fastPHASE LM.back LM.lars LM.svd KNN wtKNN RTree

Time (min) 6.96 10.10 49.94 33.36 25.84 1.57 5.83 1.68

The data set had 3% missing genotypes
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impute missing genotype data much more accurately than

replacing missing genotypes with observed mean genotype

scores. For each method, we evaluated both MSEs and

computation time. The results suggest that fastPHASE

outperforms the other methods in terms of both accuracy

and efficiency. Here we compared methods to impute

missing genotypes at typed SNPs. Based on typed tag SNPs

and the multi-locus LD pattern of a reference panel, e.g.,

data from the HapMap project, genotypes at untyped SNP

can also be imputed. Some recent work (Marchini et al.

2007; Nicolae 2006; Servin and Stephens 2007) shows that

untyped SNPs can be accurately estimated based on typed

tag SNPs. As a result, the power to detect association is

greatly improved.

Becker and Knapp (2005) reported that when missing

genotypes exist, using most likely inferred haplotype pairs

for each subject tends to inflate Type I error rates. Multiple

imputations are usually preferred to reduce the bias caused

by a single imputation (Little and Rubin 1987) and there-

fore improve the accuracy of an imputation method.

Unfortunately, multiple imputations might not be practical

for large-scale genome-wide association analysis. In this

paper, we aim to compare the departure of imputed geno-

type scores from true genotypes for general purpose. We

realize that in practice, especially in genetic association

studies, imputed genotype scores, i.e., posterior means, do

not provide enough information for estimation uncertain-

ties. From this point of view, it would be beneficial to use

posterior probabilities of each missing genotype from EM

or fastPHASE. In addition, in the future, it would be useful

to compare the effects of different imputation methods on

association studies.

Among the three linear regression methods, LM.svd had

the greatest MSEs. This is not surprising because predictors

were selected based on whether they can improve the

overall model fit in both LM.back and LM.lars. However,

for each chosen p.var for LM.svd, we selected the mini-

mum number of EigenSNPs and then used all the selected

EigenSNPs to fit a linear model without further model

selection. This might cause overfitting. Similarly, for each

chosen number of flanking markers, the EM method esti-

mated haplotype frequencies based on a SNP being

imputed and all its flanking markers. Using a fixed number

of flanking markers might not be the optimal strategy

because recombination events are not uniformly distributed

on chromosomes (Lichten and Goldman 1995). In contrast,

in fastPHASE, we used the number of haplotype origins as

a tuning parameter, which allows SNPs to borrow infor-

mation from a variable number of flanking markers.

Despite some agreements, for each method, the optimal set

of tuning parameters for one analysis panel was not nec-

essary the optimal set of another. Even for a given analysis

panel, the set of optimal tuning parameters changed when

different tag markers were retained. Therefore, as dis-

cussed by Scheet and Stephens (2006), cross-validations

are useful to find the optimal set of tuning parameters.

When evaluating imputation errors, we randomly

selected observed genotype to create artificial missing data.

Souverein et al. (2006) investigated the performance of a

multiple imputation method based on polytomous logistic

regression under different missing mechanisms: missing

completely at random, missing at random, and not missing

at random. They found that the genotype imputation errors

under missing at random and not missing at random were

greater than that under missing completely at random.

Realizing that informative missing of genotypes can lead to

bias in haplotype frequency estimation, Liu et al. (2006)

proposed a method to reduce bias in both haplotype fre-

quency estimation and association analysis for two loci

when missing was not at random. This approach might not

be applicable to genome wide data because of its compu-

tational expense. Further studies might be necessary to

investigate methods that can handle data that are not

missing at random.

Another assumption we made is that the data came

from a population. In practice, especially in genetic

association studies, data were usually not sampled ran-

domly from a population. As discussed by Dai et al.

(2006), ignoring phenotypes, such as disease status, could

introduce bias to association studies. Other confounding

factors, such as population stratification, can also lead to

inaccurate estimation of missing genotypes, which con-

sequently affects the results of association analyses. For

fastPHASE, a recent work by Servin and Stephens (2007)

suggests that sampling based methods can be used to

combine phenotype information. When ancestry infor-

mation is available, population structure can be taken into

account by specifying a subpopulation variable in the

fastPHASE package. For regression methods (the three

linear regression based methods and the regression tree

method), this can be solved by adding phenotypes and

other possible confounding factors into models, such as

the axes of genetic variation based on principal compo-

nent analysis (Price et al. 2006) when ancestry

information is unknown or indicators of subpopulations

when ancestry information is available.
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