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Abstract
Neurodevelopmental disorders (NDDs) are a clinically and genetically heterogeneous group of early-onset pediatric disorders 
that affect the structure and/or function of the central or peripheral nervous system. Achieving a precise molecular diagnosis 
for NDDs may be challenging due to the diverse genetic underpinnings and clinical variability. In the current study, we 
investigated the underlying genetic cause(s) of NDDs in four unrelated Pakistani families. Using exome sequencing (ES) as 
a diagnostic approach, we identified disease-causing variants in established NDD-associated genes in all families, including 
one hitherto unreported variant in RELN and three recurrent variants in VPS13B, DEGS1, and SPG11. Overall, our study 
highlights the potential of ES as a tool for clinical diagnosis.

Keywords Exome sequencing · Neurodevelopmental disorders · Mutation screening

Introduction

NDDs are a clinically and genetically heterogeneous group 
of prenatal or neonatal onset pediatric conditions that impair 
the brain’s structure and/or function, typically resulting from 

disruption of tightly regulated developmental processes 
(Khan et al. 2019; Mitani et al. 2021). NDDs arise from 
the disruption of crucial neurodevelopmental mechanisms 
or pathways and are associated frequently with abnormalities 
in neurogenesis, glial and neuronal proliferation, neuronal 
migration, synapse formation, and myelination (Homberg 
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et al. 2016). Subsequent impaired cognitive function may 
affect behavior, motor skills, learning, reasoning, memory, 
problem-solving, decision-making, communication, and 
attention, culminating in cognitive, communicative, behavio-
ral, and psychomotor impairments (Bogaert et al. 2023; Car-
doso et al. 2019; Morris-Rosendahl and Crocq 2020). Intel-
lectual disability (ID) in mild to severe forms are the most 
predominant types of NDD and affects 1–3% of the world’s 
population, while its prevalence is twofold in the developing 
world (Riazuddin et al. 2017). Common manifestations of 
NDDs include developmental delay (DD), specific learn-
ing and motor disorders, communication disorders, autism 
spectrum disorders, attention deficit hyperactivity disor-
der, movement disorders, and epilepsy (Morris-Rosendahl 
and Crocq 2020; Parenti et al. 2020). Up to 50% of NDD 
cases are estimated to have a genetic etiology (Servetti et al. 
2021). In the last decade, the widespread integration of next-
generation sequencing approaches, most notably ES, into 
the diagnostic process has increased the number of affected 
individuals who receive a molecular diagnosis (Farwell et al. 
2015; Lee et al. 2014; Wright et al. 2023; Yang et al. 2013, 
2014). With an average diagnostic yield of 30–50%, ES has 
emerged as a key diagnostic tool in clinical and research 
environments and is considered a first-tier (Clark et al. 2018; 
Srivastava et al. 2019) diagnostic approach. This approach is 
particularly helpful when investigating patient-parent trios 
or related affected or unaffected individuals, followed by 
confirmation and co-segregation analysis of candidate vari-
ants within the family through Sanger sequencing, further 
enhancing the diagnostic process. ES offers a relatively fast, 
inexpensive, and precise molecular diagnosis in affected 
individuals with overlapping, unexplained, heterogene-
ous disorders impacting the central and peripheral nervous 
system.

This study aimed to identify the genetic etiology of NDDs 
in four unrelated Pakistani families using ES as a first-tier 
diagnostic approach. We identified disease-causing variants 
in established NDD-associated genes in all four families, 
including one previously unreported variant in RELN and 
three recurrent variants in VPS13B, DEGS1, and SPG11.

Materials and methods

Research participants and sample collection

This study was approved by the Institutional Review 
Board and Ethical Committee at the National University 
of Medical Sciences, Rawalpindi, Pakistan, and the 
Department of Biological and Biomedical Sciences, The 
Aga Khan University, Karachi, Pakistan to ensure adherence 
to ethical guidelines. Four Pakistani families, including 
three consanguineous and one non-consanguineous, were 

ascertained, with all families having at least one member 
exhibiting NDD phenotypes likely of genetic origin. We 
obtained written informed consent from each proband or 
their legal guardians in accordance with the Declaration 
of Helsinki. Detailed clinical histories were taken for each 
affected individual and peripheral blood samples were 
collected from all consented affected and unaffected family 
members. Genomic DNA extraction from blood samples was 
performed using the GeneJET Genomic DNA Purification 
Kit (Thermo Scientific).

Exome sequencing, variant filtration, and in silico 
analyses

We performed paired-end ES using genomic DNA of at least 
one affected individual from each family. Genomic DNA 
was fragmented and target enriched for exome capture 
using the Twist Human Core Exome library preparation kit 
(Twist Biosciences) following the manufacturer’s protocol. 
The captured libraries were then sequenced on the Illumina 
Novaseq 6000 platform, generating 150 bp paired-end reads. 
This achieved a mean depth of 68–84× across individuals, 
with 87–90% coding region coverage at a minimum of 20 
reads. The sequencing yielded FASTQ files that underwent 
downstream bioinformatics analysis for variant calling and 
filtration. No copy number variants analysis was performed 
in these families.

Quality control (QC) of raw paired-end ES reads in 
FASTQ format was first evaluated with FastQC. Based on 
the QC results, the low-quality reads and adapter sequences 
were trimmed (or filtered out) using the fastp tool (Chen 
et al. 2018). Trimmed and filtered reads underwent a second 
round of QC with FastQC to evaluate the effectiveness of 
fastp preprocessing. The trimmed and filtered reads were 
then aligned to the hg19 human reference genome with 
BWA-MEM (Li 2013) resulting in a sequence alignment/
map (SAM) file. The aligned sequences were processed with 
Picard tools to generate a sorted and deduplicated binary 
alignment map (BAM) file. Germline single nucleotide 
variants (SNVs) and indels were called and processed with 
the Genome Analysis Toolkit (GATK4) (DePristo et al. 
2011; McKenna et  al. 2010) following the GATK Best 
Practices workflow (Van der Auwera et al. 2013) resulting 
in a variant call format (VCF). Variants were annotated by 
wANNOVAR (Yang and Wang 2015) to add functional and 
interpretive information from databases including Gene 
Ontology, Genome Aggregation Database (gnomAD), 
Exome Aggregation Consortium (ExAC), 1000 Genomes, 
NHLBI-ESP, dbSNP, SIFT, PolyPhen-2, MutationTaster, 
and CADD as well as clinical associations from ClinVar 
and GWAS catalog.

Reads with a minimum of 10× coverage were retained 
for further analysis. Variants were filtered to remove 
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reported SNVs with minor allele frequencies (MAFs) > 0.01 
in public databases including dbSNP, 1000 Genomes, 
gnomAD, ExAC, and TOPMed BRAVO. Exonic or splice 
variants with MAFs < 0.01 consistent with the inheritance 
patterns of disease and previous association with NDDs 
were prioritized as candidates. These candidate variants 
underwent bidirectional Sanger sequencing validation and 
segregation analysis in DNA from all available consented 
family members using BigDye Terminator v3.1 on an ABI 
3730 platform (List of primers is available in Supplementary 
Table 1). Bioinformatics pipeline results were validated 
using VarSome Clinical (v11.6). Variants were classified 
and interpreted according to the guidelines of the American 
College of Medical Genetics and Genomics (ACMG) 
(Richards et al. 2015).

Results

Family 1

Clinical findings

A consanguineous Pakistani family with two affected sib-
lings 1:3 and 1:5 (Fig. 1) exhibited a severe neurodevel-
opmental condition characterized by ID, DD, speech and 
language delay, and microcephaly. Both affected individuals 
were delivered full-term by spontaneous vaginal delivery 
with no reported pregnancy complications. Individual 1:3 
(male, age 17 years at last clinical assessment) had seizure 
onset at 6 months after a fever, lasting 1 year and requiring 

hospitalization. Hands and feet contractures were noticed 
at around 6 months of age. He has microcephaly (−5.44 
SD), severe ID, DD, speech delay, musculoskeletal anoma-
lies, muscle spasticity, hypotonia, hand tremors, short stat-
ure, bed-confined, inability to self-feed, crawl, and stand 
with support by age 3 years, and is only able to speak a 
few words by the age of 16 years. No myopia or retinopa-
thy was observed in this patient. The individual exhibited 
sociable behavior, typical facial dysmorphism, and joint 
hyperextensibility. Sensation was normal in his right toe but 
absent in his left toe. He tried to respond to words but was 
unable to speak. Additionally, he had a disturbed sleeping 
pattern. Individual 1:5 (female, age 20 years at last clini-
cal assessment) has microcephaly (−4.10 SD), severe ID, 
DD, and speech delay. By the age of 5 years, she was only 
able to speak 1–3 words. She exhibited sociable and cheer-
ful behavior, although occasional episodes of aggression 
were observed. She had low vision, night blindness, joint 
hypermobility, and typical facial characteristics. She had a 
normal sensation in  her toes. She tried to respond to some 
words but was unable to speak. She demonstrated independ-
ent self-feeding and eating skills. Detailed clinical features 
are described in Supplementary Table 2.

Genetic findings

ES in both affected siblings (1:3 and 1:5) and subse-
quent bioinformatic filtering identified ten variants (Sup-
plementary Table  3) including a homozygous variant 
(NM_152564.5):c.11758C>T (p.Arg3920Ter) in VPS13B 
shared by both affected individuals (Fig.  1; Table  1). 
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Fig. 1  Pedigrees and genetic findings in families with NDDs. Top 
bold text shows the name and identified variant in each family. The 
double horizontal lines in pedigrees indicate consanguinity; squares 
and circles symbolize males and females, respectively. Filled symbols 
indicate affected individuals; unfilled symbols indicate healthy indi-
viduals; diagonal line, deceased. The genotypes for identified variants 

are indicated below each symbol where DNA was available. Electro-
pherograms of affected (upper panel) and healthy (lower panel) indi-
viduals below each pedigree highlight the precise location (dotted 
rectangle) of variants in the DNA sequence. Asterisks in the pedigree 
indicate family members whose DNA was unavailable. Ref, reference 
allele; Alt, alternative allele
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The identified variant is rare in public databases (MAF 
of 0.000004957 in gnomAD v4.0.0). We prioritized the 
VPS13B variant due to previous association of the gene 
with autosomal recessive Cohen syndrome (Kolehmainen 
et al. 2003) overlapping with the clinical presentation of 
affected individuals in Family 1. Bi-directional Sanger 
sequencing validated the segregation of the VPS13B vari-
ant with disease status across the family. This variant has 
not been reported in the literature although ClinVar submis-
sions (VCV000550808.37) classifies this variant as patho-
genic/likely pathogenic with no information available on 
phenotype.

Family 2

Clinical findings

A consanguineous Pakistani family with one affected 
female individual (2:3) aged two  years (at last 
clinical assessment)  was ascertained from the Sindh 
province (Pakistan). She was born at full term through a 
C-section. She has shown delayed developmental milestones, 
including delays in sitting, babbling, walking, and learning 
difficulties. She has strabismus in both eyes, stiffness in 
both the upper and lower limbs, and muscle atrophy in both 
limbs. She has been assessed clinically for her aggressive 
behavior. Over time, the disease symptoms have exhibited 
a progressive and deteriorating trend. She experiences 
recurring seizures, typically once a month. Presently, she 
faces challenges in thriving, is confined to a bedridden 
state, and necessitates assistance for fundamental self-care 
activities and feeding.

Genetic findings

In Family 2 proband-only ES identified multiple 
variants (Supplementary Table 3) including a previously 
unreported homozygous nonsense variant in RELN 
(NM_005045.4):c.4696C>T (p.Gln1566Ter) that segregated 
with disease in the trio (Fig. 1; Table 1). RELN is associated 
with autosomal recessive Lissencephaly 2 (Norman-
Roberts type; OMIM 257320) (Hong et  al. 2000), and 
lateral temporal lobe epilepsy-7 (OMIM 616436) (Dazzo 
et al. 2015). Lissencephaly, sometimes known as “smooth 
brain” is a severe neurodevelopmental condition in which 
neuronal migration is impeded, resulting in a thicker 
cerebral cortex with a smoothed-out, simplified fold pattern. 
Lissencephaly is characterized by significant hippocampal 
and cerebellar abnormalities (Hong et al. 2000). Due to 
previous association of RELN variants with the disease and 
its concordance with the proband’s clinical presentation, 
we prioritized this variant. The identified variant is hitherto 
unreported and is absent in gnomAD v4.0.0 and in our Ta
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in-house healthy control database, and it is classified as 
Likely pathogenic (Table 1).

Family 3

Clinical findings

A consanguineous Pakistani family with second-cousin 
parents has three affected members (Fig. 1) exhibiting a 
severe NDD marked by global developmental delay (GDD), 
speech delay, hypotonia, and microcephaly. Proband 3:3 
was a 7-year-old (at last clinical assessment) female who 
presented GDD, ID, severe microcephaly (−6.05 SD), 
spasticity, hypotonia, lack of speech, motor delay, inability 
to sit/walk/self-feed, and limb contractures. Her mother 
reported she did not cry at birth and exhibited transient 
neonatal hyperkinesia that later resolved. She was born 
full-term through a cesarean section. Her brain magnetic 
resonance imaging (MRI) noted moderate to severe brain 
atrophy. Proband 3:4 was a 14-year-old (at last clinical 
assessment) female who exhibited GDD, ID, microcephaly 
(−6.17 SD), spasticity, hypotonia, lack of expressive speech, 
motor delay, limb contractures, and scoliosis. She was born 
full-term through spontaneous vaginal delivery. Proband 
3:5 was a deceased 9-year-old (at last clinical assessment) 
male who presented with GDD, ID, hypotonia, lack of 
speech, inability to sit/walk/self-feed, childhood milestone 
regression, and limb contractures. He was also born full-
term via spontaneous vaginal delivery.

Genetic findings

Trio-ES of an affected individual (3:3) and both parents 
(3:1 and 3:2) identified a homozygous recurrent variant 
(NM_003676.4):c.517C>T (p.Arg173Ter) in DEGS1 
(Fig. 1; Table 1). The variant causes a premature translational 
stop signal (p.Arg173Ter) and is predicted to result in 
nonsense-mediated decay (NMD). DEGS1 is associated with 
autosomal recessive leukodystrophy, hypomyelinating, 18 
(HLD18, OMIM 618404). HLD18 is hallmarked by an onset 
of GDD in early infancy. In the most severe cases, affected 
individuals have impaired psychomotor development, which 
includes the inability to sit or walk independently, aphasia 
or poor speech, dystonia, spasticity, and seizures may occur 
in some cases (Pant et al. 2019).

Segregation analysis showed that the DEGS1 variant 
segregates in a recessive inheritance pattern in the family, 
homozygous in affected individuals, and heterozygous in 
unaffected parents. A complete list of additional variants 
identified after bioinformatic filtering is provided in 
Supplementary Table 3.

Family 4

Clinical findings

A 19-year-old male proband (4:3) from a non-consanguineous 
pedigree (Fig.  1) presented with a progressive learning 
disability, task-specific tremors, and gait abnormality 
beginning in late childhood. He achieved normal early 
developmental milestones. At the age of 12 years, intention 
tremors started in his right arm before progressing to involve 
the left arm bilaterally by the age of 15  years. He also 
developed progressive gait abnormalities and leg spasticity 
without lower limb tremors. Cognitive decline became evident 
impairing his academic performance. Clinical exam showed 
bilateral arm tremors on intent, leg spasticity, and normal 
muscle strength. Spiral drawing testing supported essential 
tremor. He has four unaffected siblings and has no family 
history of a similar neurological condition. Brain MRI at age of 
16 years and nerve conduction studies and electromyography 
at age 18 years were normal. Extensive biochemical testing, 
including thyroid function, copper studies, ceruloplasmin, and 
alpha-fetoprotein were unremarkable. Despite a 7-year long 
clinical testing history, no definitive diagnosis was achieved 
by the age of 19 years.

Genetic findings

Parent-proband Trio-ES identified a recurrent homozygous 
frameshift deletion in SPG11 (NM_025137.4):c.5769del 
(p.Ser1923ArgfsTer28) (Fig. 1; Table 1) and a missense 
variant in PRKAG3 (Supplementary Table 3). Loss of SPG11 
function is an established disease mechanism in autosomal 
recessive SPG11-related neurological conditions (Stevanin 
et al. 2007) overlapping with the phenotypes of proband. 
Hereditary spastic paraplegias (HSPs) are a heterogeneous 
group of neurodegenerative disorders characterized by 
progressive weakness and spasticity of the lower limbs 
associated with corticospinal axon degeneration.

The SPG11 variant has been reported previously as 
pathogenic in individuals with HSP (Kara et  al. 2016; 
Paisan-Ruiz et al. 2008; Riazuddin et al. 2017; Schneider 
et  al. 2012; Stevanin et  al. 2008; Wakil et  al. 2012; 
Zulfiqar et al. 2019). The variant segregates with disease 
in the pedigree; it is homozygous in the affected individual, 
heterozygous in the unaffected parents, and heterozygous or 
wild type in siblings (Fig. 1).

Discussion

Identification of a disease-causing gene(s) is a key step 
towards understanding the pathophysiological mechanisms 
of NDDs which enables precise molecular diagnosis, genetic 
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counseling about recurrence risk, prenatal testing, disease 
management, and potential development of personalized 
treatments (Blesson and Cohen 2020; Parenti et al. 2020; 
Wright et  al. 2018). Furthermore, definitive molecular 
diagnosis may prevent unnecessary testing, provide 
prognostic information, facilitate access to support services, 
end the diagnostic odyssey, and improve quality of life 
by providing psychological benefits (Carter et al. 2023). 
Despite advancements in diagnostic genetic testing, such 
as ES, achieving a precise molecular diagnosis for NDDs 
can be challenging due to diverse genetic underpinnings and 
clinical variability, where more than half of individuals may 
not get a definitive molecular diagnosis (Wojcik et al. 2023), 
face misdiagnosis, or receive multiple diagnoses, leading to 
a diagnostic odyssey.

ES has become a common clinical diagnostic tool for 
NDDs, with a reported diagnostic yield of ~30–50% (Clark 
et  al. 2018; Srivastava et  al. 2019), given its ability to 
provide a rapid, cost-effective, and highly accurate molecular 
diagnosis for patients with overlapping, unexplained, 
heterogeneous NDDs, we utilized ES in four unrelated NDD 
families for genetic diagnosis.

In Family 1, we identified a rare homozygous variant 
VPS13B (NM_152564.5):c.11758C>T (p.Arg3920Ter) as 
a likely disease cause. Pathogenic variants in VPS13B that 
segregate in an autosomal recessive inheritance pattern are 
associated with Cohen syndrome (El Chehadeh et al. 2010; 
Kolehmainen et al. 2003). There was marked intra-familial 
phenotypic variability among both affected individuals. 
Overlapping clinical characteristics among both affected 
individuals, such as ID, DD, speech delay, and microcephaly 
are consistent with Cohen syndrome.

VPS13B is a peripheral Golgi membrane protein that 
plays a crucial role in important cellular processes such as 
intracellular protein transport, sorting, vesicle trafficking, 
and maintaining Golgi integrity. It possesses functional 
motifs and putative transmembrane domains (Duplomb 
et al. 2014; Kolehmainen et al. 2003; Seifert et al. 2011). 
The C terminus of VPS13B localizes protein to the Golgi 
apparatus (Seifert et  al. 2011). The identified variant 
p.Arg3920Ter introduces a premature stop codon in the 
C-terminus, resulting in a truncated protein lacking the 
final 78 amino acids that encompass the Golgi localization 
domain. Previous reports have identified disease-causing 
variants p.Ser3945GlnfsTer22, p.Asn3954Lysfs*60, 
p.Pro3944LeufsTer41 and (NM_152564.5):c.6657+1G>A, 
farther towards the C-terminus (El Chehadeh et al. 2010; 
Kolehmainen et al. 2004). Disruption of C-terminus may 
lead to defects in proper subcellular targeting of VPS13B 
to the Golgi apparatus (Seifert et al. 2011). This results 
in pathogenic defects in Golgi structure and function. 
Therefore, truncation of the C-terminal domain provides a 

molecular mechanism linking the p.Arg3920Ter variant to 
pathogenesis associated with Golgi dysfunction.

In family 2, we identified a hitherto unreported 
homozygous nonsense variant p.Gln1566Ter in RELN, 
leading to a premature stop codon that likely results in loss 
of Reelin protein. Reelin is an essential protein for brain 
growth and physiological activities. Functional analysis in 
a reeler loss of function mouse model reported that RELN 
leads to neurological symptoms with main features including 
ataxia, tremors, and a distinctive ‘reeling’ gait (Di Donato 
et al. 2022). Furthermore, multiple genome-wide association 
studies have also established a genetic link between RELN 
and various psychiatric disorders, including schizophrenia 
and autism spectrum disorders (Ishii et al. 2016). Biallelic 
variants in RELN are associated with a form of lissencephaly 
with cerebellar hypoplasia (Di Donato et al. 2022).

In Family 3, we identified a recurrent pathogenic 
variant (p.Arg173Ter) in DEGS1 associated previously 
with autosomal recessive HLD18 (Dolgin et  al. 2019; 
Pant et al. 2019). DEGS1 encodes a Δ4-dihydroceramide 
desaturase, an endoplasmic reticulum lipid desaturase 
that catalyzes the final step in the de novo ceramide (Cer) 
biosynthesis pathway. Pathogenic variants in DEGS1 lead 
to dihydroceramide (DhCer) accumulation and DhCer/
Cer imbalance which may be toxic for myelinating 
oligodendrocytes and disruptive for myelin biogenesis and 
neuronal health (Pant et al. 2019). Loss-of-DEGS1 function 
is a known mechanism of disease (Pant et al. 2019). The 
phenotypes of our patients are consistent with those reported 
previously, adding further evidence to the pathogenicity of 
the DEGS1 variants.

Family 4 exemplifies a diagnostic odyssey resolved by 
genetic diagnosis. In this family a recurrent homozygous 
SPG11 (NM_025137.4):c.5769del (p.Ser1923ArgfsTer28) 
variant segregated with disease. SPG11 is associated with 
autosomal recessive Spastic paraplegia 11 (OMIM 604360), 
caused by loss of function mechanism. SPG11 encodes 
spatacsin, a protein with a role in the maintenance and/or 
growth of neuronal axons and intracellular cargo trafficking 
(Pérez-Brangulí et al. 2014). The identified homozygous 
variant was reported previously as disease-causing in 
individuals with HSP (Kara et al. 2016; Paisan-Ruiz et al. 
2008; Riazuddin et al. 2017; Schneider et al. 2012; Stevanin 
et al. 2008; Wakil et al. 2012; Zulfiqar et al. 2019) and 
clinical presentation of our patient was concordant.

In conclusion, we report four pedigrees with likely 
disease-causing variants in established NDD-associated 
genes, facilitated by large family structures ascertained in 
this study. This study demonstrates the utility of ES as a 
diagnostic tool for heterogeneous neurological disorders. 
Our study expands the clinical and mutational spectrum of 
NDDs.
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Web resources

Genome Aggregation Database (gnomAD), https:// 
gnomad. broad insti tute. org/
TOPMed Bravo https:// bravo. sph. umich. edu/
1000 Genomes Project, https:// www. inter natio nalge 
nome. org/
The Human Gene Mutation Database (HGMD), http:// 
www. hgmd. cf. ac. uk
VarSome https:// varso me. com/
InterVar https:// winte rvar. wglab. org/
ClinVar https:// www. ncbi. nlm. nih. gov/ clinv ar/
OMIM (Online Mendelian Inheritance in Man) https:// 
www. omim. org/
wANNOVAR https:// wanno var. wglab. org/
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tary material available at https:// doi. org/ 10. 1007/ s00438- 024- 02149-y.
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