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Abstract
The identification of prognostic genes can help in the clinical management of non-small cell lung cancer (NSCLC). However, 
there is little overlap in the prognostic genes identified in different NSCLC studies. One reason for this may be the inadequate 
sample size. Here, the effect of sample size on prognostic genes analysis was investigated based on 515 stage II/III NSCLC 
cases from two cohorts detected by whole-exome sequencing. Prognostic genes analysis was repeatedly performed 100 times 
for each sample size level using random resampling methods. In stage II lung adenocarcinoma (LUAD) and lung squamous 
cell carcinoma (LUSC) cases from the TCGA Pan-Lung Cancer cohort, the number of statistically significant prognostic 
genes first increased with sample size in a power law, then fluctuated steadily, and finally decreased slightly. The power law 
growth curves were also observed in stage III LUAD and LUSC cases from the TCGA Pan-Lung Cancer cohort and stage 
III Chinese LUAD cases from the OncoSG cohort. The correlation  R2 of the fitted power law growth curves were all greater 
than 0.99. In addition, at the sample size level where the number of prognostic genes peaked, the mean proportion of true 
prognostic genes in patients with stage II LUAD and LUSC was 28.32% and 23.12%, which could partly explain the little 
overlap in prognostic genes between reports. In conclusion, the number of prognostic genes takes a power law growth with the 
sample size in NSCLC, independent of histopathological subtype, race, and stage. These results also show how sample size 
affects the reliability of prognostic genes and will aid trial design for genomic mutation-based prognostic studies in NSCLC.

Keywords Non-small cell lung cancer · Sample size · Prognostic genes · Power law · Events number

Background

Lung cancer is the leading cause of cancer death in China 
and worldwide (Sung et al. 2021; Xia et al. 2022). Non-
small cell lung cancer (NSCLC) accounts for the majority 
of lung cancer cases, with two major histological subtypes: 
lung adenocarcinoma (LUAD) and lung squamous cell car-
cinoma (LUSC) (Nicholson et al. 2022). During the past 

decades, prognosis-related gene variants have been exten-
sively identified in NSCLC (Wang et al. 2015; Campbell 
et al. 2016; Jiang et al. 2017; Meng et al. 2019; Caso et al. 
2020; Chen et al. 2020). The identification of prognos-
tic genes will contribute to a better understanding of the 
molecular features of NSCLC progression and guide clinical 
management. However, prognostic genes identified in differ-
ent NSCLC studies rarely overlap (Jiang et al. 2017; Meng 
et al. 2019; Caso et al. 2020; Chen et al. 2020). It is often 
assumed that this phenomenon is due to certain differences 
in the cohorts used in different studies, such as age, gender, 
stage, and genetic background. However, the sample size is 
also important (Ein-Dor et al. 2005). In this study, we aimed 
to investigate the effect of sample size on prognostic genes 
analysis in NSCLC, which could contribute to the design of 
clinical trials for prognostic studies.

The number of genes in the human genome is about 20, 
000, but sample sizes in different studies are usually in the 
tens to hundreds. Therefore, using all genes for prognostic 
analysis, we would be taking a high risk of overtraining. 
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One study showed that to achieve a typical overlap of 50% 
between two predictive gene lists, several thousand patients 
were needed in breast cancer studies (Ein-Dor et al. 2006). 
Some cancer genomic studies have shown that the small 
sample size may prevent the identification of robust progno-
sis-related genes (Brenton et al. 2005; Lønning et al. 2005). 
Therefore, the question is: how many samples are needed to 
generate a robust list of prognostic genes in NSCLC?

For prognostic prediction analyses, it should be ensured 
that the sample size is adequate in terms of the number of 
participants and outcome events relative to the number of 
predictor factors (Riley et al. 2019). Therefore, the duration 
of follow-up and the number of outcome events are also key 
factors influencing the prognostic analysis. Statistical power 
is determined by the number of events rather than the sample 
size itself. The longer the follow-up period, the smaller the 
sample size required to obtain the same number of events 
(Schober and Vetter 2018; In and Lee 2019).

Some formulas have been used to estimate the sample size 
required for survival analysis in clinical trials (Schoenfeld 
1983; Hsieh and Lavori 2000). However, it is theoretically 
difficult to calculate the sample size required for prognos-
tic genes analysis because the status of predictors (mutated 
genes) is unknown. Here, we investigated the effect of sam-
ple size on prognostic genes analysis using random resa-
mpling methods based on two real-world NSCLC cohorts.

Methods

Data

Clinical and genetic mutation data for NSCLC patients 
were obtained from the TCGA Pan-Lung Cancer cohort and 
OncoSG cohort (Campbell et al. 2016; Chen et al. 2020). 
After checking clinical information, a total of 515 NSCLC 
cases were included in the analysis, including 118 stage II 
LUAD cases, 82 stage III LUAD cases, 147 stage II LUSC 
cases, and 81 stage III LUSC cases from the TCGA Pan-
Lung Cancer cohort, and 87 stage III LUAD cases from the 
OncoSG cohort.

Random sampling and prognostic analysis

To exclude confounding factors such as histopathological 
subtype and stage, we analyzed cases of the same stage in a 
single cohort separately. Prognostic genes associated with 
overall survival (OS) were identified by survival analysis 
stratified by the gene variant status using the “survGroup” 
function in maftools package (Mayakonda et al. 2018). P 
values in the survival analysis were determined using the 
log-rank test. Random resampling was conducted by ran-
domly selecting n samples in the sample dataset. Random 

sampling and prognostic analysis were repeated 100 times 
for each sample size level. Mean values of prognostic gene 
counts were used for comparison and regression analysis.

Reliability analysis

First, the prognostic genes obtained in all cases were defined 
as true prognostic genes (TPGs). All prognostic genes 
obtained in each sampling analysis were then compared with 
the TPGs. The proportion of TPGs in each sampling was 
calculated as the number of overlapped TPGs / the number 
of all prognostic genes. The mean of the TPG proportions 
was used to assess the reliability of the prognostic genes 
obtained at different sample size levels. Reliability analyses 
were performed starting at the sample size level where the 
number of prognostic genes reached a plateau.

Statistical analysis

Statistical analysis was performed using R statistical 
software (V4.1.0). Tumor mutation burden (TMB) was 
calculated using maftools (Mayakonda et al. 2018) and 
analyzed by the Mann–Whitney U test. The threshold for 
statistical significance is 0.05. All results were presented as 
mean ± standard error.

Results

In stage II LUAD cases from the TCGA Pan-Lung Can-
cer cohort, the number of statistically significant prognos-
tic genes increased with sample size in a power law with 
an exponent of 2.2256 until the sample size reached 70 
(Fig. 1a). Then, the number of prognostic genes fluctuated 
steadily until the sample size reached 115 (Fig. 1a). In stage 
III LUAD cases from the TCGA Pan-Lung Cancer cohort, 
the power law growth curve was also observed (Fig. 1b). 
The number of prognostic genes still had not reached the 
plateau when the sample size reached 75 (Fig. 1b). In stage 
II LUSC cases from the TCGA Pan-Lung Cancer cohort, 
the power law growth curve with an exponent of 1.9654 was 
observed until the sample size reached 75 (Fig. 1c). Subse-
quently, the number of prognostic genes plateaued until the 
sample size reached 120 and then decreased slightly until the 
sample size reached 140 (Fig. 1c). In stage III LUSC cases 
from the TCGA Pan-Lung Cancer cohort, the number of 
prognostic genes increased with sample size in a power law 
with an exponent of 2.2627 until the sample size reached 65 
(Fig. 1d). To achieve a 100% probability of obtaining statisti-
cally at least one statistically significant prognostic gene, the 
minimum sample sizes required were approximately 40 for 
stage II LUAD, 30 for stage III LUAD, 30 for stage II LUSC, 
and 30 for stage III LUSC, respectively.
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The reliability of the prognostic genes obtained at dif-
ferent sample size levels was then evaluated. A total of 
32 and 26 TPGs were identified in patients with stage II 
LUAD and LUSC, respectively (Table S1). At the sample 
size level where the number of prognostic genes reached 
the plateau, the mean of the TPG proportions was 28.32% 
in patients with stage II LUAD and 23.12% in patients 
with stage II LUSC (Fig. 1e). At the 95% total sample 
size level, the mean of the TPG proportions was 73.18% in 
patients with stage II LUAD and 69.96% in patients with 
stage II LUSC (Fig. 1e). In addition, the best-fit curves for 
the proportion of TPG relative to the proportion of sample 
size fit the binomial distribution and were very similar 
between stage II LUAD and LUSC (Fig. 1e).

The relationship between the number of prognostic 
genes and the events number was further analyzed. Using 
the events number corresponding to the samples number as 
the abscissa, similar curves were observed in both LUAD 
and LUSC (Fig. 2a). About 30–40 outcome events were 
required to reach the plateau of the number of prognostic 
genes (Fig. 2a). The growth curves of stage II LUAD and 
stage II/III LUSC nearly overlapped, while the curve of 
stage III LUAD was flatter. We speculated that this was 
due to the close TMB of stage II LUAD and stage II/III 
LUSC, while the TMB of stage III LUAD was lower. Com-
parative analysis of tumor mutation numbers confirmed 
this speculation (Fig. 2b).

We then analyzed the effect of genetic background on 
the number of prognostic genes. In stage III LUAD cases 
from the OncoSG cohort, all from Chinese LUAD patients, 
the number of prognostic genes also showed a power law 
increase with the sample size until the sample size reached 
85 (Fig. 3a). However, the number of prognostic genes 
obtained under the same sample size was significantly lower 
than that of the Pan-Lung Cancer cohort (Fig. 3a). TMB 
analysis showed that the number of tumor mutations in stage 
III LUAD cases from the OncoSG cohort was significantly 
lower than that in stage III LUAD cases from the TCGA 
Pan-Lung Cancer cohort (P < 0.001, Fig. 3b).

Discussion

Prognosis is an important concern in the clinical manage-
ment of NSCLC. Considerable effort has been devoted 
recently to OS prediction for NSCLC on the basis of genome 
sequencing (Wang et al. 2015; Campbell et al. 2016; Jiang 
et al. 2017; Meng et al. 2019; Caso et al. 2020; Chen et al. 
2020). However, they are suffering from non-reproducibility 
among reports. Few studies have been conducted that spe-
cifically address the sample size requirements of prognostic 
studies. In here, we investigated the effect of sample size on 
prognostic genes using random resampling methods based 
on two cohorts, including LUAD cases from the OncoSG 

Fig. 1  Number of prognostic genes increases with sample size in 
LUAD (a, b) and LUSC (c, d) cases from the TCGA Pan-Lung Can-
cer cohort. The lines are the best-fit results for power law growth. e 

Proportion of true prognostic genes. The lines are the best-fit results 
for binomial function. Data are expressed as the mean ± standard 
error
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cohort, and LUAD and LUSC cases from the TCGA Pan-
Lung Cancer cohort. Patients in the TCGA Pan-Lung Cancer 
cohort were predominantly European Americans (Campbell 
et al. 2016), whereas patients in the OncoSG cohort were all 
Chinese (Chen et al. 2020).

In stage II NSCLC from the TCGA Pan-Lung Cancer 
cohort, including LUAD and LUSC, the number of prog-
nostic genes first showed a power law increase with the 
sample size, then reached a plateau, and finally decreased 
slightly. Although the formula parameters of the power 
law curves were slightly different in different cohorts, the 

correlation R2 of the fitted curves were all greater than 
0.99. With the same sample size, the number of prognostic 
genes in Chinese LUAD was significantly lower than that 
in European Americans, possibly due to the lower TMB. 
However, the number of prognostic genes also increased 
with sample size in a power law. The prognostic analysis 
is based on time-to-event data (Moons et al. 2009). The 
number of outcome events is more critical than the sample 
size in prognostic analysis. Relative to the number of out-
come events, the growth curves of the number of prognos-
tic genes in the different cohorts were more similar. These 

Fig. 2  Prognostic genes analysis in LUAD and LUSC. a Number of prognostic genes increases with events number. b Comparison of tumor 
mutational burden. Data are expressed as the mean ± standard error

Fig. 3  Prognostic genes analysis in LUAD cases from the OncoSG 
cohort. a Number of prognostic genes increases with sample size. 
The line is the best-fit result for power law growth. b Comparison of 

tumor mutational burden. Statistical difference was analyzed by Wil-
coxon test. Data are expressed as the mean ± standard error
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results showed that the power law relationship between the 
number of prognostic genes and the sample size is com-
mon in NSCLC, independent of histopathological subtype, 
race, and stage.

Interestingly, our results also showed that the number of 
prognostic genes fluctuated steadily and decreased slightly 
as the sample size increased to a certain extent. Inclusion 
of more patients will detect more mutant genes and the 
number of prognostic genes will naturally increase. How-
ever, as the sample size increases, the statistical power 
becomes stronger and the mutant genes in NSCLC will 
also reach saturation. The balance of statistical power and 
the number of mutant genes may explain this phenomenon.

The number of prognostic genes that overlap between 
each sampling is difficult to assess directly due to the com-
plexity of random sampling. Therefore, we used the propor-
tion of TPGs to evaluate the reliability of the prognostic 
genes obtained at different sample size levels. Before the 
number of prognostic genes reached a plateau, the differ-
ence in the number and standard deviation of prognostic 
genes already implied that the reproducibility of prognostic 
genes is poor at this sample size level. Therefore, we only 
performed reliability analyses in stage II LUAD and LUSC 
cohorts with adequate sample sizes. The proportion of TPG 
relative to the sample size is consistent with a binomial 
distribution. At the sample size level where the number of 
prognostic genes peaked, the proportion of TPG in patients 
with stage II LUAD and LUSC averaged 28.32 and 23.12%, 
which could partly explain the little overlap in prognostic 
genes between reports. These results suggest that the effect 
of sample size on the reliability of prognostic genes is highly 
significant, even within the same cohort.

In summary, the number of prognostic genes follows 
a power law growth with sample size in NSCLC, inde-
pendent of histopathological subtype, race, and stage. 
Our study suggests that at least 30–40 outcome events are 
required in NSCLC to reach the plateau of the number of 
prognostic genes. These results also show how sample size 
affects the reliability of prognostic genes and will contrib-
ute to the trial design of genomic mutation-based prognos-
tic studies in NSCLC.
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