
Vol.:(0123456789)1 3

Molecular Genetics and Genomics (2020) 295:1113–1127 
https://doi.org/10.1007/s00438-020-01683-9

ORIGINAL ARTICLE

Interplay among miR‑29 family, mineral metabolism, and gene 
regulation in Bos indicus muscle

Wellison Jarles da Silva Diniz1,2  · Priyanka Banerjee2  · Gianluca Mazzoni3  · Luiz Lehmann Coutinho4  · 
Aline Silva Mello Cesar4  · Juliana Afonso1  · Caio Fernando Gromboni5 · Ana Rita Araújo Nogueira6  · 
Haja N. Kadarmideen2  · Luciana Correia de Almeida Regitano6 

Received: 26 September 2019 / Accepted: 4 May 2020 / Published online: 22 May 2020 
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
An interplay between gene expression, mineral concentration, and beef quality traits in Bos indicus muscle has been reported 
previously under a network approach. However, growing evidence suggested that miRNAs not only modulate gene expression 
but are also involved with mineral homeostasis. To our knowledge, understanding of the miRNA–gene expression-mineral 
concentration relationship in mammals is still minimal. Therefore, we carried out a miRNA co-expression and multi-level 
miRNA–mRNA integration analyses to predict the putative drivers (miRNAs and genes) associated with muscle mineral 
concentration in Nelore steers. In this study, we identified calcium and iron to be the pivotal minerals associated with miRNAs 
and gene targets. Furthermore, we identified the miR-29 family (miR-29a, -29b, -29c, -29d-3p, and -29e) as the putative key 
regulators modulating mineral homeostasis. The miR-29 family targets genes involved with AMPK, insulin, mTOR, and 
thyroid hormone signaling pathways. Finally, we reported an interplay between miRNAs and minerals acting cooperatively to 
modulate co-expressed genes and signaling pathways both involved with mineral and energy homeostasis in Nelore muscle. 
Although we provided some evidence to understand this complex relationship, future work should determine the functional 
implications of minerals for miRNA levels and their feedback regulation system.
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Introduction

Advancements have been made to understand mineral 
metabolism and its role in human health and animal pro-
duction (Suttle 2010; Fleet et al. 2011). However, mineral 
deficiencies, mainly iron and zinc, are the most prevalent 
worldwide nutritional disorder (Ritchie and Roser 2018). 
Although required in small amounts in the diet, an adequate 

mineral supply is necessary for the body’s metabolism, 
which includes muscle performance and energy utilization 
(Garmyn et al. 2011; Tizioto et al. 2015). Macro and micro 
minerals have multiple roles. They are crucial for biologi-
cal processes such as DNA synthesis, gene expression, cell 
growth and differentiation, and energy metabolism (Fleet 
et al. 2011; Davis et al. 2012a; Beckett et al. 2014). Mineral 
deficiency or overload are potentially deleterious (Suttle 
2010). Therefore, tight regulation is necessary to keep min-
eral levels within a narrow range. Besides the intake-output 
imbalance and environmental factors, several transcriptional 
and post-transcriptional mechanisms involved in mineral 
homeostasis were reported (Suttle 2010).

Genome-wide association studies in cattle have sug-
gested that muscle mineral content is under genetic control 
(Tizioto et al. 2015; Mateescu et al. 2017). Tizioto et al. 
(2015) reported candidate genes with an additive effect on 
muscle mineral concentration in cattle. Several differentially 
expressed genes underlie the complex network regulating 
muscle mineral deposition in Nelore steers (Diniz et al. 
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2019; Afonso et al. 2019). Based on co-expression analysis, 
we reported that genes acting in pathways related to energy 
and protein metabolism were associated with variation in 
muscle mineral concentration. Furthermore, studies have 
reported that minerals not only modulate gene expression 
but are involved with miRNA biosynthesis, which in turn 
regulates mineral homeostasis (El Azzouzi et  al. 2013; 
Beckett et al. 2014; Magenta et al. 2016). MiRNAs have a 
role in a wide range of biological functions (Sengar et al. 
2018), underpinning traits like meat tenderness (Kappeler 
et al. 2019) and intramuscular fat content (de Oliveira et al. 
2018, Oliveira et al. 2018). Likewise, Ca, Fe, and Zn were 
also associated with these meat traits (Garmyn et al. 2011; 
Tizioto et al. 2014; Casas et al. 2014; Ahlberg et al. 2014) 
and modulate miRNA biosynthesis (Beckett et al. 2014; 
Magenta et al. 2016; Ripa et al. 2017).

Mineral metabolism should be viewed as a system, both 
because of their interactions among themselves, as well as 
for their role with the functional genome variation in dif-
ferent regulatory layers (Fleet et al. 2011). Supporting this 
holistic approach, a growing number of studies have shown 
the interaction between minerals and gene expression (Davis 
et al. 2012b; Xu et al. 2013; Beckett et al. 2014). In this sce-
nario, a feedback loop acts as the mechanism modulating the 
miRNA–gene–mineral interaction (Beckett et al. 2014). Inte-
grative genomic approaches have proven to be a fruitful tool 
to study these interactions (Su et al. 2014; Feng et al. 2018). 
However, to date, there is still a knowledge gap regarding the 
genetic architecture underlying muscle mineral homeostasis, 
as well as the miRNA–gene–mineral relationship.

Therefore, we carried out exploratory miRNA co-expres-
sion and multi-level miRNA–mRNA integration analyses to 
uncover the pathways and regulatory networks underlying 
the mineral concentration in Nelore cattle muscle. From a 
systems biology perspective, we identified miRNAs acting 
cooperatively to modulate co-expressed genes and signaling 
pathways, involved with mineral and energy homeostasis. 
Understanding this complex relationship opens up several 
nutrigenomic opportunities. For example, by identifying 
mineral-responsive miRNA and their targets, one can man-
age the animal’s diet to regulate the miRNA expression and, 
consequently, the associated phenotype.

Results

We established co-expression networks to shed light on the 
miRNA–trait relationship, as well as the regulatory mecha-
nisms among miRNA, gene targets, and mineral concen-
tration. We first identified co-expressed miRNA modules 
relying on the Weighted Correlation Network Analysis 
(WGCNA) method. Next, a linear association model was 
fitted to identify modules biologically associated with the 

phenotypes. Subsequently, we integrated these miRNAs 
to gene co-expression modules identified in our previous 
study (Diniz et al. 2019), based on module eigengene (MEs) 
correlation. We intersected the significant negatively cor-
related modules to miRNA–mRNA interactions predicted 
from TargetScan (Agarwal et al. 2015). Lastly, we carried 
out a transcription factor prediction and over-representation 
analysis to bring up putative regulators and biological path-
ways (Fig. 1).

Phenotypic and sequencing data

The heritability for mineral concentration evaluated for this 
Nelore population ranged from 0.29 to 0.33, as previously 
published (Tizioto et al. 2015). There was a strong and sig-
nificant correlation among the minerals themselves ranging 
from 0.45 to 0.99 (Diniz et al. 2019). Descriptive statistics 
for the mineral concentrations are reported in Supplemen-
tary Table S1 (Diniz et al. 2019). Among the minerals, the 
average values for Ca and Fe were 153.95 and 46.48 mg/kg, 
respectively. The lowest values were for Se (0.14 mg/kg) and 
Mn (0.20 mg/kg).

MiRNA sequencing from 50 Longissimus thoracis (LT) 
samples yielded 1.4 million sequence reads per sample, 
on average. An average of 84.7% of the reads was mapped 
to Bos taurus ARS-UCD 1.2. After filtering out the lowly 
expressed miRNAs, we kept 343 known miRNAs used for 
the co-expression analysis.

Co‑expression analysis and module‑trait association

To identify the miRNA co-expression network, we clus-
tered the 343 miRNAs adopting the WGCNA framework 
(Langfelder and Horvath 2008). We gathered 24 modules 
labeled by color names and module sizes ranged from 5 
(miR.MEdarkgreen, miR.MEdargrey, and miR.MEred) to 
34 miRNAs (miR.MEturquoise) (Supplementary Table S1). 
We calculated the proportion of variance explained by the 
MEs, which ranged from 0.29 (miR.MEgreen) to 0.67 (miR.
MEdarkgreen) (Supplementary Table S1).

We fitted a linear model to associate the MEs with 
mineral concentration, selected the significant (p ≤ 0.05) 
modules, and investigated their biological relevance. Our 
approach identified nine miRNA modules, which were sig-
nificantly (p ≤ 0.05) associated with at least one mineral, as 
summarized in Table 1. The linear model coefficient values 
for the significant associations ranged from − 0.058 to 0.071 
(Supplementary Fig. S1). A positive association meant the 
trait measure increases with increasing “eigengene expres-
sion” or vice-versa for a negative association. We found the 
highest number of significantly associated traits between 
miR.MEcyan (positively associated with ten minerals) and 
miR.MEgreen (negatively associated with six minerals) 
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modules. A positive association between minerals and miR.
MEbrown (Ca, Na, and S), miR.MEmidnightblue (Ca, Fe, 
S, and Zn), and miR.MEgrey60 (Fe) was identified. Fur-
ther, we showed a negative relationship between minerals 
and the miR.MElightyellow (Ca, Mg, and Na), miR.MEma-
genta (Fe), miR.MEtan (Cu), and miR.MEred (Cu and Mn) 
modules.

Next, we selected the miRNAs with a pivotal role in the 
network topology and biological pathways based on the 
module membership (MM) criteria (Langfelder and Horvath 
2008). We identified 50 miRNAs with a MM ≥ 0.7 (Table 1) 
that belong to 23 families through the nine associated mod-
ules (Supplementary Table S2). The main miRNA families 
identified were let-7 and miR-29, with six members each, 
followed by miR-154 and miR-199, both with four miRNAs.

MiRNA–mRNA regulatory network 
and identification of key transcription factors

To have an overview of the miRNA–gene–trait interactions 
and to better understand their regulatory relationship, we 
integrated miRNA and mRNA modules. We selected 15 
mRNA modules associated with mineral concentration and 
meat quality traits (intramuscular fat content—IMF, and 
tenderness-WBSF7) from our previous work (Diniz et al. 

Fig. 1  Co-expression pipeline analysis. The main analyses steps to 
data processing and co-expression, and data integration are shown in 
white boxes. Tools applied in each analysis are shown in green boxes. 
Inputs and outputs are shown in lightyellow boxes. QC quality con-

trol, MM module membership. amRNA modules from (Diniz et  al. 
2019). bBased on the curated compendium of bovine transcription 
factors (TFs) from (de Souza et al. 2018)

Table 1  Module characterization and significant module-trait associa-
tion in Nelore cattle

a MiRNAs clustered into the module; Number of hub miRNAs with 
MM ≥ 0.7 in the parenthesis MM module membership
b MEs Module eigengene
c p ≤ 0.05; calcium (Ca), copper (Cu), iron (Fe), magnesium (Mg), 
manganese (Mn), phosphorus (P), potassium (K), sodium (Na), sulfur 
(S), selenium (Se), and zinc (Zn)

miRNA modules Number of 
miRNAs 
(MM)a

MEsb Associated  traitsc

miR.MEbrown 25 (5) 0.35 Ca, Na, S
miR.MEcyan 10 (6) 0.47 Ca, Cu, Fe, K, Mg, 

Mn, P, Na, S, Zn
miR.MEgreen 23 (5) 0.29 Ca, K, Mg, P, Na, Zn
miR.MEgrey60 8 (5) 0.54 Fe
miR.MElightyellow 8 (5) 0.50 Ca, Mg, Na
miR.MEmagenta 17 (8) 0.41 Fe
miR.MEmidnightblue 9 (6) 0.49 Ca, Fe, S, Zn
miR.MEred 21 (5) 0.37 Cu, Mn
miR.MEtan 12 (5) 0.40 Cu
Total 133 (50)
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2019) (Supplementary Table S3) and the nine miRNA mod-
ules reported here. We identified 48 animals with paired data 
(miRNA and mRNA) and calculated Pearson’s correlation 
among the MEs. A total of 16 pairs of miRNAs and mRNAs 
MEs showed significant negative correlations, which ranged 
from r = − 0.3 to r = − 0.68 (p ≤ 0.05) (Fig. 2). We further 
identified strong, positive, and significant module correla-
tions ranging from r = 0.3 to r = 0.61. Nonetheless, it is still 
unclear whether the positively correlated pairs are a direct 
(Mamdani et al. 2015) or intermediate, such as feedback 
motifs, miRNA effect (Ritchie et al. 2009; Su et al. 2014). 
Thus, as the main direct effect of miRNAs is downregulating 
the mRNA abundance (Su et al. 2014), we focused on the 
negative correlations for further investigations.

We found the highest number of significant negative 
correlated modules between miR.MEcyan (MEgrey60, 

MEgreenyellow, and MEgreen), miR.MEtan (MEorange, 
MEsalmon, and MEyellow), and miR.MElightyellow 
(MElightyellow, MEsalmon, and MEyellow), followed by 
miR.MEmidnightblue (MEgreenyellow and MEgrey60) 
(Fig.  2). The miR.MEbrown, miR.MEgreen, and  miR.
MEred were correlated with MEgreenyellow, MEroyal-
blue, MEdarkturquoise, respectively. Furthermore, the miR.
MEmagenta was correlated with MEroyalblue and MEdar-
kgrey. No significant negative correlations were identified 
between miR.MEgrey60 and any mRNA MEs. The network 
among all the trait-correlated MEs, as well as the negatively 
correlated mRNA–miRNA, showed that Ca, Fe, and Mg 
were the most associated minerals (Fig. 3).

To identify the miRNA–target pairs and shed light on 
their role in biological pathways related to mineral con-
centration, we applied two complementary approaches. 

Fig. 2  MiRNA–mRNA module correlation. MiRNA (x-axis) and 
mRNA (y-axis) modules are labeled by color. The matrix is color-
coded based on Pearson’s correlation (p values in the parenthe-

sis) according to the legend. Positive and negative correlations are 
showed in red and green colors, respectively. Significant negative cor-
relations (p ≤ 0.05) are highlighted with a red rectangle
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Firstly, for the 50 miRNA hubs, we used the hoardeR pack-
age (Fischer and Sironen 2016) to build a list of predicted 
targets of cattle miRNA hubs from TargetScan. In total, we 
reported 8123 unique genes, out of 24,698 putative targets, 
expressed in the mRNA muscle transcriptome from the same 
animals (Supplementary Table S2), among the ten modules 
(Table 2). No correlations were observed between the miR.
MEgrey60 (five hubs) with any of the mRNA modules. Due 
to that, miR.MEgrey60 was not considered for subsequent 
analyses. Then, to establish the most likely miRNA–target 
pairs, we intersected the predicted interactions with the sig-
nificant negatively correlated miRNA–mRNA MEs (Supple-
mentary Table S4). Putative new interactions based only on 
the negative ME correlation are in Supplementary Table S4.

MiRNAs targeted several genes. The miRNA–gene target 
interaction network, with a total of 4045 interactions among 
the ten mRNA modules, corresponding to 1815 unique tar-
gets, is represented in Supplementary Fig. S2 and Supple-
mentary Table S4. On average, 41 out of 45 hub miRNAs 
targeted 98 genes with a maximum of 600 genes (Fig. 4, 
Supplementary Table S4). The miR-29 family (miR-29e, 
29a, 29b, 29c, 29d-3p, in order of the number of targets) 
targeted the highest number of genes. At least two miR-
NAs targeted around 50% of the genes. We found that the 
genes HLF and TRAF3 were targeted by ten miRNAs each, 
followed by ATP2B2, DYNLL2, and YY1 with nine regula-
tors. However, we did not find targets for the bta-miRs- 410, 

-411a, and -487b for miR.MEred, as well as for the bta-let-
7c (miR.MEtan).

To identify enriched TFs targeted by miRNAs, 1815 
reported genes were screened against the compendium 
of bovine transcription factors (de Souza et al. 2018). We 
found 131 TFs, of which at least two miRNAs targeted 58% 
(76/131) of the TFs (Supplementary Table S4). Among the 
TFs, HLF, YY1, and THRA were regulated by 10, 9, and 8 
different miRNAs, respectively. We further evaluated the 
connectivity for these TFs and considered their MM from 
our previous work (Diniz et al. 2019). We identified 30 TFs 
with a MM higher than 0.7, which highlights their impor-
tance for the network’s topology architecture (Supplemen-
tary Table S4).

Pathway over‑representation analysis

To reveal the biological pathways in which the miRNA tar-
gets acted, we carried out a pathway over-representation 
analysis using Cluego (Bindea et al. 2009). As we sought 
to point a biological relationship between miRNAs and 
mRNAs, we focused the analysis on those genes that over-
lapped between TargetScan prediction and mRNA–miRNA 
associated modules (Supplementary Table S4). Based on 
that approach, we identified 37 significant enriched KEGG 
pathways (pV ≤ 0.05) (Fig. 5) among the five modules (Sup-
plementary Table S5).

Fig. 3  Network of negatively correlated miRNA–mRNA modules and associated phenotypes in Nelore cattle muscle. V, hexagon, and ellipse 
shapes show, miRNA, mRNA, and phenotypes, respectively. Each arrow indicates the direction of regulation
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The miR.MEcyan showed the highest number of enriched 
pathways, such as those related to protein (e.g., mTOR sign-
aling pathway, protein processing, ubiquitin-mediated prote-
olysis) and energy metabolism (insulin and thyroid hormone 
signaling pathways). Additional pathways were identified 
including ferroptosis (miR.MEbrown), TGF-beta signal-
ing pathway, focal adhesion (miR.MElightyellow), insulin 
resistance (miR.MEmidnightblue), and ECM-receptor inter-
action (miR.MEtan). No results from miR.MEgreen, miR.
MEmagenta, or miR.MEred were retrieved.

Discussion

Previously, we reported an interplay among gene expression, 
mineral concentration, and meat quality traits based on the 
gene co-expression network (Diniz et al. 2019). As part of 
this picture, in addition to the gene expression regulation 
role, growing evidence shows the cross talk between miRNA 
and mineral homeostasis (Xu et al. 2013; An et al. 2014; 
Beckett et al. 2014). However, our understanding of the 
miRNA–gene–mineral relationship is still minimal. Herein, 
we reported an interplay among miRNAs, mRNAs, and 
minerals in Nelore muscle for the first time. We identified 

mineral-associated co-expressed miRNAs along with multi-
level miRNA–mRNA integration. This combined informa-
tion sheds light upon regulatory networks that contribute 
to mineral metabolism in Nelore muscle. The results from 
this exploratory in silico study showed a strong relation-
ship among several biological pathways to maintain cellular 
homeostasis (He and Jiang 2016).

MiRNA module association and regulatory network

Among nine co-expressed modules, we found 50 hub, out of 
343 miRNAs, associated with at least one mineral (p ≤ 0.05). 
By integrating the associated miRNA–mRNA MEs and 
intersecting with the TargetScan prediction, we reduced the 
number of false-positive pairs when compared to predic-
tions alone (Mamdani et al. 2015) and pointed out puta-
tive mineral–mRNA–miRNA relationships. Furthermore, 
by focusing the analysis on the MEs, one key advantage 
of our approach was that we alleviated the multiple testing 
problems inherent in RNA-Seq multi-level data integration 
(Langfelder and Horvath 2008). Our approach gathered 41 
miRNAs and 1815 target genes that were inversely corre-
lated. By definition, miRNA hubs play a pivotal role both 
in the network’s topology (Langfelder and Horvath 2008) 

Table 2  Summary of miRNA 
target prediction based on 
TargetScan and mRNA 
correlated modules in Nelore 
cattle muscle

a Between parenthesis is the number of hub miRNAs
b Total of predicted targets from TargetScan and expressed in muscle
c Significant miRNA–mRNA module correlation values (p ≤ 0.05)
d Between parenthesis is the number of genes in the mRNA modules (Diniz et al. 2019)
e Total of unique targets
f Total number of genes intersected between TargetScan and present in the correlated mRNA module
g Total of unique targets after overlapping the TargetScan prediction and the negative correlated pairs

miRNA  Modulesa TargetScanb rc mRNA  Modulesd Targets in the  modulef

miR.MEbrown (5) 1591 − 0.38 MEgreenyellow (2008) 198
miR.MEcyan (6) 3811 − 0.68 MEgrey60 (118) 66

− 0.48 MEgreenyellow (2008) 529
− 0.32 MEgreen (975) 548

miR.MEgreen (5) 4646 − 0.38 MEroyalblue (98) 32
miR.MEgrey60 (5) 2461 – –
miR.MElightyellow (5) 1788 − 0.35 MElightyellow (714) 189

− 0.42 MEsalmon (190) 33
− 0.36 MEyellow (1200) 154

miR.MEmagenta (8) 5492 − 0.43 MEroyalblue (98) 35
− 0.37 MEdarkgrey (78) 21

miR.MEmidnightblue (6) 1707 − 0.32 MEgrey60 (118) 25
− 0.31 MEgreenyellow (2008) 194

miR.MEred (5) 2372 − 0.50 MEdarkturquoise (88) 9
miR.MEtan (5) 830 − 0.45 MEsalmon (190) 12

− 0.41 MEyellow (1200) 76
− 0.31 MEorange (69) 6

Total: 9 modules (50) 24,698 (8123)e 2127 (1815)g
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and gene translation coordination within the transcriptional 
network (Su et al. 2014). We found genes targeted by several 
miRNAs (over-targeted), as well as miRNAs with multiple 
targets. It is worth highlighting that TFs, such as HLF, YY1, 
and THRA were among the over-targeted genes. Likewise, 
the miR-29 family, associated with the concentration of ten 
minerals, showed the highest number of putative targets. 
These results reinforce the general concept that genes are 
redundantly regulated by multiple miRNA interactions (Su 
et al. 2014), as well as by a putative combinatorial TFs co-
regulation (Shalgi et al. 2007).

The interplay among Ca, Fe, and miRNA expression

Because we have a lack of knowledge regarding the 
miRNA–mineral relationship in cattle so far, and most mam-
malian genes are conserved targets of miRNAs (Friedman 
et al. 2008), we will draw a parallel between the results iden-
tified here and the current research in humans and animal 
models. Ca and Fe showed correlation with other minerals 

ranging from moderate to strong (Diniz et al. 2019) and were 
the main minerals associated with miRNA MEs. Further-
more, these minerals have been associated with gene expres-
sion and miRNA biogenesis in a bi-directional regulatory 
circuit (Davis and Clarke 2013; Beckett et al. 2014; Magenta 
et al. 2016). Thus, our discussion will focus mainly on Ca 
and Fe and their relationship with miRNA and gene targets.

We identified the genes PCBP1 and PCBP2 [Poly (RC) 
Binding Protein] were targeted by the miR-21-5p (miR.
MEbrown). Additionally, the Argonaute family members, 
AGO1, AGO2, AGO3, and AGO4, were mutually targeted 
by miR-29e (miR.MEcyan). Li et al. (2012) reported that 
cytosolic Fe could modulate the PCBP2–AGO1 relationship, 
leading to decreased mature miRNA production. Some of 
the hub miRNAs clustered into the miR.MEcyan and miR.
MEbrown were correlated with minerals and gene modules 
that were previously associated with miRNA biosynthe-
sis and mineral homeostasis in humans. The miR-29 fam-
ily members (-a, -b, -c, -d-3p and -e) along with miR-15a, 
targeted most of the genes identified, including those with 

Fig. 4  Number of targeted genes by miRNA co-expression network in Nelore muscle (ranked in descending order)
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known involvement in Ca, Cu, Fe, and Zn metabolism (Li 
et al. 2012). For instance, the transcription factors YY1 and 
SP1, both targets of miR-29 family, bind the human trans-
ferrin (TF) gene and modulate its expression level (Amodio 
et al. 2015). In addition, YY1 was targeted by miR-19a, -19b 
(miR.MEbrown), -30c, and 30f (miR.MEmidnightblue). Still 
concerning Fe metabolism, we found the transferrin receptor 
gene (TFRC) was targeted by four miRNAs (miR-103, -107, 
-15a, and 29e). In addition to other mechanisms, the level 

of free Fe in biological fluids is controlled by the interplay 
between TF and TFRC (Xu et al. 2013).

The interaction between reactive oxygen species (ROS) 
and hypoxia has a crucial role in miRNA biogenesis (Den-
gler et al. 2014; He and Jiang 2016; Magenta et al. 2016). 
Transition metals, such as Cu, Fe, and Zn catalyze the pro-
duction of ROS (Peña and Kiselyov 2015), which were 
associated with hypoxia-induced miRNAs. Although Ca is 
not a transition metal, it has been associated with ROS and 
miRNA expression as well (Magenta et al. 2016). Through 

Fig. 5  Over-represented signaling pathway network of miRNA target genes in Nelore muscle co-expression. The miRNAs are colored based on 
their clustered module (miRMEbrown, miRMEcyan, miRMElightyellow, ad miRMEtan)
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the MEs, we identified miRNAs hypoxia-induced, such as 
miR-15a, -29a (miR.MEcyan) (Gambacciani et al. 2014; 
Hao et al. 2014), miR-204, -214, and -199 (miR.MEma-
genta) (El Azzouzi et al. 2013; Qiu et al. 2018), and miR-30c 
(miR.MEmidnightblue) (Gambacciani et al. 2014). We iden-
tified the TFs TFEB (transcription factor EB), HIF1A, and 
HIF3A (hypoxia-inducible factor) among the miR.MEtan 
and miR.MEcyan targets. These TFs are metal-affected and 
miRNA regulated (Li et al. 2006; Peña and Kiselyov 2015).

Pathway over‑representation analysis

We carried out a pathway over-representation analysis to 
assign biological meaning to the associated miRNA–mRNA 
modules. Genes clustered into the module act cooperatively 
in the same pathway (Langfelder and Horvath 2007), which 
are also under the regulation of co-expressed miRNAs (Su 
et al. 2014). We unveiled several over-represented pathways, 
including those reported on our previous gene-co-expression 
network (apelin, insulin, mTOR, relaxin, TGF-beta signaling 
pathways, ECM-receptor interaction, focal adhesion, protein 
digestion and absorption, and ubiquitin-mediated proteoly-
sis) (Diniz et al. 2019).

The miR.MEcyan showed over-represented KEGG sign-
aling pathways that are central in cellular and organismal 
metabolism. These pathways include thyroid hormone (TH), 
mammalian target of rapamycin (mTOR), hypoxia-induci-
ble factor-1 (HIF-1), and insulin. Furthermore, we identi-
fied the TGF-beta signaling pathway underlying the miR.
MElightyellow. It is worth mentioning that these pathways 
have a pleiotropic action and are also interrelated with the 
AMPK pathway (5′-adenosine monophosphate-activated 
protein kinase) (Xu et al. 2012). Although not over-repre-
sented here, the AMPK pathway was the main one identified 
among the modules associated with mineral concentration 
in our previous work (Diniz et al. 2019). In agreement with 
our results, Afonso et al. (2019) reported AMPK underlying 
differentially expressed genes from Nelore cattle genetically 
divergent for Cu concentration in muscle.

By integrating the information from the literature, the 
clustered genes, and the KEGG database, we draw an over-
view of the relationship among the overmentioned path-
ways, miRNA, genes, and minerals. Genes from the families 
PIK3, EIF4EBP, and RSK were linked to the miR.MEcyan 
pathways. MiR-15a, -29b, 29-c, 29d-3p, and 29e targeted 
RPS6KA3 (members of RSK family), whereas miR-125a and 
-29a targeted RPS6KA1 and RPS6KB1, respectively. Nutri-
ent and growth factors are the main sensors modulating the 
AMPK and mTOR pathways (Chen and Long 2018). AMPK 
inhibits mTOR activity by modulating the S6K and EIF-
4EBP genes that in turn inhibit the translation to maintain 
homeostasis (Xu et al. 2012). Both pathways are mineral 
responsive. Watson et al. (2016) reported a downregulation 

in mTORC1 signaling and a decreased protein synthesis as 
a result of iron depletion. Furthermore, calcium flux modu-
lates AMPK pathways via CaMKK, whereas mTOR modu-
lates intracellular  Ca2+ signaling machinery under nutrient 
deprivation (Brini et al. 2013).

In this complex landscape, mTOR is also involved with 
autophagy regulation through TFEB gene expression (Roc-
zniak-Ferguson et al. 2012). The autophagy pathway was 
over-represented in miR.MEbrown and miR.MEcyan and 
it is known to be regulated in different ways, including the 
TH, HIF, and p53 pathways (He and Jiang 2016). The HIF 
family controls the transcriptional mechanism as a response 
to hypoxia (Dengler et al. 2014), which may be an outcome 
of ROS (Magenta et al. 2016). The HIF1A and HIF3A genes 
are oxygen responsive and activate genes involved with iron 
metabolism, glucose, and glycolysis (Li et al. 2006; Den-
gler et al. 2014). We identified TFs related to HIFs includ-
ing CREBP1, E2F4, and nuclear receptor coactivator genes 
(NCOA) (Dengler et al. 2014). CREBP1 and E2F4 were 
regulated by miR-29e and -29a, respectively. NCOA1 and 
NCOA2 were both targeted by miR-29e, whereas NCOA3 
was targeted by miR-29b, -29c, and -29d-3p. It is essential 
to highlight that HIF induced genes are also under TH regu-
lation (Otto and Fandrey 2008). Otto and Fandrey (2008) 
showed that triiodothyronine (T3) increased HIF1A expres-
sion as an outcome of increased hepatic leukemia factor gene 
(HLF), which was the most targeted gene in our analysis (10 
miRNAs). Previous works have described the association 
between HIF genes and miRNA biogenesis (El Azzouzi et al. 
2013; Magenta et al. 2016), as well as the role of metals, 
such as Cu and Fe, in HIF and TH pathway regulation (Li 
et al. 2006; Kaczmarek et al. 2009).

Iron is one of the most studied minerals due to its double 
role in cell metabolism. Both deficiency and overload are 
harmful, and iron/metal excess is closely related to ROS 
production (Speer et al. 2013). Among the pathways iden-
tified in the miR.MEtan, the p53 signaling pathway has a 
pro-oxidative activity and regulates ferroptosis (Cao and 
Dixon 2016). Likewise, the genes underlying the miR.
MEbrown are partaking in the ferroptosis pathway. Shen 
et al. (2014) showed that Fe deprivation increased the p53 
protein level avoiding ferroptosis. Besides p53, TFRC and 
IREB2 (encodes for IRP2 protein) are essential genes for 
ferroptosis (Cao and Dixon 2016). IREB2, a master regulator 
of Fe homeostasis (Cao and Dixon 2016), was targeted by 
the miR-29 family. Ripa et al. (2017) showed that Fe load-
ing induces miR-29 up-regulation, whereas the downregula-
tion of this miRNA increases the levels of TFRC, IRP2, Fe 
uptake, and oxidative stress.

Some of the miRNAs targeted genes that are associ-
ated with mineral homeostasis are associated with energy 
metabolism as well. The miR-29 family mainly targeted TFs 
involved with insulin and glucose metabolism, including 
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CREB1, CRTC1, and FOXO3 (Oh et al. 2013). In addition, 
IGF1 and IGF2 were targeted by the let7 family (let-7a-5p, 
-b, -c, and -e). Family members share the seed region exhib-
iting a functional collaborative relationship in mRNA targets 
(Su et al. 2014; Oliveira et al. 2018). Massart et al. (2017) 
identified that miR-29a and -29c negatively regulate glucose 
uptake and fatty acid oxidation. Likewise, overexpression of 
let-7 in mice was associated with impaired glucose tolerance, 
decreased fat mass, and body weight (Frost and Olson 2011). 
Altogether, the miRNAs are an additional layer of regulation 
in the interrelated TH, insulin, AMPK, and mTOR signaling 
pathways, thus regulating energy homeostasis.

This study establishes a framework for understanding the 
role of minerals in gene/miRNA expression and metabolism 
regulation. By screening the genes, we identified several 
known TFs as being miRNA targets, as well as miRNAs 
acting cooperatively to regulate their targets. These results 
were supported by TargetScan prediction and negative cor-
relation analysis. Nonetheless, in vitro and in vivo analyses 
should be carried out to better understand the potential for 
dietary modulated miRNAs and their complex relationship 
with gene targets. Equally important, further validation of 
identified miRNA–gene target interactions and hub genes in 
a larger cohort could support these findings.

MiRNAs showed a co-expression pattern where highly 
connected hubs drive gene expression. To our knowledge, 
this is the first exploratory study of miRNA–mRNA inte-
gration in the context of minerals in cattle. The significant 
associations identified among miRNAs, Ca, Fe, and their 
potential gene targets support the hypotheses of an intri-
cate interplay among them. The miR-29 family plays a 
pivotal role in genes involved with major pathways like 
insulin, TH, AMPK, and mTOR, suggesting their impor-
tance in mineral metabolism, which can affect health and 
production. Future work should determine the functional 
implications of minerals for miRNA levels and their feed-
back regulation systems.

Methods

Animals and phenotypes

Experimental procedures involving the animals used in 
this study were carried out following the Institutional Ani-
mal Care and Use Committee Guidelines of the Empresa 
Brasileira de Pesquisa Agropecuária (EMBRAPA—
Pecuária Sudeste) (approval code CEUA 01/2013).

A population of 200 Nelore steers sired by 34 unrelated 
Nelore bulls was used in this study (Tizioto et al. 2015). In 
brief, calves were raised in grazing systems at three farms 
under similar diet and management (Diniz et al. 2016). 

After 21 months of age, the steers were moved to a feed-
lot at Embrapa Pecuária Sudeste (São Carlos, São Paulo, 
Brazil) with feed offered ad libitum twice daily. During the 
90-day trial, the diet was composed of 40% corn silage and 
60% of the concentrate, which contained soybean grain, 
soybean hull, limestone, mineral mixture, urea, and mon-
ensin  (Rumensin®), on a dry matter basis.

Muscle samples were collected as a cross-section of the 
LT muscle (11th and 13th ribs) at slaughter for mineral 
measurement and RNA extraction. The samples for RNA 
analysis were immediately snap-frozen in liquid nitro-
gen and stored at – 80 °C until RNA extraction. Muscle 
expression profiles from 194 animals out of 200 that were 
reported elsewhere (Diniz et al. 2019) were used for the 
present analysis following the RNA-Seq quality control. 
The miRNA-Seq was carried out on 50 animals randomly 
selected from the whole population (n = 200), where the 
data from 48 steers were paired between both datasets.

Macro [calcium (Ca), magnesium (Mg), phosphorus 
(P), potassium (K), sodium (Na), and sulfur (S)] and micro 
minerals [copper (Cu), manganese (Mn), selenium (Se), 
iron (Fe), and zinc (Zn)] were measured by mass spec-
trometry. Briefly, muscle samples were lyophilized, and 
aliquots of approximately 0.1 g were digested in a closed-
vessel microwave digestion system (Ethos 100, Milestone, 
Sorisole, Italy). The samples were digested using 2 mL 
of sub-boiled concentrated  HNO3, 2 mL of  H2O2 (30% 
w/w) and 6.0 mL of ultrapure water. Inductively coupled 
plasma-optical emission spectrometry (ICP OES; Vista 
Pro-CCD ICP OES1, radial view, Varian, Mulgrave, Aus-
tralia) was used to measure all the minerals, except Se 
that was determined by ICP mass spectrometry (ICP-MS 
820-MS, Varian, Mulgrave, Australia).

RNA extraction, library preparation and sequencing

The  Trizol® standard protocol (Life Technologies, Carlsbad, 
CA, USA) was used to extract total RNA from 100 mg of 
frozen muscle tissue. The RNA quality and integrity were 
evaluated by Bioanalyzer 2100 (Agilent, Santa Clara, CA, 
USA) with the RNA 6000 Nano kit.

Libraries were prepared and sequenced in ESALQ’s Mul-
tiuser Laboratory in Piracicaba-SP, Brazil, as reported else-
where (Oliveira et al. 2018). Briefly, for library preparation, 
200 ng/μL of RNA from each sample was used following the 
 TruSeq® smallRNA Sample Preparation kit (Illumina—San 
Diego, USA). Libraries were further quantified by quantita-
tive PCR with the KAPA Library Quantification kit (KAPA 
Biosystems, Foster City, CA, USA). Only samples with an 
RNA integrity number (RIN) greater than or equal to 8 were 
sequenced. The single-end sequencing of 42 bp was carried 
out on MiSeq sequencer  (Illumina®) using MiSeq Reagent 
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Kit v3 (150 cycles) that generated around 1 million reads/
sample.

Data quality control, miRNA identification, 
and expression normalization

Raw data quality control was carried out with FastQC ver-
sion 0.11.2 (shorturl.at/lyIRS) (Andrews 2010) and trimmed 
using FASTX—Toolkit software (https ://goo.gl/MueTV 5) 
(FASTX-Toolkit 2009). Reads with Phred quality score 
lower than 28 and shorter than 18 nt were discarded.

The reads were mapped to the bovine reference genome 
Bos taurus ARS-UCD 1.2 by miRDeep2 (Friedländer et al. 
2008), which uses Bowtie version 1.2.1.1 (Langmead et al. 
2009), allowing one mismatch in the seed. Mapped reads 
were further used to identify known and novel miRNAs 
for B. taurus using the miRDeep2.pl module (Friedländer 
et al. 2008). The mature miRNA sequences of bovine and 
humans and the bovine hairpin structure were retrieved from 
the miRBase v. 22 (Kozomara and Griffiths-Jones 2014).

The raw counts generated by miRDeep2 were processed 
to filter out low or not expressed miRNAs applying the cpm 
function from edgeR version 3.24.0 (Robinson et al. 2010). 
MiRNA counts with less than 0.5 cpm in more than 70% 
of the samples were filtered out. Library normalization and 
data variance stabilization were carried out by the VST func-
tion implemented in DESeq2 (Anders and Huber 2010).

Principal Component Analysis (PCA) and hierarchical 
clustering on normalized data were performed with NOISeq 
version 2.26.0 (Tarazona et al. 2015). A linear model was 
fitted for adjusting the miRNA expression matrix for the 
batch effect (flow cell). Thus, the removeBatchEffect func-
tion from the R-package Limma (version 3.34.9) (Ritchie 
et al. 2015) was adopted.

MiRNA co‑expression network analysis

A co-expression network analysis was carried out taking the 
expression profile of 343 miRNAs from 50 samples based 
on the general framework implemented in WGCNA R-pack-
age version 1.66 (Langfelder and Horvath 2008). Briefly, 
an adjacency matrix was calculated by raising the absolute 
Pearson’s correlation coefficient between the miRNAs to a 
power β = 9 (soft threshold) to reach a scale-free network 
topology index (R2 > 0.9) (Zhang and Horvath 2005).

Average linkage hierarchical clustering method was 
used to define the miRNA clusters using the Dynamic Tree 
algorithm (Langfelder et al. 2008). MiRNA modules were 
generated considering branch cut-off of 0.99, deepSplit = 4, 
and a minimum module size of 5 was chosen due to the 
small miRNA transcriptome (Oliveira et al. 2018). Follow-
ing this, modules were detected and labeled by color. From 

each module, the eigengene (module eigengene—ME) was 
the first principal component (Langfelder and Horvath 2007) 
and represented a measure of miRNA expression profiles in 
the module.

Module‑trait association and hub miRNA selection

The module–trait relationship was estimated by fitting a lin-
ear model to analyze the association between the expression 
profiles of the modules (MEs) and the phenotypes (Ca, Mg, 
P, K, Na, S, Cu, Mn, Se, Fe, and Zn), which were mean-
centered and scaled. The statistical model included the fixed 
effect of place of birth and age at slaughter as a covariate, 
according to the equation:

where yijk is the expression level of the eigengene in each 
module (n = 24); � is the intercept of ME; Ci is the fixed 
effect for the place of birth (3 levels = CPPSE, IMA, 
NOHO); Aj is the covariate for the animal’s age; Tk is the 
trait observation for each animal; and �ijk is the random 
residual effect associated with each observation.

Putative relevant modules were taken for further analyses 
with p ≤ 0.05. As reported by Su et al. (2014) miRNAs exist 
as highly connected hub nodes within a transcriptional net-
work and drive changes in mRNA expression. Thus, from 
the associated modules, the hub miRNAs were selected 
based on the MM ≥ 0.7 (Langfelder and Horvath 2008).

MiRNA–mRNA regulatory network and miRNA 
target prediction

The samples used in this study were part of a previous work 
that was carried out to identify co-expressed genes associ-
ated with meat quality and mineral traits in a population 
of 194 steers (Diniz et al. 2019). Because the miRNAs 
exert a pivotal role in the regulation of gene translation, the 
miRNA–mRNA expression data were integrated to identify 
the putative regulatory link between one another and their 
role in meat quality and mineral composition traits. In that 
study, 15 modules were associated with at least one trait 
(p ≤ 0.05), which were taken for the integrative analysis in 
the current study. Since multiple miRNAs can target the 
same gene, a module approach was adopted to alleviate the 
multiple test problem (Langfelder and Horvath 2008). For 
this, 48 animals were identified with paired expression data, 
and the miRNA MEs (9 modules from the current study) 
were correlated with mRNAs MEs (15 modules from the 
previous study). MiRNAs are expected to downregulate 
the translation level of targets (Su et al. 2014), and thereby 

yijk = � + Ci + Aj + Tk + �ijk,

https://goo.gl/MueTV5
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modules with a negative correlation lower than − 0.3 and 
p ≤ 0.05 were selected for functional analysis.

A computational prediction method was applied based on 
paired miRNA–mRNA profiling to identify the potential tar-
get mRNAs of the hub miRNAs. The significant negatively 
correlated modules were intersected with miRNA–mRNA 
interactions predicted from TargetScan (Agarwal et al. 2015) 
to point out only those putative acting pairs. To this end, 
hoardeR package version 0.9.2 (Fischer and Sironen 2016) 
was used to search for the putative mRNA targets on the Tar-
getScan bovine database release 7.2 (Agarwal et al. 2015). 
To better predict the putative targets, the genes retrieved 
from TargetScan were filtered by skeletal muscle expression 
data previously analyzed in the same samples (Diniz et al. 
2019). MicroRNA family information was obtained from 
miRbase v. 22 (Kozomara and Griffiths-Jones 2014).

Identification of key transcription factors

The compendium of bovine transcription factors (de Souza 
et al. 2018) was employed to explore the gene regulatory net-
work of the co-expressed modules, as well as the cross talk 
between miRNAs, transcription factors, and their targets. To 
detect regulatory modules, the identified miRNA–mRNA 
pairs were screened to reveal enriched transcription factors. 
The regulatory network was visualized in Cytoscape 3.7.0 
(Cline et al. 2007).

Functional and pathway enrichment analyses

Based on the B. taurus genome background, KEGG pathway 
analysis was carried out using Cytoscape plugins: ClueGO 
v. 2.5.3 and CluePedia v. 1.5.3 (Bindea et al. 2009) to shed 
light on the biological functions over-represented in the 
associated module genes. KEGG pathways with pV ≤ 0.05 
(group p value corrected with Bonferroni step down) were 
considered significantly enriched. Redundant terms were 
grouped based on the kappa score = 0.4 (Bindea et al. 2009). 
Interaction networks were constructed and visualized in 
Cytoscape (Cline et al. 2007).
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