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Abstract
Long non-coding RNAs (lncRNAs) play a broad spectrum of distinctive regulatory roles through interactions with proteins. 
However, only a few plant lncRNAs have been experimentally characterized. We propose GPLPI, a graph representation 
learning method, to predict plant lncRNA-protein interaction (LPI) from sequence and structural information. GPLPI employs 
a generative model using long short-term memory (LSTM) with graph attention. Evolutionary features are extracted using 
frequency chaos game representation (FCGR). Manifold regularization and l2-norm are adopted to obtain discriminant 
feature representations and mitigate overfitting. The model captures locality preserving and reconstruction constraints that 
lead to better generalization ability. Finally, potential interactions between lncRNAs and proteins are predicted by integrating 
catboost and regularized Logistic regression based on L-BFGS optimization algorithm. The method is trained and tested 
on Arabidopsis thaliana and Zea mays datasets. GPLPI achieves accuracies of 85.76% and 91.97% respectively. The results 
show that our method consistently outperforms other state-of-the-art methods.
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Introduction

The recent advancement in high-throughput sequencing 
technology has led to the exponential growth in the reper-
toire of the genome sequence. Non-coding RNAs (ncRNAs), 
the largest portion of the eukaryotic genome, are classified 
based on their genomic origin or mechanism of action. In 
particular, long non-coding RNAs (lncRNAs) are more 
enriched in the nucleus and function in various biological 
processes such as cell growth, differentiation and chroma-
tin modification (Quinn and Chang 2016). Based on the 
genomic origin lncRNAs can be categorized as intergenic, 

intronic, sense, and antisense (Qiu et al. 2019). As a key 
mediator of cellular functions, lncRNAs perform essential 
regulatory roles in the plant cell nucleus by interacting with 
proteins. For instance, cold-induced Arabidopsis lncRNAs, 
COLDAIR and COOLAIR, are transcripts transcribed by 
Flowering Locus C (FLC), antisense that is regulated by the 
cis (Yu et al. 2019). So far, many plant lncRNAs have been 
identified and implicated in flowering time control, biotic 
and abiotic stress responses, and reproduction. Moreover, 
emerging evidence shows that plant protection against 
pathogen attacks have correlation with lncRNA-dependent 
immune systems (Zaynab et al. 2018). There are two modes 
of decoding interactions between RNAs and proteins, by rec-
ognition of RNA-binding proteins (RBP) direct contact with 
RNA bases or indirectly by examining RNA structure and 
thermodynamic aspects (Lam et al. 2019). Computational 
methods based on quantitative or machine learning models 
complement experimental methods in uncovering interaction 
between proteins and RNAs (Cirillo et al. 2017).

New lncRNA-disease association (LDA) and lncRNA-
protein interaction (LPI) prediction have received consider-
able attention. In medicine, uncovering association between 
lncRNAs and diseases is important for promoting diagnosis 
and treatment of complex diseases. Studies have found that 
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similar lncRNAs interact with similar diseases (Yu et al. 
2017). Based on this theory, several computational meth-
ods for LDA have been proposed including LDAP (Lan 
et al. 2016), BRWLDA (Yu et al. 2017), MFLDA (Fu et al. 
2017), and WMFLDA (Yu et al. 2018). Predicting lncRNA-
protein interaction is essential for studying molecular 
mechanisms involving these lncRNAs, understanding the 
pathogenesis of diseases and deciphering their functions. 
High-throughput technologies for detecting binding of pro-
teins to RNA include cross-linking immunoprecipitation 
(CLIP), enhanced CLIP (eCLIP), and in-cell protein-RNA 
interaction (incPRINT) (Graindorge et al. 2019). Although 
these wet-lab experimental methods are valuable, they are 
time-consuming and expensive. Recently, a surge of com-
putational prediction methods for RNA–protein interaction 
have been proposed. Significant progress has been made 
via pattern-based, feature-based, and kernel-based compu-
tational methods. A web server for predicting mutual bind-
ing sites in RNA and protein at the nucleotide and residue 
level called PRIdictor (Protein-RNA Interaction predictor) 
was developed (Tuvshinjargal et al. 2016). In 2016, a com-
putational method called RBPPred was proposed (Zhang 
and Liu 2016). They combined hydrophobicity, polarity, 
normalized van der Waals volume, polarizability, second-
ary structure, solvent accessibility, side-chain’s charge and 
polarity, PSSM profile features and used SVM classifier to 
distinguish between binding and non-RNA protein binding 
sites. Recently, a sequence-based generative method for con-
structing protein binding motifs was proposed (Park and Han 
2020). For lncRNA-protein specific interaction prediction, 
data repositories, models and algorithms have been summa-
rized (Peng et al. 2020). SFPEL-LPI, a sequence-based fea-
ture projection ensemble learning framework was proposed 
to predict LPI(Zhang et al. 2018). A kernel ridge regression 
model based on fast kernel learning was developed for LPI 
prediction (Shen et al. 2018). Network-based methods pro-
posed to predict LPI based on the integration of heterogene-
ous networks include LPIHN, RWR and LPI-NRLMF (Li 
et al. 2015; Ge et al. 2016; Liu et al. 2017).

The key factors that influence the prediction of interaction 
between genome molecules are the choice of feature extrac-
tion method and classification algorithm (Ru et al. 2019). A 
diverse pool of studies has explored feature extraction and 
feature selection techniques to study the interaction predic-
tion problem. Feature extraction methods transform raw data 
into attributes suitable for processing by machine learning 
algorithms. The feature extraction methods are similarity-
based, probabilistic, and likelihood-based methods (Mutlu 
and Oghaz 2019). The most commonly used matrix factori-
zation methods for feature extraction include principal com-
ponent analysis, tensor decomposition analysis, and factor 
analysis (Li et al. 2018c). On the other hand, feature selec-
tion is a preprocessing procedure considered a prerequisite 

for model building. It helps in reducing overfitting, iden-
tifying correlation among features to reduce redundancy, 
increase class relevance in feature subset, and ultimately 
improve the performance of the learning algorithm. For 
example, locality preserving projections (LPP) and locality-
constrained linear coding (LLC) applies the linearization 
approach to map between input space and the reduced space 
(Yu et al. 2016; Xie et al. 2019). Recently, graph feature 
learning has received attention in the bioinformatics research 
community (Cho et al. 2016; Yue et al. 2019). It represents 
learning by encoding to preserve relational information 
from the graph. The chaos game representation (CGR) is 
a graphical representation of a sequence derived from a D/
RNA or protein sequence. Each point of the plot corresponds 
to one base of the sequence. CGR explores the evolutionary 
relationships of genomic sequences based on amino acid or 
nucleotide properties(Bhoumik and Hughes 2018). Unlike 
feature selection and dimensionality reduction techniques 
that alter original representation, feature extraction and 
aggregation techniques such as serial and parallel feature 
fusion, combine input features, and select a subset (Saeys 
et al. 2007). The aim is to obtain discriminative features and 
reduce computational complexity.

Deep learning (DL) models have gained popularity in 
myriad domains including bioinformatics, computer vision, 
and natural language processing. Particularly in bioinformat-
ics, DL provides biological insights due to its ability to cap-
ture hidden sequence signals (Li et al. 2019a; Camargo et al. 
2020). To date, scalable and cost-efficient computational 
approaches have been developed to complement and enhance 
experimental results. For instance, DeepBind is an exem-
plary DL based method developed by integrating sequence 
and structure for RBP to infer specificity patterns (Alipanahi 
et al. 2015). (Li et al. 2019b) proposed RDense, a hybrid of 
bidirectional LSTM and CNN, to predict protein-RNA inter-
action. Other protein-RNA binding prediction models based 
on autoencoder, recurrent neural network, and convolutional 
networks include Thermonet (Su et al. 2019), IPMiner (Pan 
et al. 2016), DLPRB (Ben-Bassat et al. 2018), and cDeep-
Bind (Gandhi et al. 2018). Graph representation learning and 
attention mechanism have been proven effective in enhanc-
ing the performance of DL models. The most successful DL 
methods in graph representation learning are graph convolu-
tional networks(Kipf and Welling 2016) and graph attention 
networks (Veličković et al. 2017). The key advantage is that 
graph embedding methods such as random walk captures 
explicit relations in structured data (Li et al. 2018b; Salehi 
and Davulcu 2019). Attention mechanism computes repre-
sentations by dealing with variable sized inputs, focusing 
on the most relevant parts of the input to make decisions. 
Moreover, DL models can be combined with other models 
such as Conditional random field (CRF) and quantization 
techniques. CRF imposes constraints that enable the model 
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to regenerate the input features given the latent labels accu-
rately. CRFs take into account inter-relation information 
between labels of neighboring residues (Liu et al. 2018). 
Quantization is the process of minimizing the number of bits 
that represent a number. In DL, quantization is achieved by 
measuring the dynamic range of activations and reducing the 
size of the floating point for weights (Rastegari et al. 2016). 
Regularization and activation techniques are implemented in 
DL models during training to overcome data size limitations 
inherent to the traditional biological datasets and to improve 
performance. Dropout and data augmentation are the widely 
used regularization techniques, while rectifier linear unit 
(ReLU) and sigmoid are used as activation functions. The 
main impediments in the ncRNA-protein interaction predic-
tion are in the tradeoff between the feature information and 
the complexity of the approach used for analysis. Notably, 
continuous efforts have been dedicated to high-quality com-
putational techniques to study the interactions between RNAs 
and proteins. Albeit the progress based on the success of DL 
models in this research area, lncRNA-protein interaction in 
plants has received little attention.

The development of a computational method for lncRNA-
protein interaction prediction is imperative to avert the 
impending shortage of plant lncRNA functions. This paper 
introduces GPLPI, a graph-based neural network frame-
work. Frequency chaos game representation (FCGR) is used 
to extract evolutionary sequence pattern information of the 
lncRNAs. To fully exploit autoencoder for enhanced feature 
learning, graph attention is constructed similar to the study 
by Taheri et al. (2019). Contrary to the standard attention 
mechanism that guides the model to derive contextual infor-
mation, graph attention uses attention parameters to guide the 
learning algorithm to focus on the part of data that optimizes 
the objective function. The graph attention also improves 
interpretability by understanding how to assign attention by 
considering the volume of available data and the structure. 
Inspired by Schulz et al. (2020), we implement limited-mem-
ory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) optimi-
zation algorithm on logistic regression classifier. Locality-
preserving projection is adopted to improve efficiency and 
extract the most representative information. Our contribu-
tions are twofold: (1) multiscale feature generation provide 
diverse information and locally linear embedding reduce 
feature redundancy, (2) graph attention mechanism learns 
arbitrary context distributions for better interpretability.

Materials and methods

Overview of GPLPI

The potential lncRNA-protein interactions are computed 
using a regularized graph attention neural network model. 

Transformation methods are used to encode lncRNA 
sequences from nucleotides {A, T, C, G} and protein 
sequences from 20 types of amino acids {A, C, D, E, F, G, 
H, I, K, L, M, N, P, Q, R, S, T, V, W, Y} into numeric vec-
tors. Besides, we include structural features from predicted 
secondary structures from lncRNA and protein sequences. 
The proposed method assumes that functionally similar pro-
teins interact with similar lncRNAs. Based on this concept, 
the target lncRNA-protein partners are predicted. The feature 
vector of m lncRNAs and n proteins is denoted as L = {l1, 
l2, …, li, …, lm} and P = {p1, p2, …, pj, …, pn}. The label of 
interaction between lncRNA li and protein pj denoted as y(li, 
pj) is assigned 1 for interaction and 0 for non-interaction. 
Each lncRNA-protein sample is described as a 522-dimen-
sional vector as follows:

where L(lm) is a vector of 175-dimensional feature vector 
and P(pn) is a 347-dimensional feature vector. The feature 
vector of lncRNA (L(lm)) is composed of 64-dimension from 
FCGR, 106-dimension from k-mer (64 from trinucleotide, 
32 from gapped k-mer and 10 from reverse complement) and 
5 structural features.

The feature vector of protein (P(pn)) is composed of 320 
binary profile features from protein sequences and 27 struc-
tural features represented as follows:

The main procedure followed by the proposed method is 
summarized as follows: first, selecting positive and nega-
tive examples, then, extracting complex features and finally 
building the model to predict lncRNA-protein interaction 
pairs effectively. FCGR, k-mer, and RNAFold (for predicting 
structural features) are used to extract features from lncR-
NAs. Binary Profile feature (BPF) and SSPro (for predict-
ing secondary structure) are used to extract features from 
protein sequences. Graph attention LSTM-autoencoder 
is used to learn high-level abstract representations. In the 
encoder, LSTM is used to read the input and encode it to 
a fixed dimensional vector. Another LSTM decodes the 
output of the vector. Multiple classifiers including random 
forest, catboost, logistic regression, and extreme gradient 
boosting, are tested to find the most accurate. To exploit the 
strength of multiple classifiers, the Logistic regression with 
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm 
and catboost are combined for prediction. The predictions 
of the individual models are combined by majority voting, a 
non-trainable method to output lncRNA-protein interaction 
matrix Mij. The proposed method is shown in Fig. 1.

(1)F = (L(lm),P(pn)),

(2)L(lm) = (l1, l2,… .l175),

(3)P(pn) = (p1, p2,… .p347).
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Data representation

PlncRNADB database (available at https ://bis.zju.edu.
cn/PlncR NADB is the data resource of the known plant 
lncRNA-protein interactions data used for prediction in 
this study. The data includes 22,133 interactions between 
1107 lncRNAs and 190 proteins for Zea mays dataset, 948 
interactions between 390 lncRNAs and 163 proteins for 
Arabidopsis thaliana. The non-interactive pairs, 22,133 for 
Zea mays, and 948 for Arabidopsis thaliana were generated 
through randomly pairing proteins with lncRNAs and fur-
ther removing the existing positive pairs (Muppirala et al. 
2011). Finally, the Zea mays dataset contains 44,266 and 
Arabidopsis thaliana contains 1896 lncRNA-protein pairs 
as shown in Table 1. The data are split into 80% for training 
and 20% for testing.

The key performance booster for deep learning models is 
the choice of features. Our deep learning approach utilizes 
sequence and secondary structure data as inputs. Salient fea-
tures for lncRNA-protein interaction prediction are obtained 
using three feature extraction techniques; k-mer, frequency 
chaos game representation (FCGR), and binary profile 
features. CGR is an iterative mapping technique proposed 
by Jeffery for the alignment-free representation of RNA 
sequences (Jeffrey 1990). It extracts evolutionary informa-
tion by counting the k-mers i.e. n-tuple or n-gram of nucleic 
acid or amino acid sequences. k-mer strings are used to iden-
tify regions of interest. The k-mer tables are referred to as 

the frequency chaos game representation (FCGR) (Lichtblau 
2019). Unlike other sequence and structure encoding meth-
ods such as Fourier Transformation, CGR generates fractals 
for visual encoding. The four RNA nucleotides are repre-
sented by rectangular coordinates (A:-1,1, C:-1,-1, G:1,1 
and U:1,-1). The CGR plane is partitioned into a probability 
matrix of 8 × 8 grids from which the average coordinates 
of each grid are calculated. The matrix is reshaped to a 64- 
dimensional feature vector.

The k-mer frequencies model is also used to extract 
sequence features. For the trinucleotide, given a frequency 
interval fx where x is an interval, a frequency vector of inter-
vals for a sequence with length L is defined as F = {f1, f2, 
…, fL-k+1}. The gapped k-mer and reverse complement fea-
tures are described in Table 2. For the protein sequence, the 
binary profile feature extraction (BPF) method is used. A 
binary profile of 20 × b dimension composed of a sequence 
of length b generated a 320-dimension feature vector, where 
b = 16. The protein and lncRNA secondary structures are 

Fig. 1  Flowchart of the proposed method. Sequence and structural features are extracted from lncRNA and protein sequences and fed into the 
prediction model to output lncRNA-protein interactions

Table 1  lncRNA, protein and interaction datasets used in this study

Dataset lncRNAs Protein Interactions

Arabidopsis thaliana 390 163 948
Zea mays 1107 190 44,266

Table 2  Calculation of lncRNA and protein feature vectors

Feature Description (reference)

k-mer Nucleotide composition (Shrikumar 
et al. 2019)

Gapped k-mer Subsequence of length l containing 
k letters and l - k non-informa-
tive positions (Shrikumar et al. 
2019)

Reverse complement k-mer Convert RNA sequence into 
its reverse and extract k-mer 
occurences (Chen et al. 2019)

Binary profile features Binary encoding of the amino acid by 
a 20-dimensionl binary vector to 
obtain positional information (Chen 
et al. 2019)

https://bis.zju.edu.cn/PlncRNADB
https://bis.zju.edu.cn/PlncRNADB
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predicted using SSpro (Magnan and Baldi 2014) and RNA-
fold (Lorenz et al. 2011), respectively. For the lncRNA sec-
ondary structure, we extract pairwise probability features.

Graph attention‑based autoencoder

Deep neural networks incrementally learn high-level abstract 
features along with multiple layers. In this study, the LSTM 
autoencoder with graph attention is implemented (Fig. 2). 
By stacking layers, the network traverses the kernels length 
to learn more local spatial information. However, the net-
work complexity increases due to many parameters gener-
ated during training, causing the model to overfit and have 
poor generalization ability. This bottleneck is mitigated by 
imposing constraints on the network to remove redundant 
connections and unnecessary neurons through regulariza-
tion. l2-norm and manifold regularization are implemented 
to promote sparsity for the neural network model. The l2-
norm constraint is a weight-decay regularization imposed on 
the model parameters. Manifold regularization is imposed 
on the output of the neural network model through locality 
preserving constraints. Other regularization mechanisms 
implemented include dropout and early stopping. The LSTM 
architecture consists of recurrently connected neurons called 
the memory cells. A memory block is composed of input, 
output and forget gate multiplicative units (Zheng et al. 
2017). In the LSTM encoder, input from the embedding 
layer is fed into stacked layers to generate representations 
that are forwarded to the graph-based attention layer. This 
representation is then decoded through an LSTM layer to 
reconstruct the input sequence. A sequence S of length l can 
be represented as S = {s1, st, st+1, … sl}, where st is the tth 
nucleotide. The memory block computes a hidden vector ht 
at a time step t of the input st as follows:

(4)ht = lstm(ht, ct, st),

where c is the cell memory. The encoder in our model is 
multilayered to increase learning capability. The number 
of layers of the decoder is similar to those of the encoder. 
The graph attentional layer explicitly assigns different 
importance to nodes within a neighborhood, thus leverag-
ing self-attentional layers. It integrates graph structure and 
node-level features by weighting neighbor features with nor-
malization. The setup of the graph attention implemented in 
this study follows the work of Velickovic et al. (2017). Let 
a sequence s ϵ S that has been passed through the LSTM 
layer be the information from neighbors of nodes in the 
sequence. An attention module A is used to gather local 
information from the neighbors of s. The graph attention 
layer represented by Eq. 1 is used to produce the hidden 
representations.

where x is a d is the dimensional feature vector, Wq, Wk 
and Wv are the attention weight matrices. Attention weight 
measures the association of a relation kn to the input qn and 
output vn. During training, the parameters of the neurons are 
updated using loss calculated from the difference between 
the target sequence and the predicted sequence. Given x 
input and x̂ expected output, the objective of the training is 
to minimize reconstruction error (L) defined as:

The hinge loss is used to minimize the reconstruction 
error. The loss function penalizes incorrect and less confi-
dent predictions, it is defined as follows

where yi are the labels, xi is the input feature vector, hƟ(xi) 
is the prediction.

(5)A = attention(xWq, xWk, xWv),

(6)L(x, x̂) = ‖x − x̂‖2.

(7)loss =
∑

i

max(0, 1 − yi × h
�
(xi)),

Fig. 2  Graph attention neural 
network architecture. Wi, bi 
represent LSTM encoder weight 
and bias parameters; Wa, ba for 
the attention layer and Wo, bo for 
the LSTM decoder
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Hybrid classifier construction

The intermediate representation of data is done through fea-
ture extraction methods to enable classification algorithms to 
predict outcomes. A feature vector obtained from feature inte-
gration provides complementary information that increases 
accuracy and robustness. Feature fusion mapping is achieved 
by mathematically combining FCGR, k-mer, binary profile, 
and structural features. The locally linear embedding (LLE) is 
adopted to reduce the fusion mapping dimension. The concept 
of LLE, a linear manifold learning algorithm, is to extract 
relevant correlation in the feature space, retain variability, 
and disregard irrelevant features. It extracts intrinsic struc-
ture, preserves the neighborhood correlation, and symbolizes 
a linear estimation of the nonlinear Laplacian eigenmaps (Li 
et al. 2018a). Let a matrix X of n is the dimension vectors be 
denoted as X = [x1, x2, …, xn]. Each training sample is denoted 
as xi where i = 1,2,…,n, seek k nearest neighbors and represent 
them as a matrix j of n × k dimensions. The selected features 
enhance classification. Two classifiers, logistic regression 
(LR) and catboost are incorporated. For LR algorithm, its 
implementation was depended on L-BFGS optimization algo-
rithm used as the ‘solver’ parameter and other user-defined 
parameters such as multiclass. For catboost, a gradient boost-
ing algorithm, the implementation was based on parameters 
such as iterations, depth, learning rate, and loss function. The 
model’s iteration parameter is used for iterative training of n 
learners to reduce prediction error. The output from the two 
classifiers are combined by majority voting. The implementa-
tion steps followed by the proposed model are summarized in 
Algorithm 1.

Implementation and parameter settings

In this work, a deep learning method termed GPLPI is pro-
posed and use Zea mays and Arabidopsis thaliana datasets 
for evaluation. Sequence and structural features are com-
bined for the prediction task. The high-level abstract features 
are extracted using DL model and fed as the input for the 
classifier. The tensorflow library is used for implementa-
tion. For the architecture, LSTM is selected for the encoder 
and decoder. Choosing parameters that seek to find global 
optima is a significant part of the model training process. 
The parameters and hyperparameters for our deep learn-
ing model are selected after an extensive search for optimal 
combinations of parameters such as the activation function, 
the number of hidden layers, and optimizer. In this experi-
ment, ReLU is used as the activation function, Adam as the 
optimizer and hinge as the cost function. The ReLU activa-
tion function maintains a stable convergence speed of the 
model. Optimization aims at finding parameters for robust 
training and fast convergence. To minimize loss error, Adam 
optimizer is selected because it has an improved ability to 
handle noise by combining root mean square propagation 
(RMSProp) optimization as a gradient descent and adap-
tive gradient (Adagrad) algorithms (Wang et al. 2019a). The 
model learns the weight and bias parameters during train-
ing. The list of hyperparameters representing the external 
configurations, such as the number of hidden layers and 
activation function for this prediction task are reported in 
Table 3. The scikit-learn package was used to implement 
the classification algorithms.

Evaluation

The five-fold cross-validation is used to assess the perfor-
mance of the proposed method in comparison to other meth-
ods. The dataset is arbitrarily divided into five equal subsets, 
four folds for training and one fold as the test set. We used 
accuracy (ACC), precision (PRE), recall (REC)/sensitivity 
(SEN), specificity (SPE) and Mathews correlation coefficient 
(MCC). The evaluation measures are defined as follows:

(8)PRE =
TP

TP + FP
,

(9)REC =
TP

TP + FN
,

(10)SEN =
TP

TP + FN
,

(11)SPE =
TN

TN + FP
,
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where TP, FP, TN and FN represent true positive, false posi-
tive, true negative and false negative respectively. In addi-
tion, area under the curve (AUC), and area under precision/
recall curve (AUPRC) evaluation metrics are also used to 
show the general performance of the model.

Results

Performance evaluation of GPLPI

The performance of GPLPI is evaluated using two datasets. 
Figure 3 shows the overall five-fold cross-validation results 
of GPLPI on the two datasets, Arabidopsis thaliana and Zea 
mays. GPLPI performed better on Zea mays dataset because 
the size of the data was more than that of Arabidopsis thali-
ana. The proposed method obtained 85.76% accuracy, 
88.42% precision, 82.41% sensitivity, 88.97% specificity, 
71.71% MCC, 91.13% AUC, and 93.41% AUPRC on Arabi-
dopsis thaliana dataset. The method obtained 91.97% accu-
racy, 92.20% precision, 91.70% sensitivity, 92.24% specific-
ity, 83.94% MCC, 97.76% AUC, and 97.94% AUPRC on 
Zea mays dataset. The proposed method obtained accuracy 
with a standard deviation of 2.05 and 0.44, for Arabidop-
sis thaliana and Zea mays dataset respectively. From the 
results, the proposed method efficiently extract meaningful 
information for prediction. This information when used for 
classification produced good results.

(12)ACC =
TP + TN

TP + TN + FP + FN
,

(13)

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

,

Ablation study

The proposed model extracts effective sequence and struc-
tural features, which are fed as input for the neural network 
algorithm. To verify the contribution of the feature extrac-
tion methods, an ablation study is performed by testing dif-
ferent settings. The baseline classifiers of the GPLPI model 
are tested on different sets of features. Our aim is to study 
how the graph-based feature extraction method, frequency 
chaos game representation (FCGR), k-mer, structural fea-
tures, and their integration contribute to model effectiveness. 
Table 4 shows the results of the different feature groups. 
From the table, the higher value represents a better perfor-
mance for the evaluation metrics.

From the results in Table 3, the proposed method yields 
the performance of accuracy (ACC) 91.97%, when struc-
tural features are included which is slightly lower than when 
FCGR and k-mer are used. When FCGR, k-mer, and Second-
ary Structural features (SS) are combined, the performance 
improved with an approximately 17% in terms of accuracy 
and approximately 16% in terms of AUC than when only 
FCGR is used. There was a slight increment in performance 
when structural features are added to FCGR and k-mer 
with approximately 0.8% increase in specificity and MCC 
while AUC increases by approximately 0.03%. The perfor-
mance improved in terms of efficiency when the manifold 
regularization is employed. Overall, the proposed method’s 
graph attention, loss function, and regularization effectively 
improve model performance.

Table 3  Parameter settings used for the proposed method

Parameters Range

Activation ReLu
Weight initializer Glorot-normal
Weight regularizer l2
Epoch 100
Hidden neurons 256, 128 and 64
Batch size 50
dropout 0.5, 0.6, 0.7
Optimizer Adam
Loss function Hinge
Learning rate 0.5, 1.0,  2.0

Fig. 3  Performance of the proposed method on Zea mays and Arabi-
dopsis thaliana 
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Performance comparison of different classifiers

Six classic machine-learning algorithms are tested includ-
ing logistic regression (LR), catboost, random forest (RF), 
extreme gradient boosting (XGB), and decision tree (DT). 
The models were trained on Zea mays dataset. LR and XGB 
models’ output was observed to be the best performing 
model in terms of AUC. LR was combined with catboost 
to construct the proposed model. GPLPI was significantly 
better than the other methods in all the metrics, as shown 
in Table 5. The values in the table represent mean (%) and 
standard deviation obtained and the value in bold denotes 
the best one yielded on the dataset. The model yielded an 
average accuracy of approximately 4% better than the other 
methods. Figure 4 presents the five-fold cross-validation 
results of GPLPI, LR, catboost, RF, XGB, and DT in the 
form of boxplots for Zea mays dataset. The better perfor-
mance is attributed to the ensemble of diverse base clas-
sifiers. When the difference between the performances of 
the individual classifiers is big, majority voting integration 
is effective. When the difference between the classifiers is 
small, the classification error degrades, thus, increasing the 
performance. This indicates that the correlation among clas-
sifiers increases the overall performance.

Performance comparison of different deep learning 
methods

In the past decade, many studies have explored the asso-
ciation between RNAs and proteins. In this paper, the 
proposed model is compared with standard deep learning 
models to verify its advantage. GPLPI is applied to known 
plant lncRNA-protein interaction data together with three 

other methods RPISeq-RF (Muppirala et al. 2011), XRPI 
(Jain et al. 2018), and RPI-SE (Yi et al. 2020). The three 
methods are selected for comparison because they can pre-
dict non-coding RNA–protein interaction. Five-fold cross-
validation was adopted to evaluate their performances. The 
performances were evaluated by the metrics in terms of the 
mean (%) and standard deviation as presented in Table 6. In 
general, the higher values represents a better performance 
for the evaluation metrics. The ROC curves representing the 
tradeoffs between true positives and false positives and their 
associated AUCs of GPLPI, RPISeq-RF, XRPI, and RPI-SE, 
respectively, are plotted in Fig. 5. For the Arabidopsis thali-
ana dataset, all the methods were at or above 73% in terms 
of sensitivity, AUC, and AUPRC. However, accuracy, preci-
sion, specificity, and MCC the values range from 26 to 88%. 

Table 4  Feature sets used to 
assess the performance of the 
proposed method in ablation 
study on Zea mays dataset

Predictor Features ACC SEN SPE MCC AUC 

LR FCGR 74.07 53.58 94.55 52.84 81.54
Catboost FCGR 74.02 52.79 95.26 53.27 84.31
DPLPI FCGR 74.07 53.58 94.55 52.84 85.57
DPLPI FCGR + kmer 92.28 92.40 91.42 83.24 97.76
DPLPI FCGR + kmer + SS 91.97 91.70 92.24 83.94 97.79

Table 5  Performance of our method in comparison to different classifiers on Zea mays dataset

Method ACC PRE SEN SPE MCC AUC AUPRC

GPLPI 91.97 ± 0.44 92.20 ± 0.30 91.70 ± 0.69 92.24 ± 0.35 83.94 ± 0.88 97.79 ± 0.20 97.96 ± 0.19
LR 88.14 ± 0.58 88.42 ± 0.72 87.79 ± 0.91 88.50 ± 0.73 76.30 ± 1.15 95.82 ± 0.32 96.24 ± 0.27
catboost 88.22 ± 0.42 92.31 ± 0.49 92.59 ± 0.69 92.28 ± 0.59 84.87 ± 0.85 92.43 ± 0.42 94.30 ± 0.37
RF 85.43 ± 0.63 81.30 ± 1.18 86.50 ± 0.70 80.09 ± 1.46 66.74 ± 1.18 91.95 ± 0.58 91.92 ± 0.81
XGB 88.54 ± 0.55 86.87 ± 0.67 90.81 ± 0.82 86.28 ± 0.70 77.17 ± 1,10 96.12 ± 0.27 96.44 ± 0.26
DT 75.69 ± 0.84 75.70 ± 1.39 75.71 ± 0.48 75.67 ± 1.68 51.39 ± 1.65 75.69 ± 0.83 81.78 ± 0.74

Fig. 4  Comparison of the performance in terms of accuracy between 
GPLPI and LR, catboost, RF, XGB, and DT on Zea mays dataset
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For the Zea mays dataset, all the methods were at or above 
80% in terms of accuracy, sensitivity, AUC, and AUPRC. 
However, precision, specificity, and MCC the values range 
from 62 to 97%. Notably, our method outperforms other 
methods. In terms of accuracy and specificity, approximately 
2% and 3%, the increase is obtained respectively. As for 
MCC, a significant performance improvement of approxi-
mately 6% enhancement is noted. The results indicate that 
GPLPI performs significantly better than the other methods 
in lncRNA-protein interaction prediction. The performance 
of GPLPI is more outstanding because of the effectiveness 
of the sequence and structural feature extraction methods 
that obtained essential information.

Discussion

Identification of lncRNAs in the plant genome has received 
more research interest than functions and mechanisms. 
Several machine-learning algorithms for plant lncRNA 
identification have been proposed (Singh et al. 2017; Negri 
et al. 2018; Zhao et al. 2018). The available databases and 

methods for lnRNA-protein interaction have a preference for 
collecting animal data, and thus, insufficient lncRNA-protein 
interaction is a major problem in plants. Therefore, it is pru-
dent to develop a computational method for the accurate 
identification of plant lncRNA-protein interaction. Graph 
embedding can aid in predicting lncRNA-protein associa-
tions, extract biological information and enhance the quality 
of high-throughput sequencing data analysis. However, most 
existing methods do not involve topological information. 
Therefore, the relationship between lncRNAs and proteins 
is not directly considered. This paper proposed a predictive 
model for inferring plant lncRNA-protein interaction using 
a recurrent autoencoder algorithm with graph attention in 
combination with FCGR, k-mer and BPF sequence coding 
methods. The efficiency of the proposed GPLPI in address-
ing lncRNA-protein interaction problem in plant species 
is supported by the experimental results presented in the 
results section.

Similar to network-based methods, the proposed 
graph-based deep learning framework works based on the 
assumption that potential interactions exist among lncR-
NAs sharing common interactive partners. However, unlike 

Table 6  Comparison between GPLPI, RPISeq-RF, XRPI, and RPI-SE

Dataset Method ACC PRE SEN SPE MCC AUC AUPRC

Arabidopsis thaliana GPLPI 85.76 ± 2.05 88.42 ± 3.21 82.41 ± 3.92 88.97 ± 4.12 71.71 ± 4.14 91.93 ± 2.06 93.41 ± 1.66
RPISeq-RF 61.28 ± 2.20 56.20 ± 1.81 91.43 ± 6.03 28.33 ± 9.09 26.10 ± 5.21 81.91 ± 4.10 78.29 ± 5.21
XRPI 65.35 ± 3.83 62.22 ± 5.45 81.50 ± 7.26 49.35 ± 10.20 32.99 ± 6.49 72.31 ± 2.48 80.75 ± 2.95
RPI-SE 61.22 ± 5.02 58.19 ± 4.06 84.53 ± 7.79 39.30 ± 7.08 27.13 ± 11.02 63.02 ± 7.94 73.74 ± 8.22

Zea mays GPLPI 91.97 ± 0.44 92.20 ± 0.30 91.70 ± 0.69 92.24 ± 0.35 83.94 ± 0.88 97.76 ± 0.20 97.79 ± 0.19
RPISeq-RF 85.18 ± 0.86 83.36 ± 1.20 87.94 ± 0.72 82.41 ± 1.67 70.47 ± 1.68 93.28 ± 0.73 93.58 ± 0.73
XRPI 85.41 ± 0.85 84.57 ± 1.02 86.66 ± 0.90 84.17 ± 1.28 70.86 ± 1.70 93.93 ± 0.58 94.24 ± 0.56
RPI-SE 80.98 ± 0.59 77.24 ± 0.47 87.85 ± 0.70 74.10 ± 0.84 62.55 ± 1.21 90.25 ± 0.91 89.89 ± 1.25

Fig. 5  ROC curves of the comparison between the performances of the four methods for a Arabidopsis thaliana and b Zea mays 
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network-based method that explores neighborhood topol-
ogy structure, the proposed method is not limited to this 
exploration process. The feature extraction methods extract 
evolutionary and structural information for better inter-
action recognition. The features distinguish the different 
genome molecules and make different contributions for plant 
lncRNA-protein interaction. This work demonstrated that 
feature integration and ensemble learning help provide more 
accurate measure of lncRNA-protein association. Besides, 
directly learning the mapping from lncRNA sequence to a 
2D space without imposing restriction on the nucleotide 
sequence length is an appealing attribute of FCGR. Excel-
lent experimental results indicate that GPLPI performed 
well in predicting association between lncRNAs and RNA-
binding proteins with the support of graph attention based 
algorithm and sequence-structural information. The success 
of GPLPI may be due to its generalization ability to learn 
hidden interaction features.

The performance of GPLPI relies on the multiscale fea-
ture aggregation, feature reduction through locally linear 
embedding (LLE) and fusion of multiple ensemble models. 
We obtained diverse information and achieved best results 
by combining classification algorithms with higher accu-
racies. As proven by the experimental results, the FCGR, 
a graph-based feature-mapping method, enables GPLPI to 
achieve good performance. The graph attention mechanism 
learns arbitrary context distributions for better optimization 
of the training loss and interpretability. These attributes 
distinguish the proposed method from existing methods. 
Despite the good performance, GPLPI can be improved in 
several ways. For instance, combining several deep learning 
models such as graph convolution neural network, dilated 
convolution and normalization to boost performance fur-
ther. Moreover, integrating other models such as matrix 
factorization can also be advantageous. This can be backed 
by evidence from closely related studies conducted in pio-
neering research (Gandhi et al. 2018; Li et al. 2019b; Wang 
et al. 2019b; Xuan et al. 2019). In this work, we only employ 
lncRNA-protein interaction data, integrating more biological 
data such as protein–protein interaction may also lead to bet-
ter performance. In conclusion, graph attention is proposed 
to learn context distribution and enhance the discriminative 
ability. In the feature-learning phase, manifold regulariza-
tion yields feature learning efficiency. Moreover, l2-norm 
and the loss function mitigate overfitting. Two classifiers are 
integrated to demonstrate the effectiveness of the proposed 
method. Experiments on Zea mays and Arabidopsis thaliana 
datasets indicate that GPLPI performed well in lncRNA-
protein interaction prediction compared to the state-of-the-
art methods. GPLPI is applicable to other plant species and 
is useful in functional analysis.
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