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Abstract
A survey of genome-wide polymorphisms between closely related species is required to understand the molecular basis 
of the evolutionary differentiation of their genomes. Two wild diploid wheat species, namely Triticum monococcum ssp. 
aegilopoides and T. urartu, are closely related and harbour the  Am and A genomes, respectively. The A-genome donor of 
tetraploid and common wheat is T. urartu, and T. monococcum ssp. monococcum is the cultivated form derived from the 
wild einkorn wheat subspecies aegilopoides. Although subspecies aegilopoides has been a useful genetic resource in wheat 
breeding, genome-wide molecular markers for this subspecies have not been sufficiently developed. Here, we describe the 
detection of genome-wide polymorphisms such as single-nucleotide polymorphisms (SNPs) and insertions/deletions (indels) 
from RNA sequencing (RNA-seq) data of leaf transcripts in 15 accessions of the two diploid wheat species. The SNPs and 
indels, detected using the A genome of common wheat as the reference genome, covered the entire chromosomes of these 
species. The polymorphism information facilitated a comparison of the genetic diversity of einkorn wheat with that of 
two related diploid Aegilops species, namely, Ae. tauschii and Ae. umbellulata. Cleaved amplified polymorphic sequence 
(CAPS) markers converted from the SNP data were efficiently developed to confirm the addition of aegilopoides subspecies 
chromosomes to tetraploid wheat in nascent allohexaploid lines with  AABBAmAm genomes. In addition, the CAPS mark-
ers permitted linkage map construction in mapping populations of aegilopoides subspecies accessions. Therefore, these 
RNA-seq data provide information for further breeding of closely related species with no reference genome sequence data.
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Introduction

Closely related species are useful resources in crop breed-
ing, and efficient use of crop relatives by breeders is impor-
tant for addressing recent and future climate change (Fita 
et al. 2015; Prohens et al. 2017). For the identification of 
agronomically important genes in crop relatives and the 
confirmation of introduced segments of the related species’ 
chromosomes, genome-wide polymorphism information 
can be effective not only within the related species but also 
between the crop and its relatives (Rasheed et al. 2018). 
However, reference genome sequence information is not 
available for most crop relatives. Although cultivated wheat 
species have many wild relative species in Triticum and 
Aegilops, reference genome sequences have been published 
for only three wild relatives (Avni et al. 2017; Luo et al. 
2017; Ling et al. 2018). However, in recent studies, next-
generation sequencing data enabled in silico analysis of the 
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wild relative species’ genomes based on the chromosomal 
synteny among wheat homoeologous genomes (Nishijima 
et al. 2016; Okada et al. 2018).

Einkorn wheat, Triticum monococcum L.  (AmAm 
genome), includes two subspecies, with ssp. monococcum 
corresponding to the cultivated form and ssp. aegilopoides 
(Link) Thell. (syn. T. boeoticum Boiss) corresponding to 
the wild form. Wild einkorn wheat is widely distributed in 
countries of the eastern Mediterranean, and domestication 
from ssp. aegilopoides to ssp. monococcum in T. monococ-
cum is inferred to have occurred once, in the Karacadag 
region of southeastern Turkey (Heun et al. 1997). Triticum 
urartu Tumanian ex Gandilyan (AA genome), which is 
closely related to einkorn wheat, is the A-genome donor of 
tetraploid wheat, namely T. turgidum L. (AABB genome) 
and T. timopheevii Zhuk (AAGG genome), and common 
wheat, T. aestivum L. (AABBDD genome) (Dvorak et al. 
1988; Takumi et al. 1993). The distribution of T. urartu 
is restricted almost exclusively to the “Fertile Crescent” 
(Wang et al. 2017). Reproductive barriers, including abnor-
mal hybrid seed formation and hybrid necrosis, underlie the 
separation of T. monococcum ssp. aegilopoides and T. urartu 
(Johnson and Dhaliwal 1976; Gill and Waines 1978; Fricano 
et al. 2014; Takamatsu et al. 2015). Interspecific hybrids 
between T. monococcum and T. urartu are almost always 
sterile, and many chromosomal rearrangements appear to 
exist between the A and  Am genomes (Dubcovsky et al. 
1996; Fricano et al. 2014). Postzygotic reproductive isola-
tion could result, at least in part, from nuclear genome dif-
ferentiation between the two species, which was previously 
reported at the nuclear and organellar DNA levels (Castagna 
et al. 1994; Mizumoto et al. 2002; Brandolini et al. 2006).

Triticum urartu is evolutionarily important as the 
A-genome donor of polyploid wheat species, and the 
genome sequence of T. urartu has already been published 
(Ling et al. 2013, 2018). The T. urartu population harbours 
a large amount of variation in agronomically important 
traits such as disease resistance and grain quality (Qiu et al. 
2005; Guzmán and Alvarez 2012). The recent accumula-
tion of genome information has included surveys of genetic 
diversity and variation in T. urartu (Luo et al. 2015; Wang 
et al. 2017; Brunazzi et al. 2018). Cultivated einkorn wheat 
(ssp. monococcum) is an important resource for improving 
grain quality, resistance to various diseases, and resistance to 
abiotic stress in durum and common wheat (Vasu et al. 2001; 
Tranquilli et al. 2002; James et al. 2006). Domestication of 
einkorn wheat was achieved by early farmers in the Fertile 
Crescent, implying that cultivated einkorn wheat may retain 
a large amount of diversity and useful alleles for various 
traits (Jing et al. 2007). In recent years, cultivated einkorn 
wheat has served as a valuable model for wheat genetics and 
has been useful in the screening of mutant strains to identify 
mutant alleles (Yan et al. 2004; Murai et al. 2013; Gardiner 

et al. 2014). Diverse accessions of cultivated einkorn wheat 
have also been useful for identifying agronomically impor-
tant genes based on genome-wide association with molecu-
lar markers (Jing et al. 2007).

Similarly, wild einkorn wheat (ssp. aegilopoides) has 
been a useful resource for improving disease resistance and 
grain quality in common wheat (Rogers et al. 1997; Shi et al. 
1998; Anker and Niks 2001; Hovhannisyan et al. 2011). 
However, in contrast to T. urartu, little genomic information 
based on next-generation sequencing (NGS) techniques is 
available for wild einkorn wheat. Whole-genome sequenc-
ing and exome sequencing approaches are convenient for 
multiple samples of wild wheat species because of the large 
genome size and sequencing costs of these species. RNA-seq 
is an effective approach for avoiding these problems. The 
RNA-seq approach enables us to find single-nucleotide poly-
morphisms (SNPs) and insertions/deletions (indels) cover-
ing entire chromosomal regions in various diploid wheat 
relatives (Iehisa et al. 2012, 2014; Nishijima et al. 2016; Wu 
et al. 2018; Okada et al. 2018; Miki et al. 2019). To date, 
RNA-seq data from one accession of wild einkorn wheat 
have been compared with those from an einkorn wheat cul-
tivar; a large number of polymorphisms were obtained in 
this comparative study (Fox et al. 2014). Some linkage maps 
have been constructed, mainly in two mapping populations, 
permitting comparisons of cultivated and wild accessions 
of einkorn wheat to find useful genes (Bullrich et al. 2002; 
Shindo et al. 2002; Hori et al. 2007; Jing et al. 2009; Yu et al. 
2017). However, to the best of our knowledge, no genetic 
map has been constructed for any population derived from 
intra-subspecies crosses of wild einkorn wheat. For future 
use of genetic variation in wild einkorn wheat in breeding, 
genome-wide molecular markers need to be developed to 
permit efficient detection of DNA polymorphisms in specific 
chromosomal regions.

Recently, high-quality reference genome sequences have 
been reported for the A genomes of diploid, tetraploid, and 
hexaploid wheat (Avni et al. 2017; Ling et al. 2018; Inter-
national Wheat Genome Sequencing Consortium (IWGSC) 
2018). The pseudomolecules of the A genome sequences 
can be utilized as references for virtual anchoring of the 
NGS reads and polymorphisms to each chromosome of the 
 Am genome. The DNA polymorphisms from the NGS data 
showed a genome-wide distribution with high resolution, 
even between intra-lineage accessions of the wild diploid 
D-genome species Aegilops tauschii Coss (Nishijima et al. 
2016). Thus, the RNA-seq approach has potential for the 
discovery of genome-wide SNPs and indels, permitting 
anchoring of these markers to each of the  Am-genome chro-
mosomes in wild einkorn wheat. The objectives of the pre-
sent study are (1) to detect genome-wide polymorphisms 
distributed across the entire chromosomes of wild einkorn 
wheat (ssp. aegilopoides), (2) to use the polymorphism data 
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to develop a large number of molecular markers distinguish-
ing the  Am-genome chromosomes from A-genome chromo-
somes, and (3) to confirm the use of polymorphism data in 
the construction of linkage maps for wild einkorn wheat. To 
achieve these objectives, we performed RNA-seq analysis 
of 15 accessions of two diploid wheat species, namely T. 
monococcum and T. urartu. We provide two examples in 
which the polymorphism data are converted to PCR-based 
markers in wild einkorn wheat.

Materials and methods

Plant materials

Fifteen accessions of diploid wheat were used in this study, 
including three accessions of T. urartu, two of T. mono-
coccum ssp. monococcum, and ten of T. monococcum ssp. 
aegilopoides. With the exception of DV92 and PI427634, 
diploid wheat seeds were obtained from the wheat genetic 
resource centre of the National BioResource Project-Wheat 
(Japan, https ://shige n.nig.ac.jp/wheat /komug i/top/top.jsp) 
(Table 1). DV92 is an accession widely used as a parental 
line for population mapping and mutant panel construction 
(Bullrich et al. 2002; Murai et al. 2013).

An  F2 mapping population was generated from a cross 
between two wild einkorn wheat accessions: KU-3620 and 
KU-8276. Seeds of the  F2 population, with a population size 
of 103, were sown in November 2016 and the  F2 individuals 
as well as the two parental accessions were grown individu-
ally in randomly arranged pots during the 2016–2017 sea-
son in an experimental field at Kobe University (34°43′N, 
135°13′E). The heading and flowering times of the  F2 indi-
viduals were recorded as days after sowing.

A synthetic hexaploid line was used to check the utility 
of the  Am-genome-specific markers developed in this study. 
For synthetic hexaploid production, a tetraploid wheat cul-
tivar, Langdon (Ldn), was crossed with pollen of the wild 
einkorn wheat accession KU-3620, and one of the resulting 
 F1 plants was treated with 1 g  L−1 colchicine and 2% dime-
thyl sulfoxide solution for 5 h to obtain selfed seeds. After 
confirmation of the somatic chromosome number (42) using 
root tips, a synthetic hexaploid with an  AABBAmAm genome 
was established and designated Ldn/KU-3620.

RNA sequencing

Total RNA was extracted using Sepasol-RNA I Super G 
(Nacalai Tesque, Kyoto, Japan) from the leaves of 10-day-
old plants grown under conditions of 16-h light/8-h dark 
and 24 °C. Paired-end libraries for RNA-seq were con-
structed from 6 to 10 µg of total RNA using a TruSeq RNA 
Library Preparation kit v2 (Illumina, San Diego, CA, USA) 

according to the manufacturer’s procedure (Sato et al. 2016); 
the resulting libraries were then sequenced by 300-bp paired-
end reads on an Illumina MiSeq sequencer. Five libraries per 
run were used for sequencing, and approximately 28 million 
reads were obtained. The sequenced reads were deposited in 
the DDBJ Sequence Read Archive under accession number 
DRA007574.

The quality of sequencing reads was evaluated using 
FASTQC software (https ://www.bioin forma tics.babra ham.
ac.uk/proje cts/fastq c/). Trimmomatic software, version 0.33 
(Bolger et al. 2014), was used to remove adapter sequences, 
low-quality bases with an average quality score per 4 bp 
of < 30, and reads of fewer than 50 bp. The filtered reads 
were aligned to the reference A genome sequence of T. 
aestivum cv. Chinese Spring (CS) version 1 (International 
Wheat Genome Sequencing Consortium (IWGSC) 2018) 
using HISAT2 software version 2.1.0 (Kim et al. 2015). The 
RNA-seq reads of 10 accessions of Ae. tauschii (Nishijima 
et al. 2016), 12 accessions of Ae. umbellulata (Okada et al. 
2018), and 1 accession of Ae. speltoides Tausch (Miki et al. 
submitted) were also used for phylogenetic tree construc-
tion (Table 1). These RNA-seq reads were obtained from 
the DDBJ Sequence Read Archive as follows: DRA004604 
for Ae. tauschii, DRA006404 for Ae. umbellulata, and 
DRA007097 for Ae. speltoides.

Phylogenetic analysis

SNPs and indels were called using SAMtools (Li et al. 
2009) and Coval (Kosugi et al. 2013) with the same crite-
ria as those described in Nishijima et al. (2016); the depth 
of read coverage was ≥ 10, and > 95% of the mapped reads 
included nucleotide sequences that differed from the refer-
ence sequence of the A genome. To obtain a high-confidence 
set of SNPs for construction of phylogenetic trees, we chose 
SNPs at positions for which the read depth was ≥ 10 and at 
which no ambiguous nucleotides were detected in any of the 
tested accessions. CIRCOS (Krzywinski et al. 2009) and R 
statistical software were used to visualize the distribution of 
SNPs/indels on the physical map of the A genome. Neigh-
bour-joining (NJ) and maximum likelihood (ML) phyloge-
netic trees were constructed using Molecular Evolutionary 
Genetics Analysis (MEGA) software, version 7.0 (Kumar 
et al. 2016).

Marker development, map construction, and QTL 
analysis

De novo transcriptome assembly of the 12 accessions of 
einkorn wheat and the 3 accessions of T. urartu was per-
formed using Trinity (Grabherr et al. 2011). If multiple iso-
forms were detected, the first isoform designated by Trinity 
was selected as a representative transcript. RNA-seq short 

https://shigen.nig.ac.jp/wheat/komugi/top/top.jsp
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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reads of T. monococcum ssp. aegilopoides KU-8276, one of 
the parental accessions of the  F2 mapping population, were 
aligned to the representative transcripts of another parental 
accession, T. monococcum ssp. aegilopoides KU-3620, using 
Bowtie2 (Langmead and Salzberg 2012). SNP calling was 
conducted with the same pipeline described above. SNPs 
and indels were called when the depth of read coverage 
was ≥ 10, and > 95% of the aligned reads included nucleotide 

sequences that differed from sequences of the assembled 
transcript. The representative transcripts of KU-3620 were 
anchored to the chromosomes of the A genome of CS (Inter-
national Wheat Genome Sequencing Consortium (IWGSC) 
2018) using GMAP (Wu and Watanabe 2005). According to 
the location of the anchored transcripts, the SNPs between 
KU-8276 and KU-3620 were placed on the chromosomes 
of the A genome.

Table 1  List of the diploid 
wheat accessions used in this 
study

KU Plant Germplasm Institute, Faculty of Agriculture, Kyoto University, Japan; PI National Small Grain 
Research Facility, USDA-ARS, USA; KT Kihara Institute for Biological Research, Yokohama City Univer-
sity, Japan

Species Accession number Origin DRA number

T. monococcum ssp. aegilopoides KU-101-3 Iran DRA007574
(in this study)KU-3620 Turkey

KU-3646 Turkey
KU-8111 Iraq
KU-8120 Iraq
KU-8267 Iraq
KU-8276 Turkey
KU-8287 Turkey
KU-10725 Turkey
PI427634 Turkey

T. urartu KU-199-5 Turkey DRA007574
(in this study)KU-199-11 Turkey

KU-199-16 Lebanon
T. monococcum ssp. monococcum DV92 Italy DRA007574

(in this study)KT003-001 Unknown
Ae. tauschii AT76 China DRA004604

(Nishijima et al. 2016)PI499262 China
KU-2627 Afghanistan
KU-2025 Afghanistan
KU-2087 Iran
KU-2003 Pakistan
KU-2078 Iran
KU-2124 Iran
KU-2075 Iran
KU-2093 Iran

Ae. umbellulata KU-4017 Iraq DRA006404
(Okada et al. 2018)KU-4026 Iraq

KU-4035 Iraq
KU-4043 Iraq
KU-4052 Iraq
KU-4103 Turkey
KU-5934 Turkey
KU-5954 Turkey
KU-8-7 Turkey
KU-12180 Greece
KU-12198 Greece
KU-8-5 Syria

Ae. speltoides KU-7848 Iraq DRA007097
(Miki et al. 2019)
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Based on the SNP and indel information, primer sets 
were designed using Primer3Plus software (Untergasser 
et al. 2007). Some of the identified SNPs were converted 
to cleaved amplified polymorphic sequence (CAPS) mark-
ers (Supplementary Table S1). Information for four simple-
sequence-repeat (SSR) markers and their respective anneal-
ing temperatures was obtained from the GrainGenes website 
(https ://wheat .pw.usda.gov/GG2/index .shtml ). PCR ampli-
fication, digestion of the PCR products, and visualization of 
the products were performed as described in our previous 
study (Sakaguchi et al. 2016).

Genetic mapping using the genotyping data was per-
formed using the MAPMAKER/EXP version 3.0 pack-
age; the logarithm-of-odds (LOD) score threshold was set 
to 3.0 (Lander et al. 1987). Quantitative trait locus (QTL) 
analysis of heading and flowering times was conducted by 
single-marker analysis and composite interval mapping with 
Windows QTL Cartographer version 2.5 software and the 
backward regression method (http://statg en.acsu.edu/qtlca rt/
WQTLC art.htm). The LOD score threshold for QTL analy-
sis was determined by a 1000-permutation test. The statisti-
cal significance of the QTL effect on the examined traits was 
estimated by Tukey–Kramer’s HSD test.

Results

Single‑nucleotide polymorphisms in the diploid 
wheat species

To estimate genome-wide DNA polymorphisms in einkorn 
wheat and T. urartu, 300-bp paired-end RNA sequencing 
of ten accessions of T. monococcum ssp. aegilopoides, two 

accessions of T. monococcum ssp. monococcum, and three 
accessions of T. urartu was performed, generating 220–410 
million filtered paired-end reads for each accession (Table 2, 
Supplementary Table S2). The filtered reads were aligned 
to the reference sequence of the A genome of CS (Inter-
national Wheat Genome Sequencing Consortium (IWGSC) 
2018). Of the filtered reads, 86.07–95.00% for T. monococ-
cum ssp. aegilopoides, 84.44–88.46% for T. urartu, and 
91.43–97.01% for T. monococcum ssp. monococcum were 
aligned to the reference sequence.

By conducting pairwise comparisons of all the tested 
accessions of the diploid wheat species and the A genome 
of CS, 21,057–109,314 SNPs and 315–1853 indels for T. 
monococcum ssp. aegilopoides, 45,101–59,378 SNPs and 
758–1109 indels for T. monococcum ssp. monococcum, and 
33,286–53,419 SNPs and 644–1286 indels for T. urartu were 
detected (Table 3). These SNPs and indels covered all the 
chromosomes of the A genome of CS (Fig. 1). 

Phylogenetic relationships among the diploid 
wheat species

To clarify the phylogenetic relationships among T. mono-
coccum ssp. aegilopoides, T. monococcum ssp. monococ-
cum, T. urartu, and the other wild diploid wheat species, 
NJ and ML trees were constructed for 10 accessions of Ae. 
tauschii and 12 accessions of Ae. umbellulata; these trees 
were based on the high-confidence set of SNPs and included 
Ae. speltoides as an outgroup species (Fig. 2). The einkorn 
wheat species and T. urartu were separated from the other 
diploid wheat species, consistent with the findings of pre-
vious reports (Mizumoto et al. 2002; Fricano et al. 2014). 
The comparison based on the branch lengths of the trees 

Table 2  Summary of RNA 
sequencing information for the 
15 accessions of diploid wheat

Species Accession Read pairs Filtered read pairs (%) Alignment rate to the 
A genome of CS (%)

T. monococcum 
ssp. aegilopoides

KU-101-3 6,075,718 3,228,143 (53.14%) 88.99
KU-3620 6,947,661 3,452,355 (49.69%) 88.24
KU-3646 5,916,083 3,308,350 (55.92%) 86.07
KU-8111 5,671,368 3,164,909 (55.81%) 89.79
KU-8120 5,781,015 3,264,122 (56.46%) 89.91
KU-8267 5,028,572 2,837,046 (56.42%) 93.51
KU-8276 5,299,177 2,776,271 (52.39%) 92.75
KU-8287 5,854,651 3,497,596 (59.74%) 95.00
KU10725 5,608,746 2,931,313 (52.26%) 92.64
PI427634 6,548,802 4,046,867 (61.80%) 88.10

T. urartu KU-199-5 4,364,112 2,597,523 (59.52%) 87.87
KU-199-11 5,248,913 3,186,090 (60.70%) 88.46
KU-199-16 5,306,355 2,847,868 (53.67%) 84.44

T. monococcum 
ssp. monococ-
cum

DV92 6,294,027 2,963,686 (47.09%) 91.43
KT003-001 4,773,333 2,250,442 (47.15%) 97.01

https://wheat.pw.usda.gov/GG2/index.shtml
http://statgen.acsu.edu/qtlcart/WQTLCart.htm
http://statgen.acsu.edu/qtlcart/WQTLCart.htm
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indicated that T. monococcum ssp. aegilopoides had the 
highest genetic diversity among the einkorn wheat species 
and T. urartu. The genetic diversity in T. monococcum ssp. 
aegilopoides was higher than that in Ae. umbellulata but 
was lower than that in Ae. tauschii. T. monococcum ssp. 
aegilopoides diverged into three groups. The existence of 
three groups in wild einkorn wheat was consistent with a 

previous observation (Pour-Aboughadareh et al. 2017). T. 
monococcum ssp. monococcum belonged to the group that 
contained T. monococcum ssp. aegilopoides; this group 
included accessions distributed throughout southeastern 
Turkey and Iran. The other two groups were geographically 
separated; members of one group were limited to areas sur-
rounding Ankara, Turkey, while members of the other group 
were widely distributed throughout southeastern Turkey, 
Iran, and Iraq.

Although the genetic distance between the  Am- and 
A-genome species was smaller than the genetic distance 
between the U- and D-genome species, the A-genome spe-
cies were clearly separated from the  Am-genome species 
(Fig. 2). The three accessions of the A-genome species T. 
urartu were genetically distinguished with 100% bootstrap 
probability and geographically separated. All of the tested 
accessions exhibited divergence from the A genome of CS. 
The genetic distance between T. urartu and the A genome 
of CS was larger than that between the wild and cultivated 
einkorn wheat species.

Development of genetic markers that discriminate 
between the sub‑genomes

To develop genetic markers that distinguish between species 
or between the  Am and A genomes, fixed nucleotide differ-
ences (SNPs) that distinguished species or the sub-genomes 
were evaluated. T. monococcum ssp. aegilopoides, T. mono-
coccum ssp. monococcum, and T. urartu were distinguished 
from the A genome of CS by 11,903, 14,021, and 5693 fixed 
nucleotide differences, respectively (Table 4). Of these fixed 
nucleotide differences, 25, 187, and 1892 were uniquely 
observed in T. monococcum ssp. aegilopoides, T. monococ-
cum ssp. monococcum, and T. urartu, respectively. A total 
of 8309 fixed nucleotide differences were observed between 
the  Am genome of T. monococcum ssp. and the A genome of 
T. urartu; these differences were widely distributed over all 
of the chromosomes (Fig. 3a). A total of 228 fixed nucleo-
tide differences were observed between T. monococcum ssp. 
aegilopoides and T. monococcum ssp. monococcum; these 
differences were frequently located in the distal chromo-
somal regions (Fig. 3b). The fixed nucleotide differences 
between T. urartu and the A genome of CS were also widely 
distributed over all the chromosomes (Fig. 3c). The right 
(long-arm) end of chromosome 4 lacked SNPs in the com-
parisons between the two subspecies of T. monococcum and 
between T. urartu and the A genome of CS.

Based on the fixed nucleotide differences between the 
 Am and A genomes, seven  Am-chromosome-specific CAPS 
markers were designed for each chromosome (Supplemen-
tary Table S1). To test the utility of these CAPS markers, the 
markers were applied to Ldn, CS, T. urartu, and T. monococ-
cum ssp. aegilopoides KU-3620, and four individuals of a 

Table 3  Identification of SNPs and indels between the diploid wheat 
accessions and the A genome of CS

The A genome of CS was used as a reference sequence (International 
Wheat Genome Sequencing Consortium (IWGSC) 2018)

Species Accession SNPs Indels

T. monococcum ssp. aegilopoides KU-101-3 68,978 1059
KU-3620 73,593 1423
KU-3646 91,749 1759
KU-8111 62,474 799
KU-8120 69,117 979
KU-8267 70,678 1009
KU-8276 68,765 1057
KU-8287 109,314 1853
KU-10725 45,805 772
PI427634 21,057 315

T. urartu KU-199-5 41,384 1145
KU-199-11 53,419 1286
KU-199-16 33,286 644

T. monococcum ssp. monococcum DV92 45,101 758
KT003-001 59,378 1109

Ae. tauschii AT76 152,202 1624
PI499262 202,613 2052
KU-2627 231,625 2468
KU-2025 109,404 1042
KU-2087 242,384 2597
KU-2003 215,883 2098
KU-2078 209,773 2271
KU-2124 223,990 2346
KU-2075 233,817 2554
KU-2093 212,025 2089

Ae. umbellulata KU-4017 89,189 780
KU-4026 23,518 232
KU-4035 153,197 1600
KU-4043 93,137 983
KU-4052 100,660 956
KU-4103 35,700 340
KU-5934 146,081 1544
KU-5954 111,307 927
KU-8-7 114,241 1185
KU-12180 106,179 1042
KU-12198 116,340 1018
KU-8-5 123,484 1257

Ae. speltoides KU-7848 146,008 1268
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synthetic hexaploid line (Ldn/KU-3620) with  AABBAmAm 
genomes (Fig. 4). These markers successfully discriminated 
between the  Am and A genomes for each chromosome. The 
four individuals of the Ldn/KU-3620 line retained all seven 
chromosomes derived from the  Am genome.

Application of molecular markers for genetic 
analysis of wild einkorn wheat

In addition to SNPs that were detected based on the align-
ment of RNA-seq reads to the reference sequence of the 
A genome of CS (International Wheat Genome Sequenc-
ing Consortium (IWGSC) 2018), we also detected SNPs 
between the  F2 parents, T. monococcum ssp. aegilopoides 
KU-3620 and KU-8276 based on de novo assembled tran-
scripts, as described below. De novo transcriptome assembly 
of the tested diploid accessions generated 25,422–75,573 
transcripts; the N50 values of these assemblies ranged 
from 914 to 1325 bp. Alignment of the RNA-seq data of 
short reads of KU-8276 to the representative transcripts of 
KU-3620 revealed 18,360 SNPs, 8925 of which were shared 
with those detected based on the A genome of CS (Fig. 5). 
Thus, the approach using the de novo transcriptome was 
able to detect a larger number of SNPs between accessions 
of T. monococcum ssp. aegilopoides. The identified SNPs 
and indels anchored to chromosomal positions spanning the 
entire A genome of CS (Table 5).

Genetic markers for the  F2 mapping population were 
developed based on the SNPs and indels obtained by inte-
grating both approaches. To convert the identified SNPs 
and indels to PCR-based genetic markers, ten CAPS and 
two indel markers were designed on chromosome  7Am 
and applied to the  F2 mapping population (Supplemen-
tary Table S1). The fragments digested by the restriction 
enzymes clearly distinguished between the  F2 parental 
accessions of T. monococcum ssp. aegilopoides KU-3620 
and KU-8276, and the resulting polymorphisms were used 
to genotype the  F2 individuals. Based on the genotyp-
ing data, a linkage map was constructed for chromosome 
 7Am (Fig. 6a). The chromosome  7Am map included 4 SSR 
markers (cfa2028, wmc405, barc174, and gwm573) and 
the 12 markers developed in the present study. To confirm 
the chromosomal positions of the 12 novel markers, they 
were anchored to chromosome 7A of CS (Supplementary 
Table S1). Chromosomal synteny was well conserved in the 
mapping regions shared between chromosomes 7A and  7Am 
that were defined in the present work.

To easily confirm the usefulness of the constructed 
map, we conducted QTL analysis of heading and flower-
ing times in the  F2 mapping population. The  F2 individu-
als in the KU-3620/KU-8276 population were grown under 
field conditions. The heading and flowering times of the 
 F2 individuals varied, and transgressive segregation was 
observed (Fig. 6b, c). Through single-marker analysis using 
SSR markers from each chromosomal arm of the A genome, 

Fig. 1  Distribution of SNPs (a) and indels (b) between the A genome 
of CS and the examined accessions of einkorn wheat and T. urartu 
across the seven chromosomes of the A genome. Red, blue, and pur-

ple circles indicate the ten T. monococcum ssp. aegilopoides acces-
sions, three T. urartu accessions, and two T. monococcum ssp. mono-
coccum accessions, respectively (color figure online)
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SSR markers on the short arm of chromosome  7Am were 
found to be associated with the phenotypic variation in head-
ing and flowering times in the mapping population. Using 
the  7Am linkage map constructed in the present study, QTL 
analysis of these traits was performed by composite interval 
mapping. Significant QTLs for heading and flowering times 
were found with LOD scores of 5.17 and 2.69, respectively, 
within the same region on chromosome  7Am (Fig. 6a). The 
 7Am QTLs mapped between Xcfa2028 and Xwmc405, and 
the peaks of QTL likelihood curves of the LOD scores were 
located in the Xcfa2028–Xa24482 region. The  7Am QTLs 
explained 23.0% and 11.1% of the combined heading and 
flowering time variation in the KU-3620/KU-8276 popula-
tion, respectively. The genotypic effects of the  7Am QTLs on 
heading and flowering times were examined under field con-
ditions using  F2 individuals selected from the mapping pop-
ulation. The  F2 individuals carrying homozygous KU-3620 
alleles in the  7Am QTL region (Xcfa2028–Xa24482) showed 
significantly earlier heading and flowering times than those 

with homozygous KU-8276 alleles (Fig. 6d,e). The heading 
and flowering times of the heterozygous  F2 individuals were 
intermediate to those of the homozygous individuals.

Discussion

RNA sequencing is among the technologies used to effi-
ciently detect SNPs and indels in the large genome of wheat 
species, a genome that is composed primarily (~ 85%) of 
repeat sequences such as transposons (International Wheat 
Genome Sequencing Consortium (IWGSC) 2018), facilitat-
ing the design of genetic makers covering the whole genome. 
In the present study, the RNA-seq approach facilitated an 
efficient search for genome-wide polymorphisms in the dip-
loid wheat species with an A or  Am genome; a number of 
SNPs and indels were detected by comparison with the A 
genome of CS (Table 3), and the positions of these poly-
morphisms were confirmed to be distributed throughout the 

Fig. 2  Phylogenetic relationships among the diploid 
Triticum/Aegilops accessions. The neighbour-joining tree (a) and 
maximum likelihood tree (b) were constructed based on RNA-seq-

derived SNPs. Bootstrap probabilities are shown on the branches 
(number of bootstrap replicates = 1000). A scale bar for genetic dis-
tance is shown on the left side of each phylogenetic tree
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genome (Fig. 1). Similar results have been reported in the 
wheat D-genome-containing progenitor Ae. tauschii (Iehisa 
et al. 2012, 2014; Nishijima et al. 2016), the U-genome-con-
taining diploid species Ae. umbellulata (Okada et al. 2018), 
and section Sitopsis of the genus Aegilops (Miki et al. 2019). 
The positions of the genome-wide polymorphisms detected 
by RNA-seq were efficiently determined based on chromo-
somal synteny conserved among the genomes of wheat rela-
tives (Mayer et al. 2011). Of course, structural rearrange-
ments accumulated on the chromosomes of the wild diploid 
species during genome differentiation (Wicker et al. 2003; 
Molnár et al. 2016; Danilova et al. 2017), and inter-chro-
mosomal translocations occurred after allotetraploid wheat 
speciation (Devos et al. 1995; Dvorak et al. 2018). Such 
rearrangements sometimes disturb chromosomal synteny; 
thus, the predicted chromosomal positions of the RNA-
seq-derived polymorphisms are not necessarily precise. To 
solve this problem, the construction of genetic maps using 
molecular markers based on RNA-seq-derived polymor-
phism information in the target species is still important. 
Nonetheless, this putative positional information is expected 
to be useful for further genetic studies because local syn-
teny is well conserved in each restricted chromosomal region 
among closely related species (Lu and Faris 2006).

The RNA-seq approach does have a limitation: it detects 
only the SNPs present in the exons of expressed genes. 
Polymorphism information can be collected from the exons 
of unexpressed genes but not from the introns and pro-
moter regions of the expressed genes and intergenic chro-
mosomal regions. Nonetheless, RNA-seq identified many 

genome-specific SNPs distributed across all the chromo-
somes in the  Am genome, permitting the successful devel-
opment of genome-specific CAPS markers that distinguished 
the  Am and A genomes. These markers were useful for con-
firming the alien addition of the  Am-genome chromosomes 
to tetraploid wheat (AABB genome) in synthetic hexaploid 
lines with  AABBAmAm genomes (Fig. 4). Using a similar 
strategy, U-genome-specific markers were successfully 
developed to distinguish the U-genome copy from the A- 
and B-genome-derived copies in our recent study (Okada 
et al. 2018). U-genome-specific markers are available for 
validation of interspecific hybridization in crosses between 
tetraploid wheat and Ae. umbellulata (Okada et al. 2018). 
Phylogenetic trees constructed in the present study showed 
that the A and  Am genomes are evolutionarily more closely 
related than the A and U genomes (Fig. 2). The RNA-seq 
approach allowed the efficient detection of genome-wide 
polymorphisms between closely related genomes, permit-
ting the development of genome-specific markers. This 
result also indicated that RNA-seq analysis is appropriate for 
elucidation of the evolutionary relationships among homoe-
ologous genomes based on genome-wide exon sequences.

Similarly, RNA-seq-derived polymorphisms are an 
efficient source of information for the development of 
genome-wide genetic markers; these markers are expected 
to facilitate linkage map construction, gene mapping, 
and identification of QTLs for agronomic traits in map-
ping populations derived from intra-subspecies crossed 
with wild einkorn wheat. The CAPS markers obtained 
via the RNA-seq-derived polymorphisms permitted the 

Table 4  Summary of fixed 
nucleotide differences between 
species

The A genome of CS was used as a reference sequence (International Wheat Genome Sequencing Consor-
tium (IWGSC) 2018)

Species being compared (1 vs. 2) Number of 
fixed differ-
ences1 2

T. monococcum ssp. aegilopoides CS 11,903
T. urartu CS 5693
T. monococcum ssp. monococcum CS 14,021
T. monococcum ssp. aegilopoides,
T. monococcum ssp. monococcum,
T. urartu

CS 3371

T. monococcum ssp. aegilopoides CS, T. urartu,
T. monococcum ssp. monococcum

25

T. urartu CS,
T. monococcum ssp. aegilopoides,
T. monococcum ssp. monococcum

1892

T. monococcum ssp. monococcum CS, T. urartu
T. monococcum ssp. aegilopoides

187

T. monococcum ssp. aegilopoides,
T. monococcum ssp. monococcum

CS, T. urartu 8309

T. monococcum ssp. aegilopoides T. monococcum ssp. monococcum 228
T. urartu CS 5694
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construction of a genetic map, and the constructed map 
facilitated the identification of QTLs for agronomic traits 
in wild einkorn wheat (Fig. 6). Heading and flowering 
time QTLs have been detected on the short arms of the 
homoeologous group 7 chromosomes in common wheat 
(Kuchel et al. 2006; Lin et al. 2008), einkorn wheat (Yu 
et al. 2017), and Ae. tauschii (Koyama et al. 2017). The 
heading time QTL reported previously in einkorn wheat 
is located near Xbarc174 on chromosome  7Am (Yu et al. 
2017), whereas the  7Am QTL found in the present study 
is distal relative to that reported by Yu et al. (2017). The 
 7Am QTLs were detected here in an  F2 population of wild 
einkorn wheat; thus, the significance of the QTLs for head-
ing and flowering time should be validated using their 
progeny in further studies. Therefore, although genome 
information, including the transcriptome, is lacking for 

many species of wheat relatives, RNA-seq data facilitate 
genetic analyses of target traits in these wheat relatives.

Our study showed that the cultivated species T. monococ-
cum ssp. monococcum belonged to one of the three groups 
of T. monococcum ssp. aegilopoides (Fig. 2), suggesting that 
T. monococcum ssp. monococcum originated recently from a 
limited subpopulation of T. monococcum ssp. aegilopoides. 
The recent divergence between T. monococcum ssp. 
aegilopoides and ssp. monococcum can make it difficult 
to identify genetic markers that distinguish between these 
two subspecies. However, using the RNA-seq approach, the 
present work identified 228 SNPs that differentiate these 
subspecies. Interestingly, these SNPs were patchily dis-
tributed over the distal chromosomal region (Fig. 3). This 
result suggests that in the process of domestication, nucleo-
tide substitutions were not distributed across the entirety of 

Fig. 3  Chromosomal distribu-
tion of fixed nucleotide differ-
ences a between the A and  Am 
genomes, b between T. mono-
coccum ssp. aegilopoides and T. 
monococcum ssp. monococcum, 
and c between T. urartu and the 
A genome of CS
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the chromosomes, although only two accessions of culti-
vated einkorn wheat were examined. Specific chromosomal 
regions may have contributed to the domestication of T. 
monococcum ssp. monococcum. The association of certain 
chromosomal regions with species or subspecies differentia-
tion was also observed between two Aegilops species, Ae. 
longissima and Ae. sharonensis, both of which belong to sec-
tion Sitopsis and contain the  Sl genome (Miki et al. 2019). 
In the present study, the diploid wheat accessions examined 
were limited. Recent studies using a large number of diploid 
wheat accessions showed that two species, namely T. urartu 
and T. monococcum, accumulated abundant genetic diver-
sity (Heun et al. 1997; Jing et al. 2007). The genome-wide 
polymorphism data obtained in the present study could be 
utilized to further evaluate the genetic diversity in the two 
diploid wheat species and determine domestication-related 
chromosomal regions in einkorn wheat. These observations 
indicate that RNA-seq-derived genome-wide polymor-
phisms can contribute to genetic studies on the evolution-
ary differentiation of closely related species and subspecies.

Fig. 4  Am-genome-specific CAPS markers derived from the RNA-seq 
data. Each PCR product was digested with the indicated restriction 
enzyme. Lanes 1–4: Langdon, Chinese Spring, T. urartu KU-199-16, 

and T. monococcum ssp. aegilopoides KU-3620, respectively; lanes 
5–8: four individuals of the synthetic hexaploid line Ldn/KU-3620

Fig. 5  Venn diagram of the SNPs detected between two accessions 
(KU-3620 and KU-8726) of T. monococcum ssp. aegilopoides. 
The SNPs were called based on the alignment of RNA-seq reads of 
KU-8726 to the non-redundant transcripts constructed with de novo 
assembly of the RNA-seq reads of KU-3620. The SNPs between 
these two accessions were detected based on the alignment of reads to 
the A-genome chromosomes of CS

Table 5  SNPs and indels between two wild einkorn wheat accessions, namely KU-3620 and KU-8276, that were detected based on assembly of 
the KU-3620 transcripts

Chromosome positions of the SNPs and indels were determined by alignment of the KU-3620 transcripts to the A genome of CS (International 
Wheat Genome Sequencing Consortium (IWGSC) 2018)

Chromosome 1A 2A 3A 4A 5A 6A 7A Unanchored Total

SNP 2692 3307 2870 2189 3198 2676 2957 3547 23,436
Indel 78 87 68 57 84 85 88 99 646
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Our results indicate that the RNA-seq approach is quite 
useful for the discovery of genome-wide polymorphisms 
in wild wheat relatives. The resulting polymorphism data 
are available for subsequent genetic studies such as phylo-
genetic analysis, genetic map construction, and target gene 
mapping in wheat relatives for which sufficient genomic 
information is lacking. Wheat relatives are believed to 
share homoeologous chromosomes derived from a pre-
dicted common ancestor (Mayer et al. 2011). Therefore, 
the RNA-seq approach should contribute to genetic anal-
yses and introgression of agriculturally important phe-
notypes from wild wheat relatives. The wheat relatives 
carrying genomes other than A, B, and D are useful for 
wheat breeding, serving as a tertiary gene pool. In wheat 
breeding processes, target genes can be transferred from 
chromosomes of wheat relatives to the A-, B- or D-genome 
chromosomes of common wheat by homoeologous recom-
bination (Qi et al. 2007). In contrast, gene transfer from 
the tertiary gene pool using homologous recombination is 
not expected. Therefore, cytogenetic techniques to enhance 
homoeologous recombination, such as the use of ph (pair-
ing homoeologous) gene mutants, will be helpful in accel-
erating gene transfer from the  Am-genome chromosome 
to the A-genome chromosome (Dubcovsky et al. 1995). 

Genome-specific molecular markers are expected to enable 
confirmation of the introgression of target chromosomal 
segments from wheat relatives. Moreover, markers that 
are spread over all of the chromosomes could help deter-
mine the precise positions of the chromosomal regions 
transferred from wild relatives. Indeed, RNA-seq-derived 
PCR markers have been used to validate alien gene transfer 
from rye to common wheat (Wu et al. 2018). Thus, the 
genome-wide polymorphism information obtained from 
RNA-seq is expected to enlarge the genetic variation in 
the tertiary gene pool available for future wheat breeding.
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