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Abstract
Crop yield is determined by the acquisition and allocation of photoassimilates in sink organs. Therefore, genetic modifica-
tion of sink size is essential for understanding the complex signaling network regulating sink strength and source activities. 
Sink size in wheat depends on the number of spikelets per spike, floret/grain number per spikelet as well as the grain weight 
or dry matter accumulation. Hence, increasing spikelet number and improving sink size are targets for wheat breeding. The 
main objective of the present work was to genetically modify the wheat spike architecture, i.e., the sink size by introgress-
ing the ‘Miracle wheat’ or the bht-A1 allele into an elite durum wheat cv. Floradur. After four generations of backcrossing 
to the recurrent parent, Floradur (FL), we have successfully developed Near Isogenic Lines (NILs) with a modified spikelet 
arrangement thereby increasing spikelet and grain number per spike. Genotyping of bht-A1 NILs using the Genotyping-By-
Sequencing approach revealed that the size of the introgressed donor segments carrying bht-A1 ranged from 2.3 to 38 cM. The 
size of the shortest donor segment introgressed into bht-A1 NILs was estimated to be 9.8 mega base pairs (Mbp). Phenotypic 
analysis showed that FL-bht-A1-NILs (BC3F2 and BC3F3) carry up to seven additional spikelets per spike, leading to up 
to 29% increase in spike dry weight at harvest  (SDWh). The increased  SDWh was accompanied by up to 23% more grains 
per spike. More interestingly, thousand kernel weight (TKW) did not show significant differences between FL-bht-A1-NILs 
and Floradur, suggesting that besides increasing spikelet number, bht-A1 could also be targeted for increasing grain yield in 
wheat. Our study suggests that the genetic modification of spikelet number in wheat can be an entry point for improving grain 
yield, most interestingly and also unexpectedly without the trade-off effects on TKW. Hence, FL-bht-A1-NILs are not only 
essential for increasing grain number, but also for understanding the molecular and genetic mechanism of the source–sink 
interaction for a clearer picture of the complex signaling network regulating sink strength and source activities.

Keywords Wheat · Spike · Spikelet · Genetic modification · Spikelet arrangement · Grain number · Near Isogenic Lines · 
Source–sink · Sink size · Thousand kernel weight

Introduction

Grain yield increase of wheat in the past were mainly based 
on linear increase in the number of grains per meter square 
(Serrago et al. 2013; Ferrante et al. 2017), while spikelet 
number, grain weight and biomass were largely unchanged 
(Royo et al. 2007; Alvaro et al. 2008; Sanchez-Garcia et al. 
2013). Even the tremendous increase in wheat grain yield 
after the introduction of the semi-dwarfing varieties has 
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been mainly due to an increase in grains per spikelet with-
out change in spikelet number (Youssefian et al. 1992a, b; 
Thomas 2017). Interestingly, unlike other cereal crops like 
barley, maize, rice, and sorghum, each wheat spikelet bears 
more than one grain, making the wheat spikelet the most 
essential grain yield component. Since the number and 
arrangement of each spikelet are under strong genetic, hor-
monal, and environmental control (McSteen 2009; Boden 
et al. 2015; Poursarebani et al. 2015; Youssef et al. 2017; 
Dixon et al. 2018), the isolation and characterization of 
genes that regulate inflorescence architecture is important 
for a clearer picture of grain yield barriers in wheat. With 
the fact that grain growth in wheat is also reported to be 
sink limited (Borras et al. 2004; Miralles and Slafer 2007; 
Zhang et al. 2010; Serrago et al. 2013), modifying the sink 
size, i.e., spikelet number is key to further understand the 
physiological and genetic basis of the source–sink relation-
ship in wheat.

So far, several approaches were suggested for increas-
ing wheat’s yield potential (Fischer 2007; Reynolds et al. 
2009; Foulkes et al. 2011; Gonzalez et al. 2011; Guo et al. 
2017), including increasing the spike fertility index. The 
spike fertility index, also termed as fruiting efficiency (Slafer 
et al. 2015; Alonso et al. 2018), is the number of grains set 
per unit spike dry weight at anthesis (Ferrante et al. 2012). 
Because improving harvest index by directly increasing flo-
ret fertility has been very tough (Austin et al. 1980; Guo and 
Schnurbusch 2015; Guo et al. 2016), an alternative approach, 
such as enhancing spikelet number per spike should be criti-
cally considered.

The wheat inf lorescence is characterized by an 
unbranched spike, whereupon sessile spikelets are dis-
tichously attached to the inflorescence’s central axis (i.e., 
the rachis). In wheat, the number of spikelets per spike is 
fixed after the initiation of the terminal spikelet (Bonnet 
1967; McMaster 1997). However, spike length and spikelet 
number are also known to be influenced by environmental 
factors, such as temperature and day length (Friend 1965; 
Rawson 1971; Rawson and Richards 1993). Generally, a 
longer spike development phase combined with optimum 
temperature and light promotes the initiation of more spike-
lets in wheat (Friend 1965; Rawson 1970, 1971; Pinthus 
and Millet 1978; Fischer 1985; Rawson and Richards 1993; 
Shaw et al. 2013). In this regard, the reproductive success 
of the wheat plant is predominantly controlled by three sets 
of genes namely vernalization, photoperiod, and the earli-
ness per se genes (Yan et al. 2003, 2004, 2006; Beales et al. 
2007; Lewis et al. 2008; Gawroński et al. 2014). The earli-
ness per se genes are classes of genes regulating flowering 
time independently of vernalization and photoperiod and are 
important for the wide adaptation of wheat to different envi-
ronments (Cockram et al. 2007; Lewis et al. 2008; Faricelli 
et al. 2010; Zikhali et al. 2016). By accelerating flowering 

time, i.e., shortening of the vegetative phases, Photoperiod-1 
(Ppd1) is implicated in the reduction of spikelet and tiller 
number in wheat (Worland et al. 1998; Shaw et al. 2013; 
Guo et al. 2018). Furthermore, with the rising global tem-
perature, several crops flower earlier in warmer temperature 
(Craufurd and Wheeler 2009; Ellwood et al. 2013).

Different studies have also reported that late flowering 
wheat cultivars are vulnerable to post-anthesis stress that 
lead to a substantial reduction in yield and grain quality (Liu 
et al. 2014; Myers et al. 2014; Asseng et al. 2015). There-
fore, to offset the trade-off between accelerated flowering 
and spikelet number, other mechanisms of increasing spike-
let number need to be considered.

Genes controlling wheat spikelet arrangement have 
already been discovered (Boden et al. 2015; Dobrovolskaya 
et al. 2015; Poursarebani et al. 2015; Dixon et al. 2018). One 
of these genes is the wheat spikelet meristem identity gene, 
TtBH-A1 (Poursarebani et al. 2015). A non-synonymous 
mutation that has occurred in the highly conserved AP2/
ERF DNA binding domain of TtBH-A1 altered the function 
of TtBH-A1, resulting in the so-called ‘Miracle wheat’ or 
spike-branching wheat phenotype. ‘Miracle wheat’ mutants 
deviate from the canonical spike form by developing mini-
spike-like branches and/or secondary or supernumerary 
spikelets (SS) along the spike, but similarly have often lost 
terminal spikelet formation with increased spikelet and grain 
number per spike (Poursarebani et al. 2015).

Aiming to further characterize the ‘Miracle wheat’ allele, 
especially from the perspectives of increasing spikelet and 
grain number, we introgressed the bht-A1 allele into an elite 
durum wheat cv. Floradur. Unlike the ‘Miracle wheat’ (TRI 
19165, which is the donor parent), Floradur-bht-A1-NILs are 
typically characterized by the formation of supernumerary 
spikelets (SS) instead of developing mini-spike-like struc-
tures. Nevertheless, Floradur-bht-A1-NILs showed increased 
spike dry weight at harvest that was accompanied by sig-
nificant increase in grain number per spike, suggesting that 
Floradur-bht-A1-NILs are interesting genetic materials for 
the genetic manipulation of grain yield in wheat. This is 
also because, Floradur-bht-A1-NILs are not only carrying 
the ‘Miracle wheat’ allele, but also incorporated the semi-
dwarfing allele, Rht-B1, which make them useful wheat 
germplasm that have combined two plant architectural genes 
in a single elite genetic background to further assess new 
opportunities for increasing grain yield production.

Materials and methods

Plant materials

A German elite durum spring wheat cultivar, Floradur (FL), 
was used as a recurrent parent. ‘Miracle wheat’ accession 
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TRI 19165 was used as a donor parent for the ‘Miracle 
wheat’ or the bht-A1 allele. TRI 19165 is a spike-branching 
mutant landrace from the gene bank collection of the Leib-
niz Institute for Plant Genetics and Crop Plant Research 
(IPK, Germany).

Backcrossing schemes

Floradur and TRI 19165 were grown side by side in a green-
house for crossing. TRI 19165 was used as a pollen parent to 
generate F1 plants. Emasculation of the female parent was 
initiated when half of the spike emerged from the flag leaf 
sheath. All young florets were surgically removed from each 
spikelet except the basal two florets. The terminal and very 
young spikelets were completely removed. After removing 
the anthers, the whole spike was covered with bags to avoid 
any pollen cross-contamination. After pollination, the spike 
was covered again to protect any pollen cross-contamina-
tion. The complete scheme is shown in Fig. 1. Accordingly, 
four times backcrossing was made to the recurrent parent 
Floradur.

One genome-specific CAPS marker, which was developed 
based on the SNP in the TtBH-A1 gene (T287C) which gave 
rise to the ‘Miracle wheat’ or bht-A1 allele (Poursarebani 
et al. 2015), was used for the foreground (FG) selection in 
all generations. Heterozygosity of the F1 plants was checked 
using two microsatellite markers, xgwm155 (chr.3A) and 
xgwm95 (chr.2A). PCR conditions and fragment analysis 
were conducted as described by Röder et al. (1998). All 

true-bred heterozygous F1 plants were backcrossed with 
Floradur following the same procedure described earlier 
(see Fig. 1).

Embryo rescue (ER)

To shorten the generation time, embryos 21 days after pol-
lination were rescued from the first two generations, i.e., 
BC1F1 and BC2F1 plants (Fig. 1). This saved the time from 
ripening to harvest. First, the immature grains were removed 
from all BC1F1 and BC2F1 plants. Then, the grains were 
rinsed in 70% alcohol for about 1 min. After rinsing the 
grains with sterilized water, the samples were washed with 
a washing buffer containing 20% hypochlorite and tween20. 
After 7 min of shaking, samples were repeatedly washed 
with sterilized water. The embryos from the grains were sur-
gically removed in a laminar hood and carefully placed on 
B5 medium in a Petri dish (Duchefa biochemie, Haarlem, 
The Netherlands) for about 72 h at 24 °C under a dark con-
dition in a growth chamber. The calli were then transferred 
to fresh new media in a magenta box under long day condi-
tions (16 h light and 8 h dark) for about 10–12 days at 24 °C. 
Seedlings were then transplanted under greenhouse condi-
tions in a pot size of 2 L filled with substrate 2 (Klasmann-
Deilmann GmbH, 49744 Geeste, Germany), compost and 
sand with a proportion of 2:2:1, respectively. Plants received 
all the standard treatments for wheat including fertilizers 
and pesticides. DNA was extracted from these plants for the 
background (BG) and FG selections. All heterozygous plants 

Fig. 1  Scheme for the develop-
ment of Floradur-bht-A1-NILs. 
FL Floradur, M mutant (TRI 
19165), F1 the first filial 
generation, BG background 
selection, FG foreground selec-
tion, BC1F1 the first backcross 
generation of F1, ER embryo 
rescue, BC2F1 the second back-
cross generation of F1, BC3F1 
the third backcross genera-
tion of F1, BC4F1 the fourth 
backcross generation of F1; 
circle with a cross show selfing; 
BC4F2 the fourth backcross 
generation obtained by selfing 
BC4F1 and GBS, Genotyping-
By-Sequencing
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were selected and backcrossed with Floradur following the 
same procedure described earlier (Fig. 1).

Background selection

Forty-seven polymorphic wheat microsatellite markers 
were selected for the background selection (Supplementary 
Table 1). The selection was made in such a way that the 
polymorphism can be easily detected on a 3% standard aga-
rose gel. PCR conditions for each of these markers were fol-
lowed as described earlier by Röder et al. (1998). Then, the 
background selection was applied to 56 heterozygous BC2F1 
plants. The recurrent parent genome recovery (RpGR) was 
calculated as follows

where RpGR is the recurrent parent genome recovery, HO is 
the number of homozygous markers (Floradur alleles); HE 
is the number of heterozygous markers (alleles).

Genotyping

After checking the zygosity of 90 BC4F2 plants using 
the bht-A1 CAPS marker, all bht-A1 homozygous (n = 23) 
and heterozygous (n = 44) plants were genotyped follow-
ing the novel two-enzyme Genotyping-By-Sequencing 
(GBS) approach for the whole genome (Poland et al. 2012). 
Adapters were trimmed from reads with cutadapt version 
1.8.dev0 (Martin 2011). Trimmed reads were mapped to 
the chromosome-shotgun assemblies of bread wheat cul-
tivar Chinese Spring (The International Wheat Genome 
Sequencing Consortium (IWGSC) 2014) with BWA mem 
version 0.7.12 (Li 2013), converted to BAM format with 
SAMtools (Li et al. 2009) and sorted with Novosort (Novo-
craft Technologies Sdn Bhd, Malaysia, http://www.novoc 
raft.com/). Multi-sample variant calling was performed 
with SAMtools version 0.1.19 (Li 2011). The command 
“mpileup” was used with the parameters “-C50 –DV”. The 
resultant VCF file was filtered with an AWK script provided 
as Text S3 by Mascher et al. (2013). Only bi-allelic SNPs 
were used. Homozygous genotype calls were set to miss-
ing if their coverage was below 1 or their genotype quality 
was below 3. Heterozygous genotype calls were set to miss-
ing if their coverage below 4 or their genotype quality was 
below 10. An SNP was discarded when (1) its quality score 
was below 40, (2) its heterozygosity was above 20%, (3) its 
minor allele frequency was below 10%, or (4) had more than 
66% missing data. Genotype calls were filtered and con-
verted into genotype matrix with an AWK script available 
as Text S3 of Mascher et al. (2013). Chromosomal locations 
and genetic positions were taken from population sequence 
(POPSEQ) data (Chapman et al. 2015). Raw sequence data 

RpGR =
HO + (HE∕2)

Total number of markers
× 100

are available from the European Nucleotide Archive under 
accession PRJEB24999.

Phenotyping of homozygous BC3F2 and BC3F3 
plants

Grains from selfed BC3F1 plants were randomly picked and 
grown as BC3F2 plants on a 96-well tray under greenhouse 
conditions. After 4 weeks of vernalization (at 4 °C) and 
hardening for 1 week (at 15 °C), seedlings were directly 
transplanted into the field characterized by a silty loam soil. 
The distance between rows and plants was 20 and 10 cm, 
respectively. DNA was extracted from each of these plants 
for the foreground selection, i.e., homozygous bht-A1 plants, 
for phenotyping. Following the field evaluation, homozy-
gous progenies from BC3F2 plants, i.e., BC3F3 plants 
were also phenotyped under greenhouse conditions. In both 
environments, the recurrent parent Floradur was used for 
comparison. In total, about 118, i.e., 27 plants at BC3F2 
and 91 plants at BC3F3 generation were evaluated for this 
study. Crop husbandry (fertilization, watering, and pesti-
cides) was applied uniformly to all plants in the field and 
the greenhouse following the recommended rate for wheat 
cultivation as required. For phenotypic data analysis, we 
used unpaired two-tailed Student’s t test to check for trait 
differences among progenies.

Results

Marker‑assisted foreground and background 
selections

At all generations, the bht-A1 CAPS marker was used as 
a diagnostic marker for the selection of the bht-A1 allele 
(Fig. 2a). BG selection was made once at BC2F1 using 47 
polymorphic wheat microsatellite markers (Supplemen-
tary Table 1). Calculated RpGR based on 56 heterozygous 
BC2F1 plants is shown in Fig. 2b. Based on RpGR, five 
plants namely P-69, P-103, P-114, P-126, and P-170 were 
selected to establish five families of the NILs. These plants 
were then backcrossed to Floradur to generate BC3F1 plant 
families. Heterozygous progenies from BC3F1 were further 
backcrossed to Floradur to generate BC4F1 grains for all the 
five NILs families (Fig. 1).

Phenotypic analysis of homozygous BC3F2 
and BC3F3 plants

Unlike the ‘mini-spike’-like structures known to develop 
during genuine spike-branching in TRI 19165, spike-
branching in bht-A1-NILs was reduced to the formation of 
secondary spikelets sharing the same rachis node with that 

http://www.novocraft.com/
http://www.novocraft.com/
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of the primary spikelets forming the so-called supernumer-
ary spikelets (Fig. 3b). This clearly revealed the success-
ful introgression of bht-A1 into the Floradur genome. Thus, 
homozygous bht-A1-NILs were found to carry up to seven 

SS per spike (Fig. 3c). Such reduced phenotypic penetrance 
and expressivity is most likely due, partly, to other branch 
suppressing loci from Floradur located elsewhere in the 
genome and/or environmental effects. The summary of other 

Fig. 2  Marker-assisted foreground selection (a) and background 
selection of BC2F1 based on calculated recurrent parent genome 
recovery (b). FG and BG were based on bht-A1 CAPS marker and 

wheat microsatellite markers, respectively. Individual plant that con-
stituted the five families of NILs is shown in green. RpGR recurrent 
parent genome recovery, FL Floradur

Fig. 3  Spike morphology of the Floradur (a), TRI 19165 (b), Flora-
dur-bht-A1-NIL (c). Arrow indicates secondary spikelets. For clar-
ity, awns were trimmed from TRI 19165. (d) Additional or second-
ary spikelets per spike from Floradur-bht-A1-NILs grown in the field 

(red bars) and greenhouse (black bars) at BC3F2 and BC3F3 genera-
tions, respectively. Error bars indicate mean ± standard deviation. GH 
greenhouse, Fam family, FL Floradur, Avg average
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spike traits from the five plant families of bht-A1-NILs is 
shown in Table 1. Compared to Floradur, the bht-A1-NILs 
had on average more grain-bearing spikelets resulting in 
up to 29% of increased  SDWh, thereby increasing the grain 
number per spike (Table 1). Unlike the known trade-off 
between grain number and TKW (Pinthus and Millet 1978; 
Slafer and Miralles 1993; Gambín and Borrás 2010; Griffiths 
et al. 2015), especially for the spike-branching wheat acces-
sions (Poursarebani et al. 2015), no significant difference 
in TKW between Floradur-bht-A1-NILs and Floradur was 
found, clearly suggesting that the bht-A1 allele is useful for 
the manipulation of spikelet number per spike and poten-
tially for increasing grain yield in wheat. As sink size is 
thought to be one of the yield-limiting factors in wheat (Bor-
ras et al. 2004; Miralles and Slafer 2007; Zhang et al. 2010), 
the Floradur-bht-A1-NILs are similarly an ideal resource for 
further assessing the source–sink interaction. Interestingly, 
tiller number (TN) analysis between Floradur-bht-A1-NILs 
and Floradur was non-significant, suggesting that bht-A1 is 
not involved in shoot branching (Table 1). Thus, the bht-A1 
allele can be utilized in durum wheat breeding.

Genotyping and estimation of introgressed donor 
segment

GBS of 67 BC4F2 plants yielded about 9400 SNP markers 
spanning the whole genome. After removing all redundant 

markers, i.e., markers with the same genetic positions, about 
799 polymorphic markers were selected to estimate the 
introgressed donor segment carrying the bht-A1 allele. The 
genetic position of the markers was adopted from the POP-
SEQ linkage map (Chapman et al. 2015). Distribution of the 
markers across the linkage groups is presented in the Supple-
mentary Table 2. Best 20 NILs with higher RpGR are shown 
in Table 2. Based on the graphical genotypes of the NILs 
(Table 3), the size of the introgressed donor segment ranged 
from 2.28 to 38 cM. P-69-4-4-121 and P-69-4-4-122 from 
Fam1 plants carry the smallest donor fragment (~ 2.28 cM). 
According to the genome sequence assembly of the Chinese 
Spring, Refseq V1.0 (Alaux et al. 2018), markers flanking 
the introgressed fragment, i.e., 2AS_5296611:2363 and 
2AS_5272493:9637 were mapped at position 52,425,262 bp 
and 62,264,948 bp, respectively (Fig. 4). Therefore, the 
size of the shortest donor segment introgressed into bht-A1 
NILs was estimated to be 9,839,686 base pairs. Graphical 
representation of chromosome group 2 for the best plant 
from Fam 1, P-69-4-4-122 is shown in Fig. 4. Graphical 
representation for the remaining chromosomes for P-69-4-
4-122 is shown in Supplementary Figure 1. As expected, 
average whole genome RpGR, i.e., 96.23%, was similar 
to the expected RpGR of 96.88% (Table 2). On average, 
RpGR for chromosomes 2A and 2B was 93.41 and 96.27%, 
respectively. In general, RpGR for chromosomes 2A ranged 
from 82 to 99%. The lowered RpGR for some of these plants 

Table 1  Summary of spike phenotype of Floradur-bht-A1-NILs grown in the field and greenhouse

Field data were collected from homozygous BC3F2 plants (n = 27) of five families along with Floradur (n = 10). Progenies from homozygous 
BC3F2 plants (i.e., BC3F3 plants, n = 91) of the five families were grown and phenotyped in the greenhouse
PH plant height, SL spike length, SDWh spike dry weight at harvest, totSPS the total number of spikelets per spike, GNS grain number per spike, 
TKW thousand kernel weight, TN tiller number at harvest i.e. fertile and non-fertile combined, Fam family
The data represent mean ± SD (standard deviation).The significance level was calculated based on the unpaired two-tailed Student’s t test 
between the family averages with Floradur. *P0.05, **P0.01, and ***P0.001

Environment Trait Family Fam mean Floradur (FL)

Fam1 Fam2 Fam3 Fam4 Fam5

Field (BC3F2) PH 74 ± 6.3 75 ± 5.9 77 ± 5.9 82 ± 3.5 78 ± 3.3 76 ± 5.4 76 ± 3.7ns

SL 7.40 ± 0.4 7.12 ± 0.2 7.17 ± 0.2 7.15 ± 0.1 7.17 ± 0.2 7.19 ± 0.2 6.9 ± 0.2*
SDWh 3.02 ± 0.4 3.07 ± 0.4 3.02 ± 0.7 3.23 ± 0.1 2.85 ± 0.2 3.04 ± 0.4 2.54 ± 0.2**
totSPS 21.8 ± 1.7 18.9 ± 1.1 18.8 ± 3.5 20.4 ± 1.8 19.3 ± 1.4 19.9 ± 1.9 14.5 ± 0.6**
GNS 45.4 ± 6.4 46.7 ± 4.9 47.3 ± 10.9 40.7 ± 7.2 39.7 ± 5.7 43.9 ± 7 39.6 ± 2.9*
TKW 49.6 ± 3.0 47.9 ± 2 48 ± 1.6 53.2 ± 7.2 53.8 ± 3.0 49.8 ± 2.4 48.8 ± 2.9ns

TN 14 ± 4.5 8 ± 1.4 10 ± 1.8 10 ± 2.8 12 ± 3.5 11 ± 4.0 10 ± 4.0ns

GH (BC3F3) PH 62 ± 3.4 65 ± 2.3 66 ± 2.3 67 ± 3.0 62 ± 2.0 64 ± 2.6 63 ± 3.5ns

SL 7.49 ± 0.6 6.71 ± 0.17 6.52 ± 0.3 6.46 ± 0.4 6.96 ± 0.1 6.83 ± 0.3 6.78 ± 0.2ns

SDWh 2.46 ± 0.2 2.74 ± 0.3 2.95 ± 0.4 2.8 ± 0.3 2.63 ± 0.2 2.72 ± 0.3 2.1 ± 0.3***
totSPS 27.6 ± 3.5 22 ± 1.1 23.6 ± 2.4 22.1 ± 1.1 23.8 ± 2.3 23.8 ± 2.1 13.3 ± 1.9***
GNS 47.1 ± 3.8 47.7 ± 4.6 49.2 ± 5.9 46.1 ± 5.5 44.1 ± 4.1 46.9 ± 4.8 37.9 ± 3.7***
TKW 47.1 ± 1.6 42.8 ± 1.3 42.5 ± 2.5 45.8 ± 0.8 43.9 ± 3.2 44.4 ± 1.9 42.6 ± 3.0ns

TN 4.6 ± 0.4 4.1 ± 0.8 4.3 ± 0.6 4.0 ± 0.4 4.5 ± 0.8 4.3 ± 0.6 4.0 ± 0.4ns
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was due to the drag-over-effect attributed to the suppressed 
recombination and marker-assisted selection. Taking all 
together, these results demonstrated that the expected RpGR 
at BC4 generation and one or two more rounds of backcross-
ing might even remove the drag-over-effects from the donor 
parent.

Discussion

Spikelets are the building blocks of the wheat inflorescence, 
also known as the spike. The number and arrangements of 
individual spikelets on the spike dictate the architecture or 
morphology of the spike and critically determines the grain 
yield in wheat. Thus, understanding the genetic basis of 
spike development is key to understand the genetic basis 
of gain yield formation. Due to limited knowledge of genes 
controlling wheat spikelet arrangement, genetic modification 
of spikelet arrangement was not possible until recently. In 
the last few years, genes altering spikelet arrangement have 
been discovered paving ways for the genetic modification of 
the spike architecture in wheat (Boden et al. 2015; Dobro-
volskaya et al. 2015; Poursarebani et al. 2015; Debernardi 
et al. 2017; Greenwood et al. 2017).

The current study aimed to introgress the ‘Miracle wheat’ 
allele bht-A1 into an elite durum wheat variety, Floradur, to 
better understand the effect of altered spikelet arrangement 
in connection with the source–sink balance and grain yield 
formation.

Although spike-branching increases the sink size in wheat 
(Dobrovolskaya et al. 2015; Poursarebani et al. 2015), the 
extremely low spikelet fertility hindered the direct utiliza-
tion of spike-branching wheat accessions for increasing the 
grain yield (USDA 1916; Rawson and Ruwali 1972; Pennell 
and Halloran 1984; Hucl and Fowler 1992). Furthermore, 
the intensity of spike-branching is affected by the environ-
ment; especially by the photoperiod and temperature (Per-
cival 1921; Sharman 1944; Pennell and Halloran 1984a, b). 
Interestingly, unlike the donor parent, TRI 19165, Floradur-
bht-A1-NILs often form supernumerary spikelets thereby 
increasing spikelet and grain number per spike. Such low-
ered expression of spike-branching in the NILs significantly 
reduced the trade-off between spike-branching and spikelet 
fertility/TKW usually seen in the rather extreme ‘Miracle 
wheat’ phenotype (Poursarebani et al. 2015). This clearly 
suggests that a more attenuated phenotypic expression of 
bht-A1 can be used to genetically modify spikelet number 
and spike dry weight in wheat without affecting TKW.

Table 2  Selected Floradur-bht-
A1-NILs based on calculated 
RpGR

Zygosity was determined based on bht-A1 CAPS marker
+/+, homozygous mutant; +/−, heterozygous; n/a, not applicable

Plant ID Family Expected at BC4 Calculated RpGR (%) Zygosity 
(TtBH-
A1)Chr 2A Chr. 2B Whole genome

P-69-4-4-127 Fam1 96.88 90.43 97.86 97.74 +/−
P-69-4-4-126 Fam1 96.88 91.88 95.67 97.10 +/−
P-69-4-4-121 Fam1 96.88 89.92 95.94 96.38 +/−
P-69-4-4-122 Fam1 96.88 82.05 97.28 96.37 +/+
P-103-16-34-31 Fam2 96.88 95.28 98.08 97.77 +/+
P-114-27-73-69 Fam3 96.88 96.47 99.47 96.92 +/−
P-114-27-68-178 Fam3 96.88 96.22 99.25 96.51 +/−
P-114-27-68-176 Fam3 96.88 92.70 99.41 96.42 +/−
P-114-27-73-181 Fam3 96.88 96.03 99.47 96.32 +/−
P-114-27-73-192 Fam3 96.88 96.22 98.82 96.31 +/−
P-114-27-73-189 Fam3 96.88 95.21 97.33 95.58 +/−
P-114-27-73-71 Fam3 96.88 95.47 97.76 95.21 +/−
P-114-27-73-61 Fam3 96.88 99.12 98.99 95.19 +/−
P-114-27-68-53 Fam3 96.88 95.47 98.40 95.02 +/−
P-114-27-73-62 Fam3 96.88 93.39 96.63 94.56 +/−
P-126-45-103-81 Fam4 96.88 96.35 99.57 95.27 +/−
P-170-50-121-107 Fam5 96.88 89.92 86.81 97.34 +/−
P-170-50-121-103 Fam5 96.88 89.92 89.05 97.24 +/+
P-170-51-130-115 Fam5 96.88 98.55 99.15 96.14 +/−
P-170-50-121-99 Fam5 96.88 87.53 80.40 95.11 +/+

Average 96.88 93.41 96.27 96.23 n/a
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Carbon assimilation and partitioning to the developing 
inflorescence critically determine crop yield and productivity 
(Satoh-Nagasawa et al. 2006; Lawlor and Paul 2014; Sosso 
et al. 2015; White et al. 2016). The sink capacity of the 
spike, namely the number of spikelets per spike, the number 
of grains per spikelet (spikelet fertility) and grain weight 
(dry matter accumulation in each grain) strongly affect grain 
yield in wheat. Hence, sink strength was suggested to be a 
critical yield-limiting factor (Fischer 1985; Slafer and Savin 
1994; Richards 1996; Borrás et al. 2004; Reynolds et al. 
2007; Foulkes et al. 2011). As sink strength strongly dictates 
activities in the source and assimilate partitioning to the sink 
organs (Yu et al. 2015), it is strongly believed that increas-
ing sink strength and activity are of major interest. Previous 
studies attempted to better understand to which extent source 
and/or sink limited wheat yields (Blade and Baker 1991; 
Slafer and Savin 1994; Cruz-Aguado et al. 1999; Serrago 

et al. 2013); however, results were rather inconclusive which 
might suggest that both source and sink might co-limit yield 
formation in wheat. The communication between the source 
and sink organs is regulated by a complex signaling network 
involving sugars, hormones, and environmental factors (Yu 
et al. 2015).

In this regard, a limited number of genes regulating the 
source–sink communication has been characterized (Aoki 
et al. 2002; Martinez-Barajas et al. 2011). Thus, modern 
molecular genetic approaches are required for a deeper 
understanding of the source–sink relationship in wheat. 
Because of the position of the secondary spikelets in relation 
to the primary spikelets, both are arranged laterally sharing 
the same rachis node, Floradur-bht-A1-NILs are important 
genetic resources to elucidate the mechanics of vascular tis-
sue architecture and assimilate partitioning towards wheat 
spikelets.

Table 3  Graphical genotypes of selected BC4F2 plants based on markers from chromosome 2A
Marker ID Position (cM) RP DP bht-A1- NILs
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ur
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2AS_5273839:2891 0.00 A B A A A A A A A A A A A A A A A A A A A A
2AS_5308598:24776 1.14 A B A A A A A A A A A A A A A A A A A A A A
2AS_5307231:8426 3.41 A B A A A A A A A A A A A A A A A A A A A A
2AS_5165946:859 3.98 A B A A A A A A A A A A A A A A A A A A A A
2AS_5241920:2176 4.55 A B A A A A A A A A A A A A A A A A A A A A
2AS_5307157:4703 10.25 A B A A A A A A A A A A A A A A A A A A A A
2AS_5218468:3257 11.39 A B A B B B A A A A A A B A B B - A A B B B
2AS_5234045:1170 14.81 A B A A A A A A A A A A A A A A A A A A A A
2AS_5304757:555 19.36 A B A A A A A H H B H A B - A A A H A A A A
2AS_5210238:293 20.49 A B A A A A A H H B H A B H A A H H A A A A
2AS_5191197:1496 29.60 A B A A A A A H H B H A H H A A - H A A A A
2AS_5261595:7521 38.70 A B A A A A A H H B H H H H A H H H A A A A
2AS_5211843:3921 39.84 A B A A A A A H H B H H H H A H H H A A A A
2AS_5222631:6886 40.98 A B A A A A B H H B H H H H A H B H A A A A
2AS_5302874:2701 41.55 A B A A A A B H H B H H H H A H H H A A A A
2AS_5203328:4893 48.98 A B A A A A B H H B H H H H A H H H B H H B
2AS_5296611:2363 50.11 A B A A A A B H H B H H H H A H H H B H H B
2AS_5272493:9637 52.39 A B H H H B B H H B H H H H H H H H H H H B
2AL_4305348:1350 58.09 A B H H A A A A H - A A - H A A A H A H - A
2AL_6396518:3194 59.23 A B B A H H A A A A A A A A A A A A A A A A
2AL_6371388:8162 61.53 A B A A A A A A A A A A A A A A A A A A A A
2AL_6405678:3964 66.14 A B A A A A A A A A A A A A A A A A A A A A
2AL_2738889:7610 70.81 A B A A A A A A A A A A A A A A A A A A A A
2AL_6362857:1852 73.18 A B A A A A A A A A A A A A A A A A A A A A
2AL_902056:1293 74.32 A B A A A A A A A A A A A A A A A A A A A A
2AL_6434194:5615 76.02 A B A A A A A A A A A A A A A A A A A A A A
2AL_6436614:10508 76.59 A B A A A A A A A A A A A A A A A A A A A A
2AL_39533:1795 81.15 A B A A A A A A A A A A A A A A A A A A A A
2AL_6360337:7083 83.42 A B A A A A A A A A A A A A A A A A A A A A
2AL_6363525:1891 83.99 A B A A A A A A A A A A A A A A A A A A A A
2AL_6436455:8936 85.13 A B A A A A A A A A A A A A A A A A A A A A
2AL_6376905:2965 85.70 A B A A A A A A A A A A A A A A A A A A A A
2AL_6340959:4778 86.83 A B A A A A A A A A A A A A A A A A A A A A
2AL_6436403:16131 87.97 A B A A A A A A A A A A A A A A A A A A A A
2AL_996838:1288 88.54 A B A A A A A A A A A A A A A A A A A A A A
2AL_6330385:2031 90.24 A B A A A A A A A A A A A A A A A A A A A A
2AL_6395361:1966 90.81 A B A A A A A A A A A A A A A A A A A A A A
2AL_6403679:9419 91.95 A B A A A A A A A A A A A A A A A A A A A A
2AL_6403679:9485 91.95 A B A A A - A A A A A B A A A B B A A A A B
2AL_660116:1742 92.52 A B A A A A A A A A A A A A A A A A A A A A

As shown, three plants namely P-69-4-4-121, P-69-4-4-122, and P-114-27-73-61 carry the smallest donor fragment carrying bht-A1
Marker information: A, Floradur; B, TRI19165; H, Heterozygous; dash (–), missing markers
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The tremendous harvest index increase after the intro-
duction of the semi-dwarfing allele during the green revo-
lution was due, partly, to the diversion of more assimi-
lates to the developing spike which otherwise would 
be invested in the growth and development of the culm 
(Flintham et al. 1997; Khush 2001). Interestingly, Flo-
radur-bht-A1-NILs are semi-dwarf carrying the reduced 
plant height gene (Rht-B1), which makes them an excellent 
wheat ideotype for studying the physiological and genetic 
basis of source–sink interaction and yield formation in 
wheat. Hence, Floradur-bht-A1-NILs are important wheat 
genetic resources not only for increasing grain number per 
spike, but also, for the systematic discovery of TtBH-A1 
downstream target genes for the detailed understanding 
of the molecular genetics of wheat spike morphogen-
esis. Our study further suggests genetic modification of 

spikelet number as an entry point for improving yield, 
most interestingly and also unexpectedly without the 
trade-off effects on TKW. Therefore, despite the negative 
relationship between grain number and grain weight in 
wheat, this work illustrates the possibilities of increasing 
grain number per spike without significantly affecting the 
grain weight. However, whether this genetic material, or 
its derivatives, will have any yield advantages under real 
world conditions is still to be shown in multi-year and 
multi-location field evaluations. Nevertheless, as the sink 
size in Floradur-bht-A1-NILs is genetically controlled, 
Floradur-bht-A1-NILs are also beneficial for understand-
ing the physiological and molecular basis of source–sink 
interaction for a clearer picture of the complex signaling 
network regulating sink strength and source activities in 
wheat.

Fig. 4  Graphical representation of chromosome group 2 for the best 
plant P-69-4-4-122. Markers with a purple font are those markers 
flanking the donor segment carrying the bht-A1 allele. Names and the 
corresponding positions (cM) of markers are indicated on the right 
and left sides of the chromosome, respectively. The physical genomic 
position of markers flanking the introgressed segment is shown below 

each marker. The position was according to the genome sequence 
assembly of the Chinese Spring, Refseq V1.0. Red bar demarcates the 
centromeric region. The blue portion of the chromosome indicates 
genome of the recurrent parent (Floradur), purple indicates batches of 
donor segments, and yellow indicates heterozygous region
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