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Abstract
Nucleosome is a central element of eukaryotic chromatin, which composes of histone proteins and DNA molecules. It per-
forms vital roles in many eukaryotic intra-nuclear processes, for instance, chromatin structure and transcriptional regulation 
formation. Identification of nucleosome positioning via wet lab is difficult; so, the attention is diverted towards the accurate 
intelligent automated prediction. In this regard, a novel intelligent automated model “iNuc-ext-PseTNC” is developed to 
identify the nucleosome positioning in genomes accurately. In this predictor, the sequences of DNA are mathematically 
represented by two different discrete feature extraction techniques, namely pseudo-tri-nucleotide composition (PseTNC) 
and pseudo-di-nucleotide composition. Several contemporary machine learning algorithms were examined. Further, the 
predictions of individual classifiers were integrated through an evolutionary genetic algorithm. The success rates of the 
ensemble model are higher than individual classifiers. After analyzing the prediction results, it is noticed that iNuc-ext-
PseTNC model has achieved better performance in combination with PseTNC feature space, which are 94.3%, 93.14%, and 
88.60% of accuracies using six-fold cross-validation test for the three benchmark datasets S1, S2, and S3, respectively. The 
achieved outcomes exposed that the results of iNuc-ext-PseTNC model are prominent compared to the existing methods 
so far notifiable in the literature. It is ascertained that the proposed model might be more fruitful and a practical tool for 
rudimentary academia and research.

Keywords DNA · SVM · GA · Tri-nucleotide composition

Introduction

Cell is the rudimentary unit of all living organisms, which 
may be prokaryotic or eukaryotic. It accomplishes differ-
ent functions such as reproduction, respiration, transporta-
tion of molecules, and identity maintenance. Cell consti-
tutes nucleus, Golgi complex, mitochondria, endoplasmic 
reticulum, ribosomes, etc. Nucleus is a membrane-enclosed 
organelle, consisting of genetic material in the form of long 
DNA molecules (Athey et al. 1990; Mavrich et al. 2008a, 
c). DNA organizes in a supercoiling structure known as 
chromatin. Nucleosome is composed of histone proteins 

and DNA molecules, which is considered the basic unit of 
eukaryotic chromatin (Thoma et al. 1979). The core histone 
proteins contain four sub-units, namely H2A, H2B, H3 and 
H4; however, the linker histone is H1. Chromatin DNA is 
of two types: one is core DNA, which is a double helical 
DNA strand about 146 bp, coils around the core histones in 
a left-handed super-helix form, and the other is linker DNA 
(Berbenetz et al. 2010; Schwartz et al. 2009). Linker DNA 
is a short sequence of 20–60 bp through which nucleosomes 
are attached to each other (Athey et al. 1990; Mavrich et al. 
2008a, b). Thus, in nucleosome, the final length of DNA 
becomes 166–167 bp, which may be two full turns (Thoma 
et al. 1979) known as chromatosome. The histone octamer 
around the packaging of DNA performs significant roles 
in biological processes, namely RNA splicing, DNA rep-
lication, repair mechanisms, and transcriptional control 
(Schwartz et al. 2009; Berbenetz et al. 2010; Yasuda et al. 
2005). Various traditional methods such as nuclear mag-
netic resonance (NMR), filter binding assays, and X-ray 
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crystallography were carried out for the recognition of 
DNA and proteins (Gabdank et al. 2010; Chen et al. 2014; 
Xi et al. 2010; Eddy 1996; Segal et al. 2006; Field et al. 
2008). Owing to a confined number of genomic and pro-
teomic structure availability, time, and lack of laboratory 
equipment, the traditional methods remained unsuccessful. 
Apart from that, a huge number of biological sequences 
are reported in databases owing to the fast technological 
advancement in the post-genomic era. However, the iden-
tification of these unprocessed data is a challenging job for 
the researchers in the field of bioinformatics and proteom-
ics. Viewing the implications of traditional approaches, 
the investigators have diverted their attention towards the 
computational methods by utilizing contemporary machine 
learning methods (Field et al. 2008). Nucleosome position-
ing in genomes is identified by performing various stud-
ies (Peckham et al. 2007; Satchwell et al. 1986; Yuan et al. 
2005; Goñi et al. 2008; Tahir and Hayat 2016; Yuan and Liu 
2008; Tolstorukov et al. 2008; Nikolaou et al. 2010). Hidden 
Markov model (HMM) was applied to capture the central 
patterns from the provided data (Stolz and Bishop 2010). 
Segal et al. introduced a probabilistic model by calculating 
the probabilities of nucleotides and higher rank dependen-
cies among nucleotides (Thoma et al. 1979). Several k-mer 
methods were utilized by Kaplan et al. (2009) and Field 
et al. (2008) for improving the success rates of the devel-
oped models (Goñi et al. 2008; Isami et al. 2015). Likewise, 
Xi et al. introduced a novel duration hidden Markov model 
(dHMM) by executing the linker DNA length as well as 
nucleosome positions to collect nucleosome positioning 
information (Nikolaou et al. 2010). In a sequel, Satchwell 
et al. introduced di-nucleotide and tri-nucleotide compo-
sition for the identification of nucleosome positioning in 
genome (Awazu 2017). Furthermore, SVM in combination 
with sequence-based features was used by Peckham et al. to 
analyze some oligo-nucleotides implicated in nucleosome 
formation and exclusion (Satchwell et al. 1986; Liu et al. 
2015a).

“iNuc-PseKNC” predictor was developed by Gou et al. 
for the discrimination of nucleosome positioning in genomes 
(Peckham et al. 2007). Pseudo k-tuple nucleotide compo-
sition utilized six different DNA local structural physico-
chemical properties for expressing DNA sequences (Peck-
ham et al. 2007).

The notion of pseudo-amino acid (PseAA) composition 
was broadly implemented in various computational models. 
It was further extended to DNA representation and intro-
duced several predictors, namely repDNA (Li et al. 2015), 
Pse-in-One (YongE and GaoShan 2015), and iDNA-KACC 
(Xiang et al. 2016). Besides, some predictors such as iRS-
pot-EL (Dong et al. 2016) and iDHS-EL (Xiao et al. 2013) 
were also established by Liu et al. The concept of PseKNC 
was successfully implemented and illustrated in RNA/DNA, 

namely identifying nucleosome (Liu et al. 2015d), predicting 
splicing site, identifying translation initiation site (Che et al. 
2016), predicting recombination spots (Liu et al. 2015d; 
Luo et al. 2016; Tian et al. 2015), predicting promoters 
(Liu et al. 2015d), identifying origin of replication (Li et al. 
2015), identifying RNA and DNA modification (Yong and 
GaoShan 2015; Xiang et al. 2016), and others (Dong et al. 
2016). According to previous research studies (Guo et al. 
2014; Xiao et al. 2013; Chen et al. 2013; Liu et al. 2014a; 
Qiu et al. 2014; Xu et al. 2013a, b), a precise, reliable, and 
efficient predictor will be established for a biological sys-
tem by accomplishing Chou’s 5-steps. They are defined as 
follows: (1) to choose or design a valid dataset to train and 
test the model effectively; (2) to mathematically express the 
samples in such way that can truly represent the motif of 
target class; (3) to develop or introduce an efficient algo-
rithm for operational engine; (4) to apply a cross-validation 
test for evaluating the outcome of model; and (5) to develop 
a web-predictor for the model that can be easily accessible 
to the public.

Rest of the paper is structured as follows: the next sec-
tion demonstrates materials and methods, “Results” section 
presents the performance of supervised algorithms followed 
by “Discussion” section and finally conclusion is reported 
at the end of the paper.

Methods

Datasets

In this study, we have targeted three different species such as 
D. melanogaster, C. elegans, and H. sapiens. The benchmark 
datasets for these species were selected from Guo et al. 2014. 
These datasets can be mathematically expressed as

In the above equations, S1 , S2 and S3 represent the bench-
mark datasets for C. elegans, D. melanogaster, and H. sapiens, 
respectively. The S1 benchmark dataset contains 4573 samples, 
of which 2273 belong to S+

1
 nucleosome-forming samples and 

2300 to S−
1
 nucleosome-inhabiting samples. The S2 benchmark 

dataset contains 5175 samples, of which 2567 belong to S+
2
 

nucleosome forming and 2608 to S−
2
 nucleosome inhabiting. 

Similarly, S3 represents the third benchmark dataset comprised 
of 5750 samples, of which 2900 belong to S+

3
 nucleosome-

forming and 2850 to S−
3
 nucleosome-inhabiting samples. The U 

symbol denotes the union of two sets. By removing redundant 

(1)S1 = S+
1
+ S−

1
,

(2)S2 = S+
2
+ S−

2
,

(3)S3 = S+
3
+ S−

3
.
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samples from benchmark datasets, the CD-HIT software was 
applied, with a cutoff threshold value of 80% (Guo et al. 2014).

Feature extraction techniques

Suppose S is the sequence of DNA with L nucleic acid residues 
as shown below:

In the above equation, N1 denotes the residue of nucleic 
acid at the first position in a sequence, N2 denotes the residue 
of nucleic acid at the second position in a sequence and NL 
denotes the last residue of the nucleic acid in a DNA sequence 
at position L (Ioshikhes et al. 1996). These nucleotides are 
expressed as

where the value of i = 1, 2, …, L.
DNA sequence is numerically expressed by computing the 

frequency of each nucleotide, known as nucleic acid composi-
tion (NAC). It can be presented as below:

In the above equation, ƒ(A) indicates the frequency of ade-
nine, ƒ(C) shows the frequency of cytosine and so on in the 
sequence of DNA; however, the T symbol indicates the trans-
pose operator. Conventional NAC is a simple discrete method, 
but it does not maintain information regarding sequence order 
of nucleotides. Consequently, correlation factors among 
nucleotides are totally ignored. Viewing at the significance of 
correlation factors and local information, the idea of pseudo-
amino acid (PseAA) composition was utilized and took place 
nearly all the fields of computational proteomics and genomics 
(Chou 2001a, 2005; Cao et al. 2013; Liu et al. 2014b; Chen 
and Li 2013). Subsequently, the PseAA composition idea has 
been extended to handle the sequences of RNA/DNA in the 
nature of PseKNC.

In this article, we have applied two different discrete fea-
ture extraction methods, namely PseDNC and PseTNC to 
collect variant and prominent numerical descriptors from the 
sequences of DNA.

Pseudo-di-nucleotide composition

PseDNC expresses a DNA sequence by making a pair of two 
nucleotides and then calculates the frequency of each pair. Let 
us suppose, N1N2 is the first pair of di-nucleotide, N2N3 is the 
second pair of di-nucleotide, and finally, NL−1NL is the last pair 
of di-nucleotide. Subsequently, 4 × 4 = 16D feature vector is 
formed. It can be numerically represented as follows:

(4)S = N1N2N3N4 …NL.

Ni ∈ {G(guanine), C(cyto sin e), A(adenine), T(thymine)},

(5)S =
[

f (A), f (C), f (T), f (G)
]T
.

(6)S =
[

f (AA)f (AG)f (AC)… f (TT)
]T
,

In the above equations, the T symbol represents the 
transpose operator, f di

1
= f (AA) is the frequency of AA pair, 

f di
2

= f (AC) is the frequency of AC pair, and f di
4

= f (AT) is 
the frequency AT pair in the sequence of DNA and so on.

Pseudo-tri-nucleotide composition

PseTNC expresses the sequence of DNA by combining three 
nucleotides and then computes the occurrence frequency of 
three consecutive nucleotide pair. For example, N1N2N3 is 
the first component of tri-nucleotide, N2N3N4 is the second 
component of tri-nucleotide, and so on, while the last com-
ponent of tri-nucleotide is NL−2NL−1NL; accordingly, the cor-
responding feature vector 4 × 4 × 4 = 64D is generated. The 
PseTNC is mathematically expressed as

where f 3-tuple
1

 = f (AAA) is the frequency of AAA  component, 
f
3-tuple

4
 = f (AAG) is the frequency of AAG  component, while 

f
3-tuple

64
 = f (TTT) is the frequency of TTT  component in the 

sequence of DNA.

Framework of proposed predictor

In this research, a novel predictor was introduced, namely 
iNuc-ext-PseTNC for the discrimination of nucleosome 
positioning in genomes. Two feature extraction methods: 
PseDNC and PseTNC are utilized for numerical representa-
tion of DNA sequences. Three distant natures of classifiers 
namely: K-nearest neighbor (KNN), probabilistic neural 
network (PNN) and support vector machine (SVM) are exe-
cuted. The predicted outcomes of the individual classifier 
were then fused to develop an ensemble model “iNuc-ext-
PseTNC”. The developed model shows outstanding perfor-
mance compared to the current state of arts in the literature, 
so far. The framework of the proposed prediction ensemble 
model has been shown in Fig. 1.

Classification algorithms

In pattern recognition and machine learning, classification 
is a supervised learning, in which a novel observation is 
recognized as already defined target classes on the basis of 
a training dataset. The process of classification is accom-
plished in two steps: training and testing. In the training step, 
the pattern of the pre-defined classes is memorized from the 
provided data. In the testing step, the new observation is 

(7)S =
[

f di
1
, f di
2
, f di
3
… f di

16

]T
.

(8)S =
[

f (AAA), f (AAT), f (AAC), f (AAG),… , f (TTT)
]T
,

(9)S =

[

f
3-tuple

1
, f

3-tuple

2
f
3-tuple

3
f
3-tuple

4
… f

3-tuple

64

]T

,
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identified on the basis memorized pattern. In this study, we 
have applied KNN, PNN, and SVM classification algorithms 
(Guo et al. 2014; Tahir and Hayat 2016; Hayat and Khan 
2012; Kabir and Hayat 2016).

Ensemble classification

In the last few decades, researchers have diverted their atten-
tion from individual classifier to the concept of ensemble 
classification to reduce prediction error and broadly utilize 
for signal peptide prediction (Chou and Shen 2007c), pre-
dicting protein subcellular location (Chou and Shen 2007a), 
for enzyme subfamily prediction (Chou 2005) and predicting 
subcellular location (Chou and Shen 2007b; Zhang et al. 
2015b, 2017; Li et al. 2016). During the classification pro-
cess, the predicted outcome of each classifier is varied and 
can yield different errors. However, when the prediction of 
each classifier is merged, the classification errors are mini-
mized because the error of one classifier is recompensed by 
another classifier (Hayat and Khan 2012; Zhang et al. 2012, 
2015, 2016). The ensemble classification fuses the predic-
tion of various classifiers and tries to minimize the vari-
ance instigated in these individual classifiers. In this study, 
various classifiers, namely KNN, PNN, and SVM are used. 
First, a classifier is trained and the prediction is noted. The 

predictions of each classifier are then fused to develop the 
ensemble model (Kabir and Hayat 2016). It can be math-
ematically expressed as below:

In the above equation, the ensemble model is represented 
by EnsC and the symbol ⊕ represents the combination 
operator.

where C1, C2 and C3 are the individual classifiers; S1 and S2 
represent the two classes of nucleosome forming and nucleo-
some inhabiting.

where

Outcome of the ensemble model adopting GA is gener-
ated as

where GAEnsC is the outcome of the ensemble model, Max 
represents the maximum output, and x1, x2, and x3 are the 
optimum weight of the individual classifiers.

Metrics for measuring prediction performance

In the statistical prediction model, the fundamental task 
is the partition of provided data into training and testing 
subsets. In the literature, cross-validation test is extensively 
applied for evaluating the quality and effectiveness of the 
developed model. Sub-sampling or K-fold, self-consistency, 
independent dataset, and jackknife tests are the types of the 
cross-validation test. Here, six-fold cross-validation test is 
applied, in which the data are divided into six-fold, where 
onefold is used for testing and the rest of folds are utilized 
for the training process. The same process is repeated six 
times and finally, the outcome is yielded on the basis of aver-
age. The metrics for measuring the prediction performance 
are mathematically expressed as (Manavalan et al. 2018; 
Liu et al. 2015c, 2016a, 2017c, 2018; Hayat and Tahir 2015; 
Ahmad et al. 2017; Ehsan et al. 2018; Feng et al. 2018; 
Cheng et al. 2017a, b, c, d, 2018; Xiao et al. 2017, 2018)

(10)EnsC = KNN⊕ SVM⊕ PNN.

(11){C1,C2,C3} ∈ {S1, S2},

(12)Yj =

3
∑

i=1

�(CiSi), where (j = 1, 2),

(13)�(CiSi) =

{

1 ifCi ∈ Sj

0 otherwise

}

.

(14)GAEnsC = Max{x1y1, x2y2, x3y3},

(15)Specificity =
TN

FP + TN
× 100,

(16)Sensitivity =
TP

FN + TP
× 100,

Fig. 1  The framework of iNuc-GA-PseTNC
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Equations (15–18) are widely utilized to compute the pre-
diction of classifiers; however, in some cases, these equations 
are not suitable for biologists, because of the lack of intuitive-
ness. In this study, we have used the following equations to 
solve this complication (Schwartz et al. 2009; Xu et al. 2013a, 
2014; Chou 2001b; Chen et al. 2013a, 2016, 2017; Lin et al. 
2014; Jia et al. 2016; Zhang et al. 2016; Liu et al. 2016c, 
2017a,b; Feng et al. 2017):

(17)Accuracy =
TN + TP

FP + TN + TP + FN
× 100,

(18)

MCC =
TN × TP − FN × FP

√

(TN + FP)(TP + FN)(TN + FN)(TP + FP)
.

(19)Sensitivity = 1 −
Z+
−

Z+
,

(20)Specificity = 1 −
Z−
+

Z−
,

(21)Accuracy = 1 −
Z−
+
+ Z+

−

Z− + Z+
,

(22)MCC =

1 −
(

Z−
+
+Z+

−

Z−+Z+

)

√

(

1 +
(

Z−
++Z

+
−

Z+

))(

1 +
(

Z−
++Z

+
−

Z−

))

.

In the above equations, Z− denotes the whole number of 
the true nucleosome-inhibiting sample while Z+ signifies 
the whole number of true nucleosome forming, whereas 
Z−
+
 represents the whole number of nucleosome inhibiting 

predicted incorrectly while Z+
−

 shows the whole number of 
nucleosome forming predicted incorrectly.

Results

The success rates of two feature spaces are empirically ana-
lyzed and performance comparisons have been drawn as 
well.

Performance comparison of classifiers using PseDNC 
feature space

Tables 1, 2 and 3 present the experimental results of indi-
vidual and ensemble classifiers for the three datasets S1 , S2 , 
and S3 . Among the individual classifiers, PNN has obtained 
an efficient result for dataset S1 on the value of spread = 4.51, 
whereas SVM has yielded the higher outcomes for data-
set S2 on the value of cost function (c = 1.33 and gamma 
( g = 0.0025)) and again PNN classifier has achieved an effi-
cient result for dataset S3 on the value of spread = 2). After 
that, the individual classifiers or learner hypotheses predic-
tion is combined through optimization technique GA. GA-
based ensemble model achieved efficient outcome compared 
to individuals. Besides, accuracy, specificity, sensitivity, 

Table 1  Success rates of 
classification algorithms on 
PseDNC and PseTNC using 
dataset S1

Feature space Hypothesis Accuracy (%) Sensitivity (%) Specificity (%) MCC

PseDNC KNN 74.02 80.68 67.43 0.485
PNN 74.61 83.94 65.39 0.501
SVM 72.44 84.64 60.39 0.463
GAEnsC 81.76 86.89 76.68 0.642

PseTNC KNN 84.91 90.36 79.52 0.702
PNN 85.74 91.37 80.17 0.719
SVM 86.33 89.04 83.65 0.727
GAEnsC 94.35 95.96 92.76 0.888

Table 2  Success rates of 
classification algorithms on 
PseDNC and PseTNC using 
dataset S2

Feature space Hypothesis Accuracy (%) Sensitivity (%) Specificity (%) MCC

PseDNC KNN 80.65 85.82 75.57 0.616
PNN 81.29 88.11 74.57 0.632
SVM 82.57 88.11 77.10 0.655
GAEnsC 90.37 92.87 87.92 0.809

PseTNC KNN 83.84 89.55 78.22 0.681
PNN 84.05 90.65 77.56 0.687
SVM 85.73 88.93 82.59 0.716
GAEnsC 93.14 94.97 91.33 0.864
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and MCC are employed to illustrate the high strength of 
GAEnsC. The accuracy of GAEnsC using PseDNC is shown 
in Figs. 2, 3 and 4.

Performance comparison of classifiers using PseTNC 
feature space

Tables 1, 2 and 3 show the experimental results of individual 
and ensemble classifiers for the three datasets S1 , S2 , and S3 
using PseTNC feature spaces. SVM has obtained promising 
results for all the three datasets S1 , S2 , and S3 on the value 
of cost function (c = 1.25 and gamma (g = 0.0035)). The 
success rate of GA-based ensemble model is quite efficient 
compared to individual classifiers. The accuracy of GAEnsC 
using PseTNC feature space is illustrated in Figs. 5, 6 and 7.

Performance comparison with other methods

Our proposed predictor is also compared with other exist-
ing methods: 3LS (Awazu 2017), iNuc-STNC (Tahir and 
Hayat 2016), and iNuc-PseKNC (Guo et al. 2014) on the 
same benchmark datasets. Table 4 demonstrates that our 
proposed iNuc-ext-PseTNC model has obtained efficient 
outcomes compared to existing methods. The experimen-
tal outcomes proved that the success rates of GA-based 
ensemble model are more efficient. This success has been 
ascribed with optimization-based ensemble classification 
and high variant features of PseTNC.

Table 3  Success rates of 
classification algorithms on 
PseDNC and PseTNC using 
dataset S3

Feature space Hypothesis Accuracy (%) Sensitivity (%) Specificity (%) MCC

PseDNC KNN 73.58 73.89 73.26 0.471
PNN 74.05 69.96 78.21 0.483
SVM 72.99 59.75 86.45 0.479
GAEnsC 82.78 79.37 86.25 0.659

PseTNC KNN 76.97 80.20 73.68 0.540
PNN 77.68 77.58 77.78 0.553
SVM 80.60 77.79 83.47 0.613
GAEnsC 88.60 88.58 88.63 0.772

Fig. 2  The performance of 
GAEnsC PseDNC using S1
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Fig. 3  The performance of 
GAEnsC PseDNC using S2

Fig. 4  The performance of 
GAEnsC PseDNC using S3
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Fig. 5  The performance of 
GAEnsC PseTNC using S1

Fig. 6  The performance of 
GAEnsC PseTNC using S2
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Discussion

In this article, a predictor “iNuc-ext-PseTNC” is proposed 
for the identification of nucleosome positioning. The 
patterns are collected using PseDNC and PseTNC from 
protein sequences. Contemporary machine learning algo-
rithms are applied to correctly identify nucleosome posi-
tioning in genomes. The empirical results explored that the 
pair of two nucleotides (PseDNC) did not clearly discern 

the pattern of nucleosome positioning compared to the pair 
of three nucleotides (PseTNC). It means that the sequence 
order information has more significance in identifying the 
motif of nucleosome positioning in genomes. Despite the 
substantial results of SVM in the combination of PseTNC 
feature space, the desired outcomes are not achieved. To 
obtain the desired outcomes, the notion of ensemble clas-
sification is introduced. The ensemble process is carried 
out through bio-inspired evolutionary approach genetic 
algorithm (GA). After combining the predicted outcome 

Fig. 7  The performance of 
GAEnsC PseTNC using S3

Table 4  Comparison of the iNuc-ext-PseTNC predictor with other methods

Dataset Species Method Accuracy (%) Sensitivity (%) Specificity (%) MCC

S1 H. sapiens iNuc-ext-PseTNC 94.35 95.96 92.76 0.88
3LS (Tian et al. 2015) 90.01 91.69 88.35 0.80
iNuc-STNC (Liu et al. 2016b) 87.60 89.31 85.91 0.75
iNuc-PseKNC (Peckham et al. 2007) 86.27 87.86 84.70 0.73

S2 C. elegans iNuc-ext-PseTNC 93.14 94.97 91.33 0.86
3LS (Tian et al. 2015) 87.86 86.54 89.21 0.75
iNuc-STNC (Liu et al. 2016b) 88.62 91.62 86.66 0.77
iNuc-PseKNC (Peckham et al. 2007) 86.90 90.30 83.55 0.74

S3 D. melanogaster iNuc-ext-PseTNC 88.60 88.58 88.63 0.77
3LS (Tian et al. 2015) 83.41 84.07 82.74 0.66
iNuc-STNC (Liu et al. 2016b) 81.67 79.76 83.61 0.63
iNuc-PseKNC (Peckham et al. 2007) 79.77 78.31 81.65 0.60
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of each learner through GA, consequently, outstanding 
results have been obtained, which are not only higher than 
individual learners but also from existing models in the 
works of literature, so far.

Conclusion

In this study, iNuc-ext-PseTNC predictor is proposed for the 
prediction of nucleosome positioning in genomes. In this 
predictor, two discrete feature extraction methods namely: 
PseDNC and PseTNC are used for the formulation of DNA 
sequences. The extracted feature spaces are provided to 
different classifiers such as KNN, SVM, and PNN to com-
prehend the pattern of nucleosome positioning in genomes. 
After analyzing the success rates of the individual prediction 
model, the result of the single classifiers is fused through the 
GA optimization approach. GA-based ensemble predictor 
has achieved efficient outcomes than that of the individual 
classifiers. This significant success has been achieved on 
account of highly discriminated features of PseTNC and 
GA-based optimization method. It is discovered that “iNuc-
ext-PseTNC” model might be helpful in drug-related appli-
cations. Several recent papers demonstrated that (Guo et al. 
2014; Liu et al. 2015a, c; Lin et al. 2014; Levitsky 2004; 
Chen et al. 2015) user-friendly and publicly accessible web 
servers show future direction for constructing practically 
more useful models. Therefore, we shall make efforts in our 
future work to provide a web server for the computational 
method presented in this paper since doing so will signifi-
cantly enhance its impact as revealed in two comprehensive 
review papers (Chou 2015, 2017).
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