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Abstract
Aflatoxins are toxic secondary metabolites produced by members of the genus Aspergillus, most notably A. flavus. Non-
aflatoxigenic strains of A. flavus are commonly used for biocontrol of the aflatoxigenic strains to reduce aflatoxins in corn, 
cotton, peanuts and tree nuts. However, genomic differences between aflatoxigenic strains and non-aflatoxigenic strains have 
not been reported in detail, though such differences may further elucidate the evolutionary histories of certain biocontrol 
strains and help guide development of other useful strains. We recently reported the genome and transcriptome sequencing 
of A. flavus WRRL 1519, a strain isolated from almond that does not produce aflatoxins or cyclopiazonic acid due to dele-
tions in the biosynthetic gene clusters. Continued bioinformatics analyses focused on comparing strain WRRL 1519 to the 
aflatoxigenic strain NRRL 3357. The genome assembly of strain WRRL 1519 was improved by anchoring 84 of the 127 
scaffolds to the putative nuclear chromosomes of strain NRRL 3357. The five largest areas of extrachromosomal mismatches 
observed between WRRL 1519 and NRRL 3357 were not similar to any of the mismatches that were observed with pairwise 
comparisons of NRRL 3357 to other non-aflatoxigenic strains NRRL 21882, NRRL 30797 or NRRL 18543. Comparisons of 
predicted secondary metabolite gene clusters uncovered two other biosynthetic gene clusters in which strain WRRL 1519 had 
large deletions compared to the homologous clusters in NRRL 3357. Additionally, there was a marked overrepresentation of 
repetitive sequences in WRRL 1519 compared to other inspected A. flavus strains. This is the first report of detection of a large 
number of putative retrotransposons in any A. flavus strain, initially suggesting that retrotransposons may contribute to the 
natural occurrence of genetic variation and biocontrol strains. However, the transposons may not be significantly associated 
with the chromosomal differences. Future experimentation and continued bioinformatics analyses will potentially illuminate 
causes of the differences and may reveal whether transposon activity in A. flavus can lead to random natural occurrences of 
non-aflatoxigenic strains.
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Introduction

Fungi of the genus Aspergillus are greatly important in 
health, agriculture and food production. Common spe-
cies such as Aspergillus flavus and A. fumigatus may be 
opportunistic animal and plant pathogens, particularly of 
immunocompromised humans and of crops such as corn, 
cotton and nuts (de Lucca 2007; Goldman and Osmani 2008; 
Amaike and Keller 2011; Mousavi et al. 2016). A. nidulans 
is an important model organism for eukaryotic genetics and 
cell biology (Nierman et al. 2005; Goldman and Osmani 
2008). A. oryzae is used to ferment many popular Japa-
nese fermented foods and beverages and in the production 
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of heterologous proteins, while A. niger and A. terreus are 
used for industrial production of citric acid and lovastatin 
(Goldman and Osmani 2008; Machida et al. 2008; Bennett 
2010). A. flavus is a cosmopolitan saprophyte and oppor-
tunistic pathogen that is a common producer of aflatoxins, 
potent hepatotoxins and carcinogens (Richard and Payne 
2003). Due to food safety implications, there is significant 
interest in measuring the diversity of this species in different 
populations and identifying stable non-aflatoxigenic strains 
(Cotty 1990, 1994; Cotty and Mellon 2006; Moore et al. 
2009), which have been reported to comprise 15.8–78.9% of 
natural fungal isolates (Hua et al. 2012; Jamali et al. 2012; 
Solorzano et al. 2014; Divakara et al. 2015) across the world. 
Most biocontrol A. flavus strains have aberrant aflatoxins 
biosynthetic gene clusters. For example, strain NRRL 21882 
(“Afla-Guard”) does not produce aflatoxins, because of a 
large deletion of the aflatoxins biosynthesis gene cluster and 
part of the adjacent sugar utilization cluster (Chang et al. 
2005). Strain NRRL 30797 (“K49”) has a premature TGA 
stop codon in the polyketide synthase gene aflC (Chang 
et al. 2012) and strain NRRL 18543 (“Af36”) has deletions 
of 17–61 bp in genes aflU, aflC, aflR and aflaV (Adhikari 
et al. 2016). The evolutionary processes responsible for the 
occurrence of non-aflatoxigenic A. flavus strains are still 
unclear. However, recombination events may have a major 
influence on genetic variability (Geiser et al. 1998; Olarte 
et al. 2012; Moore 2014). Moore et al. (2009) propose that 
lineage-specific recombination events among the late afla-
toxins synthesis pathway gene (aflE to aflP, but especially 
aflW and aflX) led to gene losses and phylogenetic clades by 
which non-aflatoxigenic strains can be grouped; later genera-
tions can regain toxicity by recombination with chromosome 
III of an aflatoxigenic parent. Along the same lines, Chang 
et al. (2012) also claim that an ancestral recombination 
event between two morphotypes resulted in the progenitors 
of NRRL 18543 and NRRL 30797. The boom in genomic 
sequencing of filamentous fungi in the past decade not only 
permits comparisons of different species, it also allows us 
to delve into the genomic differences among strains within 
a species (Nierman et al. 2005). Thereby, we can link geno-
types to desirable phenotypes, such as improved industrial 
metabolite production, lignocellulose degradation (Emtiazi 
et al. 2001; Raulo et al. 2016) and biological control of 
mycotoxigenic strains (Richard and Payne 2003). We aim 
to identify genetic variations in addition to aberrant aflatoxin 
biosynthesis clusters that may distinguish effective biocon-
trol A. flavus strains.

Genetic variability and diversity within a population posi-
tively correlate with population fitness and a better ability of 
the population to adapt to changes in the environment (Reed 
and Frankham 2003). Sources of such genotypic differences 
include mutations, polyploidy, homologous recombination, 
transposable elements (TEs) and individual migration in and 

out of populations. TEs are of special interest because of 
their contributions to gene regulation and genome structural 
variation (Argueso et al. 2008; Feschotte 2008; Bourque 
2009; Klein and O’Neil 2018). Transposons are often over-
represented in heterochromatic areas such as in and near 
the centromere (Pimpinelli et al. 1995; Round et al. 1997; 
Peterson-Burch et al. 2004; Tsukahara et al. 2012; Klein and 
O’Neil 2018). Their high copy numbers can cause them to 
comprise 0.02–29.8% of fungal genomes, 3–45% of meta-
zoan genomes and up to 80% of plant genomes (Daboussi 
and Capy 2003; Bennetzen 2005; Hua-Van et al. 2005; Cas-
tanera et al. 2016).

There are two categories of TEs: class I retrotransposons 
that have a ‘copy and paste’ mechanism in which the TE is 
replicated and integrated in different locations of the genome 
via an RNA intermediate, and class II DNA transposons 
that ‘cut and paste’ themselves throughout a genome. Ret-
rotransposons can be further classed as having long terminal 
repeats (LTRs), long interspersed nuclear elements (LINE) 
or short interspersed nuclear elements. Codon usage of ret-
rotransposons in some fungal hosts is noted to be atypical 
of the organism, indicating horizontal gene transfer origins 
(Hansen et al. 1988; Oliver 1992). The Gypsy superfamily 
of LTR retrotransposons is commonly found in all eukary-
otic phyla (Wicker et al. 2007), but the subfamily Tf1/sushi 
is only reported in fungi and a few vertebrates, suggesting 
limited horizontal transfer from fungi to vertebrates (Miller 
et al. 1999; Butler et al. 2001). In fungi, the effects of TEs 
on strain differentiation and speciation are not well-defined. 
However, they are suspected to have effects on the chromo-
somal rearrangements and duplications via transposon activ-
ity or recombination in Fusarium oxysporum (Hua-Van et al. 
2000; Davière et al. 2001), Magnaporthe grisea (Thon et al. 
2006), Phanerochaete chrysosporium (Larrondo et al. 2007) 
and Aspergillus spp. (Clutterbuck et al. 2008; Lind et al. 
2017). TEs also can serve as a “fossil” record of genome dif-
ferentiation. The strain-specific distributions of transposons 
Vader and ANiTa1 in industrial strains of A. niger indicate 
they were active during domestication, yielding different 
genome organizations (Braumann et al. 2007, 2008). How-
ever, TEs are not always a clear cause of genomic rearrange-
ments (Davière et al. 2001).

Several TE families are detectable in Aspergillus, total-
ing 1.2–2.5% of the genomes of A. nidulans, A. fumigatus 
and A. oryzae (Clutterbuck et al. 2008). Three Aspergillus 
Tf1/sushi subfamily TEs are known: Afut in A. fumigatus 
(Neuveglise et al. 1996), AFLAV in non-aflatoxigenic A. fla-
vus NRRL 6541 (Okubara et al. 2003; Hua et al. 2007) and 
AoLTR in A. oryzae RIB40 (Jin et al. 2014). All of these TEs 
are 6000–7799 bp sequences flanked by two 282–669 bp 
repeat sequences; have two open reading frames (ORF1 and 
ORF2) staggered by a − 1 frameshift; and encode a putative 
Gag-Pol polyprotein with domains for Gag capsid protein, 
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aspartic proteinase, reverse transcriptase, RNase H, and 
integrase, which are universal structural features of active 
Gypsy retrotransposons (Wicker et al. 2007). A screen of 
over 50 A. flavus field isolates reveals that about half had 
incomplete gag and pol regions; none had a full AFLAV-
like sequence (Hua et al. 2007). A. oryzae additionally has 
Crawler, a Mariner/Tc1-type transposon (Ogasawara et al. 
2009). Uncharacterized degenerate retrotransposons dane1 
and dane2 are also found in A. nidulans (NCBI GenBank 
accessions AF295689.1 and AF295688.1, respectively).

The newly reported non-aflatoxigenic strain WRRL 1519 
is missing nearly 42 kb of the beginning of the 75 kb afla-
toxins synthesis gene cluster and does not have a complete 
cyclopiazonic synthesis gene cluster (Yin et al. 2018). In this 
study, we continued bioinformatics analyses of WRRL 1519, 
comparing it to the aflatoxigenic strain NRRL 3357, and 
here we report that the genome organization of strain WRRL 
1519 differed from than that observed in other inspected 
non-aflatoxigenic A. flavus strains. In an attempt to identify 
the cause of these differences, we further modeled the asso-
ciation of these differences with the increased number of 
repetitive elements in the WRRL 1519 strain.

Methods

Comparisons of predicted proteomes

Programs were used with default settings unless otherwise 
stated. Genomic sequences of the aflatoxigenic A. flavus 
strain NRRL 3357, and the non-aflatoxigenic A. flavus 
strains NRRL 21882, NRRL 30797, NRRL 18543 and 
WRRL 1519 were retrieved from the NCBI Genome data-
base in January 2018 (Nierman et al. 2015; Weaver et al. 
2017; Yin et al. 2018; Table 1). The annotated proteome of 
the aflatoxigenic A. flavus strain NRRL 3357 was available 
from the same database. We predicted the proteomes of the 
non-aflatoxigenic NRRL 21882, NRRL 30797, NRRL 18543 

and WRRL 1519 using Augustus version 3.2.3 (Stanke et al. 
2006) and GeneMark-ES (Suite version 4.33) trained on A. 
oryzae (Ter-Hovhannisyan et al. 2008). The resulting GTF 
files were combined into one annotation file using an in-
house Python 2.7 script.

Predicted protein sequences of A. flavus strains NRRL 
3357, NRRL 21882, NRRL 30797, NRRL 18543 and 
WRRL 1519 were compared for homology (as indicated by 
high sequence similarity) by searching against the proteomes 
using HMMER 3.1b2 (Johnson et al. 2010) with an E value 
cutoff of 1−50. Using the annotated NRRL 3357 proteome, 
predicted protein sequences of the non-aflatoxigenic strains 
were assigned homology. Then, these assignments were used 
to map the relative locations and directions of the scaffolds 
along the eight putative chromosomes of NRRL 3357. Scaf-
folds with at least 20 homologous genes in agreement were 
visualized using Circos v 0.69 (Krzywinski et al. 2009). The 
method was validated by homology matching strain NRRL 
3357 to itself (Supplementary Fig. 1A). MUMmer v 4.0.0 
(Marçais et al. 2018) was additionally used to identify nucle-
otide macrosynteny between aflatoxigenic NRRL3357 and 
the other non-aflatoxigenic A. flavus strains.

Prediction of secondary metabolite gene clusters, 
repetitive sequences, candidate retrotransposons, 
regulatory sequences and secretory protein‑coding 
genes

Since the aflatoxigenic cluster is partially missing in strain 
WRRL 1519, we searched for other differences in putative 
secondary metabolite gene clusters predicted by antiSMASH 
3.0 (Weber et al. 2015) using Easyfig 2.2.2 (Sullivan et al. 
2011). Clusters were compared between strains NRRL 3357 
and WRRL 1519 to identify if other secondary metabolite 
clusters had large deletions. Regulatory sequences (upstream 
a maximum of 3 kbp and not overlapping an open reading 
frame) and secreted proteins were predicted using RSAT 
server (Nguyen et al. 2018) with the JASPAR 2018 core 

Table 1   General information about A. flavus strains and scaffold alignments to chromosomes of NRRL 3357

a N/A denotes that no other name is popularly used in published literature
b Number of protein-coding genes for non-aflatoxigenic strains based on prediction software used in this study
c Strain NRRL 18543 may also be referred to as NRRL 118543

A. flavus strain Alterna-
tive popular 
namea

Host plant 
isolated 
from

Afla-
toxigenic 
(+|−)

No. predicted 
protein-coding 
genesb

No. genes with assigned 
homology to NRRL 3357

No. extrachro-
mosomal differ-
ences

Total size of 
aligned scaffolds 
(Mbp)

NRRL 3357 N/A Peanut + 13,485 12,973 1 36.5
NRRL 21882 Afla-Guard Peanut − 13,337 10,675 178 36.1
NRRL 30797 K49 Corn − 13,661 10,976 178 36.5
NRRL 18543c AF36 Cotton − 13,777 11,008 187 36.5
WRRL 1519 N/A Almond − 13,058 10,982 955 37.0
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non-redundant transcription factor DNA-binding preferences 
matrix (Khan et al. 2018) and TargetP 1.1 with the non-plant 
option (Emanuelsson et al. 2007), respectively.

RepeatMasker version 4.0.7 (Smit et al. 2018) was used 
to identified all repetitive elements using the fungal-specific 
repetitive sequences database from RepBase volume 23, 
issue 5 (https​://www.girin​st.org/). Lower-scoring sequences 
in the same loci as another higher-scoring one were consid-
ered redundant and removed. We modeled random place-
ment of all repetitive sequences in the WRRL 1519 genome 
using a custom Python script: weighted by scaffold size, 
the script randomly assigned the 883 repetitive sequences 
to genomic locations on a scaffold at least one nucleotide 
larger in size. We then counted the number of randomized 
loci within a specified range of nucleotides bordering pre-
dicted protein-coding genes, regulatory sequences, other 
repetitive sequences and secretory protein-coding genes. Ten 
thousand permutations were performed for each instance. 
The randomized model was compared to the actual counts 
of repetitive sequences within the borders of the sequences 
of interest. Genomic densities and locations of sequences of 
interest were visualized using Circos.

Reverse transcriptases and retrotransposons identified 
from A. flavus sequences and deposited in NCBI GenBank 
were queried against the genomic sequences of inspected 
strains using HMMER with an E value cutoff of 1−200. 
Additional LTR sequences were search with a 1−50 E value 
threshold. Sequence similarities of retrieved homologous 
sequences were visualized using MUSCLE 3.8.31 (Edgar 
2004) and BOXSHADE 3.21 (https​://embne​t.vital​-it.
ch/softw​are/BOX_form.html). Candidates were queried 
against the NCBI non-redundant protein database (O’Leary 
et al. 2016; accessed March 2018) using NCBI BLAST 
(Altschul et al. 1990; https​://blast​.ncbi.nlm.nih.gov/Blast​
.cgi?PAGE=Nucle​otide​s&PROGR​AM=blast​n&PAGE_
TYPE=Blast​Searc​h&BLAST​_SPEC=). The gene environ-
ment of the eleven retrotransposon-like sequences in WRRL 
1519 was characterized based on alignment to annotated 
NRRL 3357 genes.

Results

Strain WRRL 1519 was different in genomic 
organization from other A. flavus strains

Most of the predicted protein in all non-aflatoxigenic strains 
were assigned homology to at least one NRRL 3357 pro-
tein (Table 1). However, 512 NRRL 3357 genes were com-
monly not assigned homology to any of the non-aflatoxi-
genic strains (Fig. 1). The latter all corresponded to short 
sequences, 50–91 amino acids in length, that were mostly 
annotated as “conserved” and/or “hypothetical”. All could 

be identified as homologous to something if the E value 
threshold was lowered to 1−10. There were 1, 902 NRRL 
3357 proteins that did not match to themselves when queried 
against the NRRL 3357 proteome or to anything in the pre-
dicted proteomes of the biocontrol strains, mostly consist-
ing of conserved and hypothetical proteins, as well as some 
transcription factors, transmembrane transporters, kinases, 
enzymes and domain consensus motifs.

The similarities of predicted protein-coding genes 
between NRRL 3357 and non-aflatoxigenic strains were 
examined to map the respective scaffolds to the chromo-
somal arms of NRRL 3357. The 16 largest scaffolds of the 
A. flavus NRRL 3357 genome assembly comprised the 16 
arms of the eight chromosomes of A. flavus. The largest 16 
or 17 scaffolds of strains NRRL 21882, NRRL 30797and 
NRRL 18543 were homologous to these chromosomal arms 
(Supplementary Fig. 1B–D). Only strain NRRL 21882 did 
not have a clear match to the p arm of chromosome VII 
(NRRL 3357 chromosome EQ963487.1). The genome 
sequence of WRRL 1519 had 127 scaffolds of which we 
were able to align 84 to the nuclear genome of NRRL 3357 
(Fig. 2a). Scaffold 98 was the mitochondrial genome. Scaf-
folds 59, 72, 73, 82, 84, 88, 90–92 and 94–127 could not be 
placed confidently as they had too few homologous genes 
or unclear alignments. All non-aflatoxigenic strains had a 
few genes that matched to those the 17th largest scaffold 
of NRRL 3357 EQ963488.1. Predicted protein-coding 
genes from nucleotide 37,001 to 51,632 of scaffold 65 from 
WRRL 1519 mapped to EQ963488.1. However, the gene 

Fig. 1   Venn diagram of NRRL 3357 proteins not found to have 
homology to predicted proteins of the non-aflatoxigenic strains. The 
image was drafted with the venn R package version 1.6 (Dusa 2016; 
R Core Team 2015) and edited with Inkscape version 0.91 (The Ink-
scape Team 2015)

https://www.girinst.org/
https://embnet.vital-it.ch/software/BOX_form.html
https://embnet.vital-it.ch/software/BOX_form.html
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Nucleotides&PROGRAM=blastn&PAGE_TYPE=BlastSearch&BLAST_SPEC=
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Nucleotides&PROGRAM=blastn&PAGE_TYPE=BlastSearch&BLAST_SPEC=
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Nucleotides&PROGRAM=blastn&PAGE_TYPE=BlastSearch&BLAST_SPEC=
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Fig. 2   Scaffold ordering of strain WRRL 1519 to the chromosomes 
of NRRL 3357. Scaffolds comprising the chromosomal arms of 
NRRL 3357 are drawn in 16 different colors on the right and are 
labeled as in the genome assembly (see Supplementary Table  1). 
The outer track enumerates chromosome nucleotide length in kilo-
base pairs, and protein-coding gene density is shown by a gray his-
togram on the inner track. On the left, scaffolds of WRRL 1519 are 

connected to the chromosomes by lines representing high sequence 
similarity between two predicted protein-coding genes. Used scaf-
folds have at least 20 genes homologous to one NRRL 3357 scaffold. 
Beige scaffolds have deposited nucleotide sequences that run in the 
same direction as the deposited sequence of the aligned NRRL 3357 
chromosomal arm; black ones run in the opposite direction
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sequences from 57,085 to 134,489 mapped to EQ963475.1, 
so this scaffold was assigned to chromosome III. Similarly, 
one 2636 nucleotide gene in scaffold 0 was homologous 
to a gene in extrachromosomal scaffold EQ965297.1, but 
most of the WRRL 1519 sequences aligned with NRRL 
chromosomal scaffolds EQ963473.1 and EQ963481.1. For 
the other non-aflatoxigenic strains, the 17th or 18th larg-
est scaffold of the genomes matched to EQ963488.1. The 
orders and orientations of the placed scaffolds relative to 
the NRRL 3357 chromosomal scaffolds strain are shown in 
Fig. 2, Supplementary Table 1 and Supplementary Fig. 2. 
Results from the protein similarity searches between NRRL 
3357 and WRRL 1519 are shown in Supplementary Table 2. 
MUMmer results with nucleotide-based similarity searches 
were in accordance in that the strains NRRL 21882, NRRL 
30797 and NRRL 18543 were noticeably more similar in 
genome organization to NRRL 3357 than WRRL 1519 (Sup-
plementary Fig. 3).

Most of the scaffolds of the non-aflatoxigenic strains 
aligned well with the putative chromosomal arms of afla-
toxigenic NRRL 3357. Extrachromosomal differences were 
defined as a gene in a particular non-aflatoxigenic scaffold 
having best homology to a gene in a NRRL 3357 chromo-
somal arm to which the scaffold is not aligned (Table 1). For 
example, scaffold 30 of strain WRRL 1519 is homologous to 
a large region of chromosomal arm EQ963477.1. However, 
the best overall match for this scaffold was to EQ963472.1. 
These differences could be the results of lower E value 
assignment to non-homologous genes by coincidence, to 
true extrachromosomal paralogs or to true homologs with 
different relative chromosomal placements. For most of 
these extrachromosomal differences, the assigned NRRL 
3357 homolog was the only hit retrieved from the PHM-
MER searches.

Strains NRRL 21882, NRRL 30797 and NRRL 18543 
had 134 extrachromosomal mismatches common among 
them. Strain WRRL 1519 shared 122 of these mismatches. 
The mismatched genes were most frequently annotated as 
transcription factors, transporters/permeases, non-ribosomal 
peptide synthetases and polyketide synthases. There were 
five large sections of extrachromosomal differences between 
WRRL 1519 and NRRL 3357 clearly visible in both Fig. 2 
and Supplementary Fig. 3: between WRRL 1519 scaffold 3 
and NRRL 3357 scaffold EQ963484.1 (chromosome VI, p 
arm), scaffold 30 and scaffold EQ963477.1 (chromosome V, 

q arm), scaffold 15 and scaffold EQ963482.1 (chromosome 
IV, p arm), scaffold 40 and scaffold EQ963479.1 (chromo-
some VI, q arm), and scaffold 13 and scaffold EQ963477.1 
(chromosome V, q arm). The mismatches were not asso-
ciated with significant differences in the structures of pre-
dicted secondary metabolite gene clusters (Supplementary 
Table 3). However, two WRRL 1519 gene clusters aligned 
to NRRL 3357 chromosomes EQ963476.1 (chromosome 
VII, q arm) and EQ963486.1 (chromosome VIII, p arm) had 
large deletions (Fig. 3). The former is predicted to yield a 
terpenoid non-ribosomal peptide product, the latter a non-
ribosomal peptide product.

Strain WRRL 1519 had an increased number 
of repetitive elements

Repetitive elements may affect genome structure, so we 
searched for such sequences using RepeatMasker and 
HMMER. RepeatMasker revealed that strain WRRL 1519 
(886 elements comprising 1.54% of the genome) had an 
increased number of fungal-specific repetitive elements 
relative to the other strains (NRRL 3357—603 elements, 
0.43% of the genome; NRRL 21882—477 elements, 0.28% 
of the genome; NRRL 30797—533 elements, 0.36% of 
the genome; NRRL 18543—533 elements, 0.34% of the 
genome) (Fig. 4). Gypsy and Mariner/Tc1-like sequences 
were the most populous in all strains. Among the repetitive 
sequences in the Gypsy superfamily, AFLAV-like repeats 
were masked nearly 6 times more frequently in the WRRL 
1519 (59 occurrences as opposed to 6–10 in other A. flavus 
strains).

We attempted to identify complete putative reverse 
transcriptase and retrotransposon nucleotide sequences by 
querying specific sequences against the genomes of the 
inspected strains. Eleven candidate retrotransposons and 
six reverse transcriptases were found in WRRL 1519. In 
contrast, strains NRRL 3357, NRRL 21882, NRRL 30797 
and NRRL 18543 had a maximum of one detected retro-
transposon (NCBI GenBank accession AFLA_063980) and/
or five reverse transcriptases (accessions AFLA_001110, 
AFLA_018200, AFLA_053840 and AFLA_114250). 
Genomic sequences from non-aflatoxigenic strains NRRL 
21882, NRRL 30797, NRRL 18543 and WRRL 1519 did not 
share homology with the one queried LINE-1 retrotranspo-
son (accession AFLA_063980 found in NRRL 3357). Only 
WRRL 1519 had sequences homologous to AFLAV (acces-
sion AY485786.2). The length of this query sequence was 
7779 bp; most of the candidate retrotransposons were at least 
6000 bp (Supplementary Table 4). The candidate retrotrans-
posons in strain WRRL 1519 most similar to AFLAV were 
scaffold_113, scaffold_8b and scaffold_18a (Supplementary 
Fig. 4), suggesting that most of the candidates were derived 
from other non-AFLAV-like TEs, or the insertions were 

Fig. 3   Alignments of predicted secondary metabolite gene clus-
ters of strains NRRL 3357 (top) and WRRL 1519 (bottom) between 
a chromosome EQ963476.1 and scaffold 11 and b chromosome 
EQ963486.1 and scaffold 7. Percent identity by tblastx between sub-
sequences is shown as indicated by the key. Genes with predicted 
functions in the NRRL 3357 proteome are green; others are purple. 
Automatic gene annotation of WRRL 1519 may have resulted in 
incorrect start and stop positions

◂
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considerably older and have accumulated more mutations. 
Additionally, five of the eleven candidates were located in 
putatively pericentromeric scaffolds; most of the AFLAV 
sequences detected by RepeatMasker or HMMER were 
located on scaffolds predicted to be near the centromeres 
or the telomeres (Supplementary Fig. 2). Three of the can-
didates had canonical open reading frames at least 300 bp 
long: scaffold_8b (303 bp), scaffold_1 (390 bp) and scaf-
fold_113 (6000 bp). According to NCBI BLAST results, the 
latter two open reading frames contained sequences likely 
to be related to Gag-Pol polyproteins. Moreover, BLAST 
results against the NCBI database indicated that most of the 
candidates were highly similar to subsequences on scaffolds 
SC005 and SC009 of A. oryzae RIB40 (E value < 1−247), cor-
responding to the 6000 bp retrotransposon AoLTR. Separate 
from the LTRs reported in Table 5, several sequences simi-
lar to both the 5′ and 3′ LTRs of AFLAV were identified in 
WRRL 1519 scaffolds 1 (two instances), 8 (four instances), 
18, and 38. None were found in the other A. flavus strains.

Repetitive sequences were associated each other, 
but not with the differences in genome organization

The genetic neighborhood of the candidate retrotransposons 
included genes that were largely unannotated, except for can-
didate scaffold_22 which was surrounded by genes annotated 

as citrate synthase, transcription factor, sugar transporter and 
ABC multidrug transporter. Candidate retrotransposons on 
scaffolds 0, 1, 8 and 89 were in areas with chromosomal 
mismatches and genes that did not have homology to NRRL 
3357 genes. Candidate scaffold_0 was located at the inter-
face of where scaffold 0 stops matching to mostly proteins 
in chromosome EQ963481.1 (chromosome II, p arm) and 
begins matching those in EQ963473.1 (chromosome II, q 
arm). Candidate scaffold_1 neighbors a single extrachro-
mosomal mismatch to EQ963480.1 (chromosome V, p arm), 
by a scaffold that mostly matches EQ963478.1 (chromo-
some II, q arm). This mismatch adds a copy of a kinesin 
family protein-like coding gene. AFLAV-like sequences on 
scaffold 8 were located in a region (nucleotides 155,663 
to 341,186) where only 10 out of 44 predicted genes had 
homology to those in NRRL 3357. The AFLAV candidate on 
scaffold 89 was located at the end of a mismatch to a region 
of EQ963481.1 (chromosome II, p arm) NRRL 3357 that is 
not represented in other WRRL 1519 scaffolds.

Noting that five of the AFLAV candidates were within 
100,000 bp of apparent extrachromosomal mismatches, 
we suspected that TE activity may be responsible for 
chromosomal shifts. We inspected the genomic loci of all 
extrachromosomal predicted protein-coding genes, regu-
latory sequences, repetitive elements and secretory genes 
and performed permutation tests to see if the repetitive 

Fig. 4   Frequency of repetitive sequence elements in the A. flavus genomes. A total of 603, 477, 533, 533 and 886 non-redundant repetitive 
sequences were detected in strains NRRL 3357, NRRL 21882, NRRL 30797, NRRL 18543 and WRRL 1519, respectively
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elements were generally associated with any of these 
sequences of interest. Over half of the WRRL 1519 repeat 
sequences were clearly clustered with one another within 

10,000 bp (Figs. 5, 6a). However, permutations in which 
the loci of repetitive sequences were randomized did not 

Fig. 5   Genomic locations of genes, regulatory and repetitive 
sequences and secondary metabolite gene clusters on NRRL 3357 
(left) and WRRL 1519 (right) scaffolds constituting chromosomes 
a I–III and b IV–VIII. Densities of predicted protein-coding genes, 
regulatory sequences, repetitive sequences and secretory protein-cod-
ing genes are represented by the gray (max height = 19), green (max 
height = 231), red (max height = 14) and purple (max height = 9) his-

tograms, respectively. Bin size (25,000 bp) is the same for all histo-
grams. The innermost layer depicts genomic locations of secondary 
metabolite gene cluster colored by product type (pink, polyketide /
non-ribosomal peptide; orange, siderophore; yellow, terpene; blue, 
indole; black, other). Scaffold length is tracked in kilobase pairs. 
(Color figure online)
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reveal significant associations with extrachromosomal 
mismatches for any of the strains (Fig. 6b).

Discussion

The first published genome of A. oryzae was sequenced 
to 9X coverage depth, initially yielding six scaffolds and 
ten contigs (24 contigs total) organized into eight chromo-
somes by Southern hybridization to chromosomal probes 

and fingerprinting; the assembly was validated by cloning 
and optical mapping (Machida et al. 2005). A. oryzae and 
A. flavus are closely related to A. flavus. Therefore, when 
aflatoxigenic A. flavus NRRL 3357 was sequenced, the 16 
largest scaffolds (out of 79 scaffolds) were organized into 
eight chromosomes by sequence comparison with the A. 
oryzae chromosome map. The overall genomic organiza-
tions between the species were similar except for a large 
translocation between chromosomes II and VI (Payne et al. 
2006, 2008). In turn, the genome of Aspergillus parasiticus 

Fig. 5   (continued)
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SU-1 was also mapped to the 16 scaffolds of A. flavus by 
sequence similarity (Linz et al. 2014).

Thus, using the alignment of aflatoxigenic A. flavus 
NRRL 3357, we were able to organize the genomic scaf-
folds of the four non-aflatoxigenic strains into hypothetical 
chromosomes. Most of the genome assemblies of the non-
aflatoxigenic strains had at least one scaffold matched to a 
putative NRRL 3357 chromosomal arm. However, the p arm 
of the chromosome VII was not found in the genome assem-
bly of NRRL 21882. None of the scaffolds had a similar size 
to the arm (~ 350 kbp) and the only four matched protein-
coding genes were on four different scaffolds. However, this 
chromosomal arm was found be represented by scaffold 
NKQQ01000002.1 in an older genome assembly of NRRL 
21882 (NCBI genome assembly ID GCA_002217635.1), so 
the newer assembly simply may be incomplete. We were 
able to align most of the WRRL 1519 genome assembly to 
that of NRRL 3357, providing a guide to future improve-
ment of the current genome assembly. Our current results 
are purely computational and the scaffold ordering should 
be verified by deep sequencing.

In addition to building a better hypothetical genome 
assembly, we were able to compare the organization of pro-
tein-coding gene loci in the genomes of NRRL 3357 and 
WRRL 1519. There was a notably higher number of extra-
chromosomal mismatches between NRRL 3357 and WRRL 
1519 than between NRRL 3357 and any other tested non-
aflatoxigenic strains. The biological significance, if any, of 
these apparent chromosomal rearrangements is not clear. 
None of the secondary metabolite biosynthesis gene clusters 
at those locations were noticeably different between strains. 
However, single genes or regulatory sequences may be miss-
ing or disrupted due to the difference in genome organization 
that we have not detected. The apparent deletions in two 
predicted biosynthetic gene clusters of WRRL 1519 were not 
associated with extrachromosomal mismatches, and likely 
indicate a difference in the secondary metabolite repertoires 
of NRRL 3357 and WRRL 1519.

The cause of the extrachromosomal mismatches is also 
not clear. There was a marked increase in transposon-like 
sequences in WRRL 1519. TEs can cause insertional muta-
tions in fungi and induce differences in genome structure 
among strains, driving evolution (Nishimura et al. 2000; 
Braumann et al. 2008; Lind et al. 2017). TEs may land 
within an open reading frame or regulatory sequence. TE 
activity may be actively repressed by host-directed repeat-
induced point mutations and such mutations may “leak” over 
to neighboring genes (Irelan et al. 1994; Fudal et al. 2009). 
Generally, TEs may cluster preferentially near genes encod-
ing effectors (secreted cysteine-rich proteins that modulate 
host-pathogen interactions), increasing the evolutionary 

speed of genes involved in pathogenicity; likewise TEs clus-
ter near the immune genes of plants (Raffaele and Kamoun 
2012; Dong et al. 2015; Seidl and Thomma 2017). In Asper-
gillus, some TEs are associated with gene clusters (Lind 
et al. 2017).

Transposon insertion and activity can potentially affect 
virulence of phytopathogenic fungi. The location of a class I 
Mariner/Tc1 transposon in the promotor or coding sequence 
of an avirulence gene allows M. oryzae to overcome gene-
for-gene resistance (Kang et al. 2001; Zhou et al. 2007). Xu 
et al. propose that frequent transposon activity is responsi-
ble for the evolution of a pathogenic M. oryzae ancestor to 
the endophytic Harpophora oryzae (Xu et al. 2014). Active 
and inactive transposons from several plant pathogenic fungi 
including F. oxysporum (Anaya and Roncero 1996; Daboussi 
1997; Mes et al. 2000; Rep et al. 2005), Verticillium dahlia 
(Amyotte et al. 2012), M. oryzae (Ikeda et al. 2001; Chadha 
and Sharma 2014) and Pseudocercospora fijiensis (Chang 
et al. 2016) are associated with increased genome size, 
genome instability and disease aggressiveness. Still active 
transposons can often be stimulated by stress conditions 
(Anaya and Roncero 1996; Ikeda et al. 2001; Ogasawara 
et al. 2009; Amyotte et al. 2012; Chadha and Sharma 2014).

Scientific publications make special note of their appear-
ance often found near effectors, virulence genes, and gene 
clusters (Nishimura et al. 2000; Braumann et al. 2008; Raf-
faele and Kamoun 2012; Dong et al. 2015; Lind et al. 2017; 
Seidl and Thomma 2017). We have shown that repetitive 
sequences are significantly likely to be within 10,000 bp of 
one another, may be associated with chromosomal differ-
ences and that genome-wide associations with extrachro-
mosomal mismatches and other sequences of interest are not 
obviously different from what could be randomly expected, 
even in biocontrol strain WRRL 1519 which exhibited a 
noticeably different genome organization. Payne et al. (2006, 
2008) note that the frequencies of three types of TEs are 
consistently greater in the atoxigenic A. oryzae than in A. 
flavus, implying that TEs may present a method by which 
some non-aflatoxigenic strains may arise and differenti-
ate from their aflatoxigenic ancestors. Chang and Ehrlich 
(2010), reporting that NRRL 3357 has low copy numbers 
of elements Tao1, Crawler and AFLAV, further state that 
mobile elements may contribute to the differentiation of A. 
flavus and A. oryzae. In light of our results, we also hypoth-
esize that transposons may play some role in shaping the 
genomes of some non-aflatoxigenic A. flavus strains that 
can be used for biocontrol of aflatoxins. Whether transpo-
sons may lead to the nonrandom natural evolution of fungal 
strains in nature is an intriguing question and is one we are 
pursuing in future work.
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