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Abstract
Because of its known phytochemical activity and benefits for human health, American cranberry (Vaccinium macrocarpon 
L.) production and commercialization around the world has gained importance in recent years. Flavonoid compounds as well 
as the balance of sugars and acids are key quality characteristics of fresh and processed cranberry products. In this study, 
we identified novel QTL that influence total anthocyanin content (TAcy), titratable acidity (TA), proanthocyanidin content 
(PAC), Brix, and mean fruit weight (MFW) in cranberry fruits. Using repeated measurements over the fruit ripening period, 
different QTLs were identified at specific time points that coincide with known chemical changes during fruit development 
and maturation. Some genetic regions appear to be regulating more than one trait. In addition, we demonstrate the utility 
of digital imaging as a reliable, inexpensive and high-throughput strategy for the quantification of anthocyanin content in 
cranberry fruits. Using this imaging approach, we identified a set of QTLs across three different breeding populations which 
collocated with anthocyanin QTL identified using wet-lab approaches. We demonstrate the use of a high-throughput, reliable 
and highly accessible imaging strategy for predicting anthocyanin content based on cranberry fruit color, which could have 
a large impact for both industry and cranberry research.
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Introduction

The American cranberry (Vaccinium macrocarpon L.) is a 
diploid (2n = 2x = 24), woody perennial, temperate fruit crop 
well-adapted to the acidic bogs of North America (Pierre 
et al. 2013). Cranberry fruit is highly regarded because of 
the potential nutritional benefits of the flavonoids and other 
phytochemical compounds they contain (Ferguson et al. 
2004; Bodet et al. 2008; Pappas and Schaich 2009; Shabrova 
et al. 2011). In the last decades, the cranberry industry has 
experienced a series of “boom and bust” cycles of economic 
expansion and contraction (Jesse et al. 1993). Traditionally, 
the goal of cranberry breeders in the United States has been 
to produce highly productive varieties, which together with 
the increment in acreage devoted to cranberry production, 
has resulted in an overproduction and low cranberry prices 
observed in recent years(McCown and Zeldin 2003; Vorsa 
and Johnson-Cicalese 2012). To fully exploit the current 
cranberry supply, fill niche markets (e.g., organic, fresh, 
and specialty products such as sweetened and dried fruit) 
and allow further industry expansion into health-oriented 

Communicated by S. Hohmann.

Electronic supplementary material The online version of this 
article (https ://doi.org/10.1007/s0043 8-018-1464-z) contains 
supplementary material, which is available to authorized users.

 * Luis Diaz-Garcia 
 diaz.antonio@inifap.gob.mx

 * Juan Zalapa 
 jezalapa@wisc.edu; Juan.Zalapa@ars.usda.gov

1 Department of Horticulture, University of Wisconsin, 
Madison, WI, USA

2 Instituto Nacional de Investigaciones Forestales, Agrícolas y 
Pecuarias, Aguascalientes, Mexico

3 The Land Institute, Salina, KS, USA
4 Bayer CropScience NV, Innovation Center, Ghent, Belgium
5 Blueberry and Cranberry Research and Extension Center, 

Rutgers University, Chatsworth, NJ, USA
6 Valley Corporation, Tomah, WI, USA
7 USDA-ARS, Vegetable Crops Research Unit, University 

of Wisconsin, Madison, WI, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00438-018-1464-z&domain=pdf
https://doi.org/10.1007/s00438-018-1464-z


1380 Molecular Genetics and Genomics (2018) 293:1379–1392

1 3

products, it is vital for cranberry breeding programs to focus 
on novel cranberry characteristics and phytochemical con-
stituents that provide value-added incentives to growers and 
processors.

Several studies have characterized the metabolic profile 
of cranberry fruits, specifically flavonoids, sugar conju-
gates, and acid composition, and established that the main 
anthocyanins present in cranberry are peonidin and cyani-
din 3-galactosides, arabinosides, and glucoside anthocyanins 
(Vorsa and Polashock 2005). Additionally, it has been shown 
that cranberry fruits are rich in different types of proanthocy-
anidins (Foo and Porter 1980), which recently became object 
of extensive studies primarily because of their anti-bacterial, 
antiviral, and pharmacological activity in humans (Su et al. 
2010; Feldman and Grenier 2012; Pierre et al. 2013), as well 
as for repelling herbivory and fungal pathogens (Dixon et al. 
2005; Pappas and Schaich 2009). Accumulation of proan-
thocyanidins, anthocyanins, and other flavonoids have been 
studied through the ripening process in commercial cran-
berry cultivars and undomesticated materials (Wang et al. 
2017). Vvedenskaya and Vorsa (2004) found that proan-
thocyanidin levels reached their maximum concentrations 
during flowering and early fruit set, and declined until fruit 
ripening, followed by slight increases during ripening. Con-
versely, anthocyanin glycosides increased over fruit develop-
ment and maturation stages, with peonidin-3-galactoside and 
cyanidin-3-galactoside being the predominant compounds. 
Finally, it has been shown that cranberry fruit, like other 
berries, contain minor quantities of carotenes (Curl 1964).

Although studies regarding chemical composition are 
abundant, few genetic characterizations of the major chemi-
cal compounds key for cranberry industry have been carried 
out despite the recent availability of genetic and genomic 
resources. Georgi et al. (2013) published the first SSR-
based genetic map of American cranberry, and reported 
several QTLs for yield, fruit weight, titratable acidity and 
proanthocyanidin content. With the recent development of 
high-density genetic maps (Schlautman et al. 2015, 2017; 
Covarrubias-Pazaran et al. 2016a; Daverdin et al. 2017), 
the creation of new mapping populations (Schlautman et al. 
2015), the development of modern massive phenotyping 
techniques (Houle et al. 2010), and the availability of the 
cranberry genome (Polashock et al. 2014), the identification 
and fine-mapping of loci governing major phytochemicals in 
cranberry fruit are crucial for the future breeding of cultivars 
with enhanced phytochemical properties for processing and 
consumption.

In this study, we report a set of novel QTLs for important 
traits in cranberry fruits such as total anthocyanin content 
(TAcy), titratable acidity (TA), proanthocyanidin content 
(PAC), Brix, and mean fruit weight (MFW). Multiple breed-
ing populations in this study enabled an extensive validation 
for incorporating linked molecular markers into cranberry 

breeding strategies. Moreover, given the documented util-
ity of imagining technologies for massive phenotyping and 
genetic association (Gonzalo and Van Der Knaap 2008; Xiao 
et al. 2009; Campbell et al. 2015), we demonstrate the use 
of a high-throughput, reliable and highly accessible imaging 
strategy for predicting anthocyanin content based on cran-
berry fruit color, which could have a large impact for both 
industry and cranberry research.

Methods

Plant material and experimental design

We performed quantification of total anthocyanin content 
(TAcy), proanthocyanidin content (PAC), titratable acid-
ity (TA), Brix, and mean fruit weight (MFW) in a full-sib 
breeding population (CNJ02-01, N = 163) over a 3-year 
period (2011–2014). This population was obtained by cross-
ing the paternal parent CNJ97-105-4 (‘Mullica Queen’) and 
the maternal parent, NJS98-23 (‘Crimson Queen’), and it is 
planted at Rutgers University P.E. Marucci Center, Chats-
worth, NJ, USA. In addition during 2014, we digitally phe-
notyped a replicate of this population planted in Cranberry 
Creek Cranberries Inc., Necedah, WI, USA, as well as two 
more populations, CNJ04-02 (N = 64, also planted at Cran-
berry Creek Cranberries Inc.) and GRYG (N = 267, planted 
at Valley Corporation, Tomah, WI, USA). Because CNJ02-
01 and CNJ04-02 share ‘Mullica Queen’ as a parent, these 
two populations represent half-sib families. The GRYG 
population was derived from a cross between the maternal 
parent [BGx(BLxNL)]95 and the paternal parent GH1 × 35.

All three populations (CNJ02-01, CNJ04-02, and GRYG) 
were established in a modified augmented design where 
check varieties were located in the borders of the plots. For 
the CNJ02-01 population, we obtained replicated meas-
urements of chemical traits at two harvest season dates 
(September 15 and October 5) per year, for a 3-year period 
(2011–2013). Regarding digital phenotyping, we recorded 
data for all three populations only once during 2014.

Chemical analysis

All fruit chemistry traits were analyzed using standard indus-
try methods described in Georgi et al. (2013). Specifically, 
PAC was measured spectrophotometrically using 4-dimeth-
ylaminocinnamaldehyde as a reagent at 640 nm (Wang et al. 
2017); TAcy was measured spectrophotometrically under 
acidic conditions at 515 nm; Brix was measured as percent 
soluble solids using a refractometer; and TA (expressed as 
milliequivalents of citric acid) used 0.1 N NaOH and an end-
point of pH 8.1. Finally, MFW was determined by harvesting 
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all the cranberry fruits within a 0.09 m2, and then, weighting 
a subsample of 100 fruits.

Imaging‑based phenotyping

As described in Diaz-Garcia et al. (2016), TAcy in cran-
berry fruits can be predicted considerably well using digital 
imaging. Similar results have been found in sweet cherry 
(Taghadomi-Saberi et al. 2014), grape (Nogales-Bueno et al. 
2015), and strawberry (Yoshioka et al. 2013). In this study, 
we took pictures of at least 25 fruits per genotype using 
a regular DSLR camera on a white background with con-
trolled lighting conditions; for color normalization purposes, 
we included reference black circles on each picture. Then, 
we used GiNA (Diaz-Garcia et al. 2016) to automatically 
process all the images and extract color measurements per 
fruit. For each genotype, two different digital traits were 
computed; color intensity was calculated by averaging the 
pixel color values of each single fruit; similarly, color vari-
ation was the standard deviation of the pixel color values. 
Thus, at least 25 values were obtained per genotype for each 
digital trait.

Statistical analysis

For all populations (including chemical and digital pheno-
typing data), we fitted mixed models to estimate genomic 
Best Linear Unbiased Predictors (BLUPs) and calculate 
genomic heritabilities (h2, de los Campos et al. 2015). In 
particular, we used the function mmer of the R package 
sommer (Covarrubias-Pazaran 2016) following the author 
recommendations. For the chemical data, we treated each 
year/month combination separately, and once calculated 
the BLUP, we averaged the BLUP values among years for 
each of the months studied. Since a single repeated measure-
ment was available for digital phenotyping traits, we fitted 
mixed models for each trait and BLUPs were directly used 
for QTL mapping. The mixed models used here had the form 
Y = Zu + e was fitted, where Y represented the measured trait 
in a specific year (and month for the case of chemical traits), 
Z was the incidence matrices for random effects (identity 
matrix of length equals to the number of individuals), and 
u was a variance–covariance matrix (additive relationship 
matrix A). The kinship matrix A was constructed with the 
function A.mat from the sommer package, using only the 
bi-allelic markers. After this analysis, we ended up with two 
sets of BLUPs per chemical trait (for September and Octo-
ber, average of the 3-year period) for the CNJ02-01 popula-
tion, and a single set per digital trait for all three populations 
(i.e., CNJ02-01, CNJ02-02, and GRYG); these datasets were 
used for QTL mapping (see below). All raw data and BLUPs 
are provided in Supplementary File 1.

QTL mapping

We performed QTL mapping using the function scanone 
(with the Haley-Knott regression method) from the R pack-
age qtl (Broman et al. 2003). The LOD score threshold to 
call significant QTL was calculated using a permutation 
test (1000 permutations) and a nominal significance level 
of 5%. We used a high-density composite map produced 
with 6073 markers spanning 12 linkage groups and a total 
length of 1130.42 cM (Schlautman et al. 2017); because 
of the high density of the markers used here, no additional 
marker imputation was needed. We identified significant 
peaks automatically using the function big.peaks.col from 
the package Fragman (Covarrubias-Pazaran et al. 2016b); 
QTLs separated from each other by more than 20 cM were 
considered different. We calculated 1.5 LOD-supporting 
intervals using a custom code. For each trait, the function 
fitqtl was used with all significant markers to quantifying the 
explained variance by QTL and the model.

Results

Phenotypic variation and genetic correlation 
between traits

For most of the chemical traits measured in the CNJ02-01 
population, raw phenotypic measurements across geno-
types were moderately consistent during the 3-year period 
as described below (Supplementary File 1). MFW presented 
the highest Pearson’s correlation between years (mean 
r = 0.62), whereas Brix had the lowest (mean = 0.16), mainly 
because the low heritability observed in September of the 
first year of evaluation (Supplementary File 1). TAcy had 
a moderate correlation with a mean of 0.46, whereas TA 
and PAC had a mean correlation of 0.28 and 0.35, respec-
tively. Due to zero or close-to-zero genetic variance, the 
data entries corresponding to Brix Sep 2013 and PAC Oct 
2011 were not considered in further analysis. Mixed mod-
els considerably increased the correlation between years 
for all the traits (Fig. 1a, b). The most notable increments 
were observed for Brix and TA with increments greater than 
200%. Mean year-to-year correlations were 0.66 for MFW, 
0.68 for TAcy, 0.50 for Brix (Sep 2013 removed), 0.53 for 
TA, and 0.57 for PAC (Oct 2011 removed). Because of these 
results, we used the averages per month (from the 3-year 
period) in subsequent analyses.

Genetic correlations (between genomic BLUPs) were 
consistently higher when comparing the September and 
October measurements of the same trait (Fig. 1a). For exam-
ple, the genetic correlation between September and October 
estimates were 0.86 for TA, 0.84 for MFW, 0.83 for TACy 
and 0.6 for PAC; Brix had the lowest correlation (0.36) 
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within months. Monthly repeated measurements were used 
to calculate the differential accumulation per trait during the 
evaluation period; henceforth, these traits are identified with 
the subscript diff (e.g., TAcydiff = October TAcy measure-
ment—September TAcy measurement; Fig. 1c). Differential 
accumulation measurements showed moderate to high cor-
relation with their main traits. For example,  MFWdiff had 
a correlation with MFW September and MFW October of 
− 0.70 and − 0.21, respectively, whereas for TAcy, the cor-
relation was 0.36 and 0.82, respectively. Among the genetic 
correlations between traits, MFW and TA had the highest 
correlation coefficients (0.42–0.54), followed by TAcy and 
PAC (0.26–0.44).

Although the populations used in this study were cre-
ated for breeding purposes (parental materials are advanced 
breeding selections or well-established cultivars), signifi-
cant phenotypic variation was observed for all the traits 
evaluated (Table 1). For MFW, BLUPs ranged from 1.84 
to 2.38 g (mean = 2.07 g) in September, and from 1.95 to 
2.40 g (mean = 2.17 g) in October. For TAcy, large dif-
ferences were observed between months with values 
ranging from 16.05  mg/100  g FW to 28.88  mg/100  g 
FW (mean = 22.35  mg/100  g FW) in September, and 

from 26.32  mg/100  g FW to 48.90  mg/100  g FW 
(mean = 36.76 mg/100 g FW) in October. Brix showed 
little change with September values ranging from 8.42° 
to 8.72° (mean = 8.65°), whereas for October, values 
ranged from 8.86° to 9.34° (mean = 9.10°). Similarly, for 
TA values ranged from 2.37 to 2.58% (mean = 2.48%) 
in September, and from 2.38 to 2.61% (mean = 2.52%) 
in October. As expected, PAC showed a decrease over 
time with values ranging from 1.46  mg/100  g FW to 
1.75 mg/100 g FW (mean = 1.61 mg/100 g FW) in Septem-
ber, and from 1.38 mg/100 g FW to 1.62 mg/100 g FW 
(mean = 1.50 mg/100 g FW) in October. In general, genomic 
heritabilities were low, from 0.12 (Brix, October) to 0.33 
(MFW, September).

For most of the cultivars, the differential accumulation 
estimates were small; however, some accumulation values 
could be of interest for breeding purposes. For example, 
genotype CNJ02-01-140 possessed the largest  TAcydiff 
(21.26 mg/100 g FW) as well as one of the top values in 
 Brixdiff. Similarly, genotype CNJ02-01-122 had an increase 
in MFW of 0.25 g during the evaluation period. In Fig. 1c, 
differential accumulation measurements are shown for all the 
chemical traits evaluated in the CNJ02 population.

Fig. 1  Genetic correlation among traits and distribution of differ-
ential accumulation estimates (diff) for total anthocyanin content 
(TAcy), Brix, titratable acidity (TA), proanthocyanidin content (PAC) 
and mean fruit weight (MFW) evaluated in the CNJ02 population. a 
Genetic correlation between BLUPs (only significant correlations at 

p < 0.05 are colored). b Gain in genetic correlation when comparing 
raw phenotypic values and BLUP estimates. c Differential accumula-
tion measurements (diff) showing top and low performing materials 
(red and gray line indicates mean and zero, respectively). (Color fig-
ure online)
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Mapping of fruit chemical traits

For the CNJ02-01 population, we discovered over 80 sig-
nificant associations across the genome for mean fruit 
weight, total anthocyanin content, titratable acidity, Brix, 
and proanthocyanin content (Fig. 2). From these, 20 were 
found in September, 33 in October, and 30 in the differen-
tial accumulation traits. MFW had the largest number of 
QTL with 20, followed by TA with 17, MFW and TAcy 
with 16 each, and Brix with 14. As expected, from these 80 
QTLs we found multiple collocated QTLs for specific traits 
in the same positions when using the September, October, 
or differential accumulation measurements. A list with all 
the QTLs detected in this study, including location, marker 
name, LOD scores, as well as additional pertinent informa-
tion, is provided in Table 2 and Supplementary File 1.

We identified a large QTL for MFW (average explained 
variance = 12.6%) in both September and October in LG3 
position 32.9 cM. Additionally, we found more collocated 
QTLs in both months in chromosomes 1, 3 and 11, but with 
lower explained variances. Interestingly, only 2 out of 5 
QTLs discovered for  MFWdiff corresponded to QTL identi-
fied in either September or October; however, the remaining 
three explained only an average of 4.2% of the phenotypic 

variation. In summary, QTL models for MFW in Septem-
ber, October, and  MFWdiff explained 67.8, 70.8, and 51.1% 
of the phenotypic variation, respectively. A major QTL 
was discovered for TAcy in LG 3 position 56.18–58.6 cM, 
which explained the largest variation observed in this study 
(45.7% in September and 19.6% in October); surprisingly, 
this QTL was absent for  TAcydiff. TAcy October and  TAcydiff 
shared four QTLs (one in LG 1, two in LG 7, and one in LG 
11). TAcy models including all discovered QTLs explained 
58.4%, 78.7% and 66.5% of the total phenotypic variation of 
TAcy September, TAcy October, and  TAcydiff, respectively. 
For Brix, the largest QTL was identified in September at 
LG 7 position 52.2 cM (explained variance = 28.2%). Brix 
October and  Brixdiff had three collocated QTLs in linkage 
groups 1, 3 and 12, from which the QTL in LG 1 explained 
up to 13.0% of the phenotypic variation.  Brixdiff had the 
largest explained variance with 69.0%, followed by Brix 
October with 56.7%, and Brix September with only 41.2%. 
For TA there were no collocated QTL between  TAdiff, TA 
September, or TA October; all 5 QTLs detected for  TAdiff 
corresponded to unique positions. When comparing TA Sep-
tember and TA October, three collocated QTLs were found 
in LG 11 position 53 cM, LG 4 position 11 cM-18 cM, and 
LG 5 position 47 cM. QTL models for TA explained 57.7, 

Table 1  Summary of BLUPs for mean fruit weight (MFW), total anthocyanin content (TAcy), Brix, titratable acidity (TA) and proanthocyanidin 
content (PAC) in the CNJ02-01 population

a Units: MFW is grams, TAcy and PAC are in mg/100 g FW, Brix is in degrees, and TA is in percentage
b 25% quantile
c 75% quantile

Traita Min Max Mean Median Q25b Q75c Top 5 genotypes h2

MFW Sep 1.84 2.38 2.07 2.07 1.99 2.16 CNJ02-01-38, CNJ02-01-57, CNJ02-01-25, CNJ02-01-39, CNJ02-01-23 0.33
MFW Oct 1.95 2.40 2.17 2.18 2.10 2.22 CNJ02-01-31, CNJ02-01-38, CNJ02-01-60, CNJ02-01-114, CNJ02-01-

109
0.18

MFWdiff − 0.07 0.25 0.09 0.09 0.05 0.14 CNJ02-01-122, CNJ02-01-124, CNJ02-01-138, CNJ02-01-73, CNJ02-
01-34

TAcy Sep 16.05 28.88 22.35 21.99 20.33 24.43 CNJ02-01-126, CNJ02-01-67, CNJ02-01-88, CNJ02-01-63, CNJ02-01-
148

0.36

TAcy Oct 26.32 48.90 36.76 36.46 33.41 40.06 CNJ02-01-88, CNJ02-01-140, CNJ02-01-76, CNJ02-01-2, CNJ02-01-100 0.52
TAcydiff 7.71 21.26 14.41 14.21 12.45 16.31 CNJ02-01-140, CNJ02-01-88, CNJ02-01-137, CNJ02-01-100, CNJ02-

01-76
Brix Sep 8.42 8.72 8.56 8.56 8.52 8.60 CNJ02-01-30, CNJ02-01-154, CNJ02-01-75, CNJ02-01-151, CNJ02-01-

155
0.15

Brix Oct 8.86 9.34 9.10 9.09 9.04 9.16 CNJ02-01-15, CNJ02-01-45, CNJ02-01-4, CNJ02-01-154, CNJ02-01-135 0.12
Brixdiff 0.23 0.72 0.53 0.53 0.48 0.60 CNJ02-01-88, CNJ02-01-139, CNJ02-01-143, CNJ02-01-45, CNJ02-01-

140
TA Sep 2.37 2.58 2.48 2.48 2.45 2.51 CNJ02-01-28, CNJ02-01-81, CNJ02-01-40, CNJ02-01-92, CNJ02-01-30 0.26
TA Oct 2.38 2.61 2.52 2.52 2.48 2.55 CNJ02-01-56, CNJ02-01-40, CNJ02-01-60, CNJ02-01-28, CNJ02-01-13 0.28
TAdiff − 0.02 0.10 0.04 0.03 0.02 0.06 CNJ02-01-56, CNJ02-01-16, CNJ02-01-43, CNJ02-01-134, CNJ02-01-31
PAC Sep 1.46 1.75 1.61 1.61 1.56 1.66 CNJ02-01-82, CNJ02-01-137, CNJ02-01-28, CNJ02-01-25, CNJ02-01-

156
0.24

PAC Oct 1.38 1.62 1.50 1.50 1.46 1.53 CNJ02-01-2, CNJ02-01-11, CNJ02-01-146, CNJ02-01-10, CNJ02-01-67 0.27
PACdiff − 0.21 0.01 − 0.11 − 0.11 − 0.14 − 0.09 CNJ02-01-11, CNJ02-01-73, CNJ02-01-34, CNJ02-01-143, CNJ02-01-10
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72.0 and 41.1% for TA September, TA October and  TAdiff, 
respectively. Out of the eight QTLs found for PAC Septem-
ber, two were collocated with QTL for PAC October at link-
age groups 7 and 11, of which the first one explained, in 
average, 9.0% of the phenotypic variance.  PACdiff had not 
collocated QTL with neither PAC Sep or PAC Oct. QTL 
models explained 64.2% for PAC September, 67.4% for PAC 
October, and 71.7% for  PACdiff.

Digital‑based anthocyanin quantification

We performed digital phenotyping in the CNJ02-01, CNJ04-
02 and GRYG populations to estimate color intensity and 
color variation in cranberry fruits. Although we recorded 
all three RGB channels for each fruit, we used only the 
red channel because it showed the highest correlation with 
TAcy content (− 0.78 for TAcy September and − 0.85 for 
TAcy October; digital color scales are inverted, that is why 
the negative correlation). Genomic heritabilities for color 
intensity and color variation ranged from 0.50 to 0.79 for all 
three populations, except for the GRYG population which 
had 0.23 for color variation. The genetic correlation between 

color intensity and color variation was greater than 0.98 for 
both CNJ02-01 and CNJ04-02 populations, and 0.67 for the 
GRYG population. These variation may be explained by fact 
that the GRYG population had more uniformly colored fruits 
that the other two populations. As a note, we harvested the 
GRYG population 2 weeks after the CNJ02-01 and CNJ04-
02, which allowed time to genotypes with uncolored fruit to 
fully color. In general terms, the high correlation between 
color intensity and color variation indicates that lighter 
colored fruits tend to be highly variable in color.

As described before, we phenotyped the CNJ02-01 popu-
lation for both chemical and digital traits; however, differ-
ent plantings were used on each approach. Despite that, the 
genetic correlation between color intensity and TAcy for this 
population was − 0.78 and − 0.85 for September and Octo-
ber, respectively (these correlation estimates correspond to 
the ones provided above).

QTL mapping of digital traits

Using digital phenotyping data, we compared the num-
ber and position of QTLs identified through TAcy 

Fig. 2  LOD score profiles for mean fruit weight (MFW), total antho-
cyanin content (TAcy), Brix, titratable acidity (TA) and proanthocya-
nidin content (PAC), in the CNJ02-01 population. As indicated in the 
first panel legend, pink, red and blue lines indicate September, Octo-
ber and differential accumulation (diff) profiles, respectively. Using 

similar colors, significant thresholds (p = 0.05, based on 1000 permu-
tations) are indicated as horizontal lines. In the last panel, a summary 
showing QTL counts by month and trait is provided. A complete list 
of QTL can be found in Supplementary File 1. (Color figure online)
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Table 2  QTL for the chemical traits mean fruit weight (MFW), total anthocyanin content (TAcy), Brix, titratable acidity (TA), and proanthocya-
nidin content (PAC), and the digital traits color intensity and color variation, discovered in all three populations

Trait LG Position (cM) Nearest marker LOD score 1.5 LOD sup-
port interval

R2 (by QTL) R2 (by the 
model)

Population

Chemical traits
TACy Sep 3 56.2 scf5304 23.0 10.3 39.5 62.3 CNJ02

4 18.5 scaffold_60960_209 3.2 22.9 3.9 62.3
12 19.3 scaffold_27631_2392 3.7 26.1 4.6 62.3

TACy Oct 1 62.8 X1trimcontig440230 2.2 30.0 1.5 78.7
1 85.2 scaffold_5299_7068 0.3 44.8 0.2 78.7
1 106.9 scaffold_12748_4113 1.9 16.3 1.3 78.7
3 58.6 SCF85773 21.0 10.3 19.6 78.7
6 7.9 scaffold_430_12130 5.3 15.9 3.8 78.7
7 35.7 scaffold_30468_976 4.1 45.8 2.9 78.7
7 62.0 SCF128015 4.0 12.9 2.8 78.7

11 64.5 scaffold_2406_6866 8.0 7.2 6.0 78.7
TAcy diff 1 52.1 scaffold_18380 1.1 18.8 2.1 41.1

1 77.9 scaffold_41901_298 3.0 15.9 5.7 41.1
8 43.5 SCF71184 2.7 24.8 5.1 41.1

12 25.1 scaffold_49589_2014 1.6 34.1 3.0 41.1
12 55.0 SCF38942 1.4 37.4 2.6 41.1

TA Sep 4 11.3 scaffold_42755_943 7.3 23.5 9.3 63.8
5 47.1 scaffold_218000_24 6.0 9.5 7.5 63.8

11 9.6 scaffold_125_21038 6.0 17.8 7.4 63.8
11 53.0 SCF120937 2.6 8.4 3.1 63.8
11 75.6 scaffold_28041_700 2.9 16.7 3.4 63.8
12 77.6 scaffold_84992 5.0 13.2 6.1 63.8

TA Oct 1 98.0 scaffold_1825_2736 5.5 17.5 5.2 71.9
2 49.4 scaffold_77675_473 7.4 10.3 7.3 71.9
3 33.4 X82171_K70 7.2 10.6 7.0 71.9
4 18.6 scaffold_27846_3448 1.7 16.5 1.5 71.9
5 47.7 scaffold_55702_1668 11.8 11.4 12.5 71.9

11 31.2 scaffold_62302_445 2.3 56.2 2.1 71.9
11 53.0 SCF120937 2.6 9.0 2.3 71.9

TA diff 1 52.1 scaffold_18380 1.1 18.8 2.1 41.1
1 77.9 scaffold_41901_298 3.0 15.9 5.7 41.1
8 43.5 SCF71184 2.7 24.8 5.1 41.1

12 25.1 scaffold_49589_2014 1.6 34.1 3.0 41.1
12 55.0 SCF38942 1.4 37.4 2.6 41.1

Brix Sep 7 52.2 scaffold_16505_2290 12.6 3.0 28.2 41.2
11 26.1 Pr031818821_185 4.5 37.0 8.8 41.2

Brix Oct 1 31.7 scaffold_50850_1690 8.4 2.6 13.0 56.7
3 47.0 scaffold_20817_2608 5.3 20.8 7.8 56.7
8 14.7 SCF107477 6.7 13.2 10.1 56.7

12 19.3 scaffold_4159_1157 1.5 25.9 2.0 56.7
12 55.0 scaffold_43277_235 1.6 7.1 2.1 56.7

Brix diff 1 30.6 scaffold_44200_416 8.2 2.6 9.0 68.9
3 50.6 scaffold_46587_1839 8.0 23.2 8.8 68.9
7 38.3 scaffold_164771_190 3.2 12.3 3.3 68.9
7 60.6 scaffold_20427_5005 3.2 46.1 3.3 68.9
8 42.8 scaffold_51524_72 6.7 13.1 7.2 68.9

12 63.1 scaffold_147305_234 5.0 12.9 5.2 68.9
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Table 2  (continued)

Trait LG Position (cM) Nearest marker LOD score 1.5 LOD sup-
port interval

R2 (by QTL) R2 (by the 
model)

Population

PAC Sep 5 24.3 scaffold_143782_351 5.0 28.9 5.1 70.1
7 56.1 scaffold_30770_2900 9.0 7.5 9.7 70.1
8 22.3 scaffold_52659_1515 1.4 42.8 1.3 70.1
8 47.0 scaffold_40880_1057 1.7 45.2 1.6 70.1

10 70.8 scaffold_7286_3907 4.1 17.9 4.1 70.1
11 16.4 scaffold_170652_55 5.3 9.1 5.4 70.1
11 53.0 scaffold_51138_759 2.1 16.7 2.0 70.1
12 46.3 scaffold_6406_7899 5.5 11.2 5.6 70.1

PAC Oct 3 58.6 SCF85773 3.8 23.5 4.1 67.4
6 11.1 GVC.V31e03_240 2.6 17.9 2.7 67.4
7 56.1 scaffold_15867_4759 7.4 8.4 8.4 67.4
7 82.6 scaffold_43434_633 1.8 5.7 1.8 67.4
9 89.9 contig259Fb 7.8 2.9 9.0 67.4

11 53.0 SCF120937 3.3 10.7 3.5 67.4
12 14.6 scaffold_58926_848 5.3 26.7 5.8 67.4

PAC diff 1 100.4 scaffold_81716_1234 2.9 30.3 2.7 71.7
2 49.4 scaffold_77675_473 4.0 9.1 3.8 71.7
3 30.2 scaffold_57070_1345 7.2 14.0 7.1 71.7
6 69.2 scaffold_24568_3388 5.7 18.3 5.5 71.7
7 28.6 scaffold_20940_1397 2.9 10.8 2.7 71.7

10 20.9 scaffold_6013_884 6.8 23.4 6.6 71.7
12 63.1 scaffold_147305_234 10.6 22.6 11.0 71.7

MFW Sep 1 103.2 scaffold_19539_410 3.2 9.7 3.3 67.8
3 45.5 scaffold_12440_4793 11.7 26.4 14.1 67.8

10 32.9 scaffold_12381_1637 8.5 15.7 9.7 67.8
11 30.3 scaffold_28856_2095 12.8 9.7 15.8 67.8
12 74.9 scaffold_34492_1275 3.8 9.8 4.1 67.8

MFW Oct 1 95.4 scaffold_185_4067 4.6 19.9 4.5 70.8
3 47.0 scaffold_20817_2608 9.6 24.3 10.2 70.8
6 66.8 scaffold_97576_996 6.1 17.0 6.1 70.8

10 32.9 scaffold_12381_1637 13.7 14.4 15.5 70.8
11 38.1 scaffold_40899_1890 6.9 22.5 7.0 70.8
11 82.5 scaffold_56714_991 3.4 21.3 3.3 70.8

MFW diff 6 5.2 scaffold_15239_3508 2.2 11.1 3.5 51.1
6 28.2 scaffold_57397_425 1.6 25.6 2.5 51.1
7 59.0 X1trimcontig337780 4.1 21.3 6.7 51.1

11 24.5 scaffold_113473_310 3.9 11.1 6.4 51.1
12 74.9 scaffold_34492_1275 4.9 6.8 8.1 51.1

Digital phenotyping
Color intensity 3 8.8 scaffold_69755_831 19.2 3.1 16.1 59.0 GRYG 

3 33.4 scaffold_70042_968 20.2 12.3 17.1 59.0 GRYG 
3 36.5 scaffold_3243_9538 4.7 3.6 4.7 68.2 CNJ02
3 54.2 scaffold_52119_1893 10.1 4.0 37.3 65.1 CNJ04
3 58.6 SCF85773 6.2 8.8 6.4 68.2 CNJ02
4 2.4 scf105g 1.8 2.1 4.7 65.1 CNJ04
4 18.5 X5ms2b12 2.3 7.9 2.2 68.2 CNJ02
6 7.9 scaffold_430_12130 3.0 13.3 3.0 68.2 CNJ02
6 20.6 scaffold_6018_7390 7.2 13.5 5.4 59.0 GRYG 
6 40.5 scaffold_38187_2604 6.3 5.7 6.5 68.2 CNJ02

11 50.1 scaffold_7078_6962 11.3 14.0 12.5 68.2 CNJ02
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quantification versus digital phenotyping. When digital 
phenotyping traits were used, we discovered 26 QTLs 
across all three populations, and from these, 10 corre-
sponded to color intensity and 16 to color variation. The 
CNJ02-01 population had the largest number of QTLs 
with 12, followed by GRYG with 10 and CNJ04-02 with 
only 4. We expected to detect novel QTL, have better 
resolution, and higher QTL power detection because 
the increased precision of the image-based phenotyp-
ing approach employed here. Thus, the two QTLs found 
through TAcy quantification in LG 4 position 18.45 cM 
and LG 6 position 7.85 cM were located using digital traits 
in the CNJ02-01 population (the first one located in the 
same marker bin, the second one matched the exact genetic 
marker). More importantly, the largest QTL discovered in 
LG 3 position 56.18–58.58 cM, discovered for September 
and October data, was found in both of the CNJ02-01 and 
CNJ04-02 populations. Additionally, we identified a large 
QTL in the CNJ02-01 and GRYG populations around posi-
tions 33.36–36.59 cM of the same linkage group, which 
supports the presence of two QTLs in linkage group 3. For 
this particular case, we tested the presence of two closely 
located QTLs in LG 3 using the scantwo function of the R/
qtl package (Broman et al. 2003). This procedure is useful 
when dealing with closely located QTL, especially when 
their effects are of opposite directions, since it performs a 
two-dimensional, two-QTL scan through maximum likeli-
hood. For color intensity in all three populations (Fig. 3a, 
upper panels), we found evidence that supports the pres-
ence of at least two additive QTL in linkage group 3; the 
first QTL corresponded to the region previously identified 
(55–58 cM), whereas the location of the second one varied 
across populations (in the range 10–38 cM). In contrast, 

scantwo analysis on TAcy showed more consistency since 
QTL were found at positions 35 cM and 55–58 cM using 
September, October and differential accumulation data. 
For both cases (TAcy and digital color intensity), evidence 
of interacting QTL in linkage group 3 was weak (upper-
left triangles, all with LOD score < 6).

To visually compare the effect of QTL in LG group 3 
position 58 cM, we plotted the digital representations of 
the fruit colors observed in the pictures, classifying them 
by their corresponding genotypes. The marker at this posi-
tion was of the form AB × CD, with the possible outcomes 
AC, AD, BC and BD. As previously mentioned, the color 
intensity trait used herein was derived from the red chan-
nel measurements, which had the highest correlation with 
TAcy. Because RGB values for single-fruit level were avail-
able, we colored each circle with the color observed in the 
original pictures (Fig. 3b). As observed, it is clear that both 
AC and AD genotypes had a larger amount of yellow fruit; 
conversely, BC and BD had larger amounts of darker fruits. 
To further understand these results, we compared density 
plots per genotype across all RGB channels. As expected, 
AC and AD genotypes had a shift in mean value in both red 
and green channels.

Finally, based on digital phenotyping, we found more 
QTLs in other linkage groups for all three populations; how-
ever, these showed low consistency in terms of collocation 
across populations, and in general, explained a minimal phe-
notypic variance. Additionally, because of the high genetic 
correlation between color intensity and color variation, most 
of the QTLs found for these two traits were likely redun-
dant; we believe that both traits are measuring the same fruit 
characteristic. For further details, a complete list of QTLs 

Table 2  (continued)

Trait LG Position (cM) Nearest marker LOD score 1.5 LOD sup-
port interval

R2 (by QTL) R2 (by the 
model)

Population

Color variation 1 30.3 scaffold_6151_1214 6.6 6.0 4.7 60.8 GRYG 
3 33.4 scaffold_13562_2793 22.9 2.6 19.0 60.8 GRYG 
3 36.5 scaffold_3243_9538 3.5 14.7 3.4 69.0 CNJ02
3 54.2 scaffold_52119_1893 10.4 4.0 37.7 66.1 CNJ04
3 58.6 SCF85773 8.2 5.2 8.4 69.0 CNJ02
4 2.4 scaffold_9495_6618 2.2 2.1 6.0 66.1 CNJ04
4 18.5 X5ms2b12 1.9 7.9 1.8 69.0 CNJ02
6 7.9 scaffold_430_12130 2.9 13.3 2.8 69.0 CNJ02
6 40.5 scaffold_38187_2604 6.1 5.7 6.1 69.0 CNJ02
9 68.1 scaffold_11828_430 2.9 11.5 2.0 60.8 GRYG 
9 88.5 scaffold_1155_331 0.5 18.7 0.3 60.8 GRYG 

10 47.2 scaffold_39489_1268 10.7 9.7 7.9 60.8 GRYG 
11 43.1 scaffold_49289_770 13.2 13.8 14.7 69.0 CNJ02
12 12.2 scaffold_803_11742 1.8 6.2 1.3 60.8 GRYG 
12 41.7 scaffold_1179_7946 3.8 6.1 2.6 60.8 GRYG 
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Fig. 3  a Scantwo plots of linkage group 3 for color intensity and 
total anthocyanin accumulation (TAcy) in the CNJ02-01, CNJ04-02 
and GRYG populations. Lower-right and upper-left triangles show 
additive (fv1) and interaction models, respectively; units in both x 
and y axes are in cM; color bars on each scantwo plot display LOD 
scores for additive (in the left) and interaction (in the right) models. 
b Effect plot (by marker genotype) of QTL at linkage group 3 posi-
tion 58  cM. On the right, circles correspond to single fruits of all 
evaluated genotypes. Circle locations in the x axis correspond to the 

BLUP (derived from the red channel) used for QTL mapping, but it 
is colored according with the original RBG values from the photo; 
jittering was applied in the y axis to maximize visual comparison. On 
the left, pixel density plots per channel and genotype are displayed. 
Small windows inside each plot show the complete density distribu-
tion, and main plots, show zoomed version to highlight changes in 
the maximum values (black vertical line); N values correspond to the 
amount of fruits per genotypic category. (Color figure online)
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discovered through digital phenotyping is provided in Sup-
plementary File 1.

Color‑linked marker segregation in yellow/red 
population

Several studies have described both major genes, that turn 
on and off anthocyanin biosynthesis accumulation, and 
minor genes responsible for accumulating different types 
and amounts of specific anthocyanins (Honda et al. 2002; 
Jaakola 2002). To investigate if any of the anthocyanin QTLs 
discovered in this study are acting as the on/off switch in 
the production of pigment, we analyzed the co-segregation 
of SSR markers within a diverse collection of commercial 
cultivars (that produce red mature fruit) and germplasm 
that produce yellow fruit only (derived from a yellow non-
accumulating mutant called ‘Yellow Bell’). Using the SSR 
marker data published by Schlautman et  al. (2015), we 
selected 12 SSR markers near to the QTL in linkage group 
3, in particular, those in regions ~ 30, ~ 55 and ~ 80 cM; 
additionally, we included SSR in other LG that had minor 
QTL such as the ones in LG 6, LG 7, LG 10 and LG 11. 
Using these markers, we evaluated 96 cranberry accessions 
(48 red and 48 yellow fruiting accessions) and performed a 
Cramer’s V test using the R package cramer. The most sig-
nificant associations (i.e., markers that co-segregated with 
color) corresponded to the markers in in the range 55–60 cM 
of linkage group 3; markers in position ~ 30 and ~ 80 cM 
showed no clear co-segregation (Fig. 4).

Discussion

With over 150 different chemical compounds, cranberry 
fruit is a highly rich source of phytochemicals (Pappas and 
Schaich 2009). The function that these constituents (sugars, 
phenolics, proanthocyanidins, flavonols, anthocyanins, etc.,) 
provide in plants is very diverse, including the attraction of 
beneficial insects, UV protection, pathogen defense, energy 
storage, and structural (Bulgakov et al. 2017). Similarly, 
these compounds are highly beneficial for human health 
because of their activity as antioxidants, anti-bacterial, anti-
inflammatories, and anti-adhesion towards viral pathogens 
(Marwan and Nagel 1986; Gupta et al. 2007; Liu et al. 2011; 
Shabrova et al. 2011; Feldman and Grenier 2012). Given the 
importance of these compounds for cranberry industry, the 
set of QTLs discovered in this study represents an important 
resource that can be incorporated into different strategies for 
cranberry molecular breeding programs.

CN02-01 and CN04-02 represent 3rd and 4th breeding 
and selection cycle populations where yield, fruit size and 
color development were principal selection criteria. Thus, 
some allelic fixation for loci impacting these traits may have 

occurred. However, we observed a large phenotypic vari-
ation for fruit weight and anthocyanin content, which are 
crucial when determining crop sale price in the cranberry 
industry. The CNJ02-01 population used in this study (as 
well as the CNJ04-02 and GRYG populations) were created 
for breeding purposes and not for genetic mapping; there-
fore, some of the materials evaluated here can be selected at 
any time and used in further breeding generations. Accord-
ing with the industry standards in the US, TAcy must be at 
least 30 mg/100 FW to obtain the best revenue for growers; 
thus, some of the accessions evaluated here could have great 
potential for commercial purposes (30 materials with TAcy 
October > 40 mg/100 FW). Additionally, a large proportion 
of materials (i.e., CNJ02-01-140, CNJ02-01-88, CNJ02-01-
137, CNJ02-01-100 among others), showed not only high 
TAcy values, but a rapid increase in anthocyanin accumula-
tion (> 20 mg/100 FW) from September to October. More-
over, materials such as CNJ02-01-140 and CNJ02-01-88 
showed a large increase in Brix, which makes them ideal 
candidates to use during breeding. Besides, fruit weight and 
anthocyanin content, proanthocyanidins have gained impor-
tance due to their benefits for human health, and as discussed 
before, multiple accessions presented medium to high values 
for both TAcy and PAC (i.e., CNJ02-01-137, CNJ02-01-
76), which makes multi-trait selection easier. As far as we 
know, there has not been any formal studies regarding how 
Brix and acidity levels in cranberry fruits impact sensory 
properties. In other fruit crops (Harker et al. 2002; Jayasena 
and Cameron 2008), it has been shown that Brix/acid ratio 
can be a very objective measurement that reflects the con-
sumer acceptability for a fruit product (compared with the 

Fig. 4  Strength of association between SSR markers at major antho-
cyanin QTL positions, and fruit color (yellow/red). For each selected 
SSR, significance according with Cramer’s V test is displayed. (Color 
figure online)
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use both chemicals independently), as well as an excellent 
indicator to determine the optimum harvesting period. Here, 
a rapid calculation of Brix/acidity ratio showed a distribution 
that does not correlate with the rest of the chemical traits 
measured (Supplementary File 1), but that highlights some 
materials with consistent high values for both September and 
October (i.e. CNJ02-01-154, CNJ02-01-97, CNJ02-0136). 
Without a doubt, the balance between sweetness and acidity 
is a primary aspect that dictates the quality of fruits, espe-
cially in cranberry, which has a short domestication history 
and limited genetic improvement for most traits.

The overall dynamics in chemical composition across 
time observed in this study was consistent with previous 
studies. Vorsa and Polashock (2000) found that harvest date 
affects significantly the total anthocyanin content, total phe-
nolics and proanthocyanidins. Specifically, TAcy tends to 
increase over time whereas phenolics and proanthocyanidins 
decrease (Vvedenskaya and Vorsa 2004). Here, anthocyanin 
content increased from 22.4 mg/100 FW to 36.8 mg/100 FW, 
and proanthocyanidin content decreased from 1.6 mg/100 
FW to 1.5 mg/100 FW. Moreover, the heritability estimates 
obtained here are consistent with previously reported stud-
ies, such as Vorsa and Johnson-Cicalese (2012), who used 
midparent-progeny mean regression, and found medium to 
high heritabilities for fruit weight (0.73–0.92) and TAcy 
(0.61–0.80), while Brix and titratable acidity showed highly 
variable and low heritabilities (< 0.51).

Our study measured TAcy, Brix, TA, and PAC at two dif-
ferent harvest dates. As in many other fruit crops, cranberry 
phytochemical level testing is a requirement during the sev-
eral weeks or months that takes to harvest the crop. Moreo-
ver, appropriate or exceeding levels in certain chemical qual-
ity tests can provide an economic incentive and increased 
revenue for growers. In the last decades, several studies have 
focused in understanding the different physiological mecha-
nisms that affect cranberry fruit set (Birrenkott and Stang 
1990; Roper et al. 1992, 1993), flower development (Lacroix 
1926; Kaczmarska 2009), dormancy (Eady and Eaton 1972), 
seasonal chemical composition (Hagidimitriou and Roper 
1994; Vvedenskaya and Vorsa 2004), and environment inter-
action and physiological response (Forsyth and Hall 1967; 
Eaton and Mahrt 1977; Vanden Heuvel and Davenport 
2005). Using these background information, current cran-
berry programs are specifically developing high yielding, 
early and late cultivars with desirable levels of key chemi-
cals such as anthocyanins, acids, and sugars. (McCown and 
Zeldin 2003; Wang et al. 2017). For the key traits evaluated 
in this study, we observed that the correlation between Sep-
tember and October BLUPs was generally high except for 
Brix. For further studies, we propose to separate the time 
between harvests, or adding further harvest dates to better 
understand seasonal changes in fruit chemistry composition.

Under the assumption that more closely related geno-
types have similar phenotypes, we applied mixed models 
using genetic relationship information to obtain more pre-
cise breeding values (and a higher year-to-year genetic cor-
relation). Nowadays, the studies regarding QTL mapping 
for quality traits in cranberry are limited. The first study 
was carried out by Georgi et al. (2013), in which multiple 
QTLs for fruit weight and titratable acidity were discovered; 
however, the very low marker density used to construct the 
genetic map limits the comparison with the QTL localized 
here. Later, Schlautman et al. (2015) generated a denser 
SSR-based genetic map and performed QTL mapping for 
fruit weight and other yield-related traits; interestingly, we 
found several collocated QTLs, particularly, those in LG 11.

In this study, we detected a large number of QTLs in 
chromosome 3 for total anthocyanin content and digital color 
traits. Observations based on the two-dimensional, two-QTL 
genome scan, show a complex mechanism that determines 
anthocyanin accumulation in cranberry, and requires further 
investigation. Additionally, the co-localization of a QTL for 
both anthocyanin and proanthocyanin content (LG 3, posi-
tion 59 cM) is expected given that these two compounds 
are produced within the same biochemical pathway, and are 
dependent on each other. Mapping studies comparing the 
location of anthocyanin and proanthocyanidin-related QTL 
are limited; however, a recent study in red rice found at least 
two collocated QTLs for anthocyanin content and proan-
thocyanins (Xu et al. 2017). Using the locations of QTL 
for anthocyanin content, we attempted to identify candidate 
genes; however, our search was limited by the highly frag-
mented cranberry genome available. Proposing a regulation 
model to explain anthocyanin biosynthesis based solely in 
the QTL data presented here is premature. However, our 
analysis with SSR evaluated in a set of red/yellow unre-
lated cranberry accessions provided evidence of a major 
gene (at 55–60 cM of linkage group 3) possibly acting as a 
genetic switch to turn on or off pigmentation accumulation 
in cranberry.

Measuring chemicals using wet-lab methods is time-
consuming and potentially error prone. For example, TAcy 
is estimated by averaging the anthocyanin content of a few 
fruits (i.e., 500 g) processed as a single sample, where 
information regarding the uniformity in anthocyanin con-
tent deposition around each individual fruit is lost. Using 
image-based phenotyping, data can be recorded at fruit level, 
thus providing not only information about the total color of 
each fruit, but also the uniformity of the pigment accumula-
tion. In the cranberry industry, knowing uniformity in fruit 
anthocyanin content is very useful when determining the 
processing wanted to be achieved. On the other hand, with 
image analysis becoming more accessible for plant breed-
ers, a more extensive characterization of plant phenotypes 
and their interaction with the environment can be achieved.
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